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Abstract
In nature, animal vocalizations can provide crucial information about identity, including
kinship and hierarchy. However, lab-based vocal behavior is typically studied during
brief interactions between animals with no prior social relationship, and under
environmental conditions with limited ethological relevance. Here, we address this gap
by establishing long-term acoustic recordings from Mongolian gerbil families, a core
social group that uses an array of sonic and ultrasonic vocalizations. Three separate
gerbil families were transferred to an enlarged environment and continuous 20-day
audio recordings were obtained. Using a variational autoencoder (VAE) to quantify
583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire
than has been previously reported and that vocal repertoire usage differs significantly
by family. By performing gaussian mixture model clustering on the VAE latent space,
we show that families preferentially use characteristic sets of vocal clusters and that
these usage preferences remain stable over weeks. Furthermore, gerbils displayed
family-specific transitions between vocal clusters. Since gerbils live naturally as
extended families in complex underground burrows that are adjacent to other families,
these results suggest the presence of a vocal dialect which could be exploited by
animals to represent kinship. These findings position the Mongolian gerbil as a
compelling animal model to study the neural basis of vocal communication and
demonstrates the potential for using unsupervised machine learning with uninterrupted
acoustic recordings to gain insights into naturalistic animal behavior.
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Introduction
The field of ethology contains rich descriptions of complex behavioral actions,
including a wealth of species-specific vocal repertoires. However, natural observations
are often incomplete due to limitations in physical access for experimenter observation
or behavioral recording. This can be particularly severe for family behaviors which
occur in protected or remote environments, such as burrows in the case of fossorial
rodent species like naked mole-rats and Mongolian gerbils (Brett 1986; Scheibler
2006). Some of these limitations have been addressed with laboratory environments
that partially recapitulate real-world features (Shemesh & Chen 2023). However, these
studies generally focused on relatively short periods of data collection that consider
single animals or dyads with no prior social relationship.

While our understanding of social aural communication is sparse, even for humans
(Pagel et al., 2013; Mascar et al., 2018; Schindler et al., 2022), we know that many
vocal cues are learned through social experience, and provide pivotal information
about an animal’s identity. For example, a human infant’s ability to discriminate
between foreign language phonemes can be preserved by exposure to a live foreign
speaker, but not an audiovisual recording (Kuhl et al., 2003). Evidence from swamp
sparrows suggests the presence of culturally transmissible “dialects” – a term
borrowed from linguistics to denote a pattern of vocal behavior that is used by
members of a social group (Marler & Tamura, 1964). Our study adopts this operational
definition of a vocal dialect. Even some rodents, such as the naked mole rat, learn
colony-specific dialects based on early social experience (Barker et al., 2021). The
literature for social facilitation of vocal discrimination or production is particularly strong
for zebra finches (Eales, 1989; Dere ́gnaucourt et al., 2013; Chen et al., 2016; Narula et
al., 2018). Therefore, our study considers the possibility that there is a diversity of
vocalizations within the gerbil social group that may harbor family specific information.

We chose to focus on families, a canonical social group that has been predominantly
studied during brief and experimentally restricted social encounters (e.g., mating, pup
retrieval, aggression) in relatively featureless environments. Our goal was to construct a
complete gerbil family social-vocal soundscape during a significant period of
development under undisturbed, environmentally enriched conditions. Unlike many
laboratory rodents, gerbils form pair bonds and maintain a family structure across
generations. These families are composed of a founding adult pair, and up to 15
extended family members that live cooperatively in underground burrows (Ågren et al.,
1989a; Ågren et al., 1989b; Milne-Edwards, 1867; Scheibler et al., 2004). Given the
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darkness and complexity of their burrow systems, gerbils are thought to rely heavily on
their auditory system for social interactions. Sibling bonds established through
adolescence facilitate social structure and minimize inbreeding (Ågren, 1984a). Natural
burrows are found in multi-family neighborhoods with strictly enforced territorial
boundaries (Scheibler et al., 2006; Ågren et al., 1989a, Ågren et al., 1989b). Like prairie
voles, gerbils act cooperatively to hoard food, maintain nests, defend their territory,
and care for pups (Elwood, 1975; Gromov, 2021). Therefore, gerbils display a range of
rodent-typical behaviors (Hurtado-Parrado et al., 2017), as well as complex family
behaviors. Gerbils also display significant vocal communication in both the ultrasonic
and sonic ranges (Ter-Mikaelian et al., 2012, Kobayasi & Riquimaroux, 2012) which is
likely to be integral to social behaviors. Unlike many other rodent species, gerbils are
able to hear within sonic ranges at sensitivities similar to humans (Ryan, 1976). As a
result, there is a rich, contemporary literature on the auditory perceptual skills,
peripheral and central physiology, central anatomy, learning, and genomics in this
species (Budinger and Scheich, 2009; Buran et al., 2014; Happel et al., 2014; Myoga et
al., 2014; Pachitariu et al., 2015; Sarro et al., 2015; von Trapp et al., 2016; Caras and
Sanes, 2017; Cheng et al., 2019; Zorio et al., 2019; Yao et al., 2020; Amaro et al., 2021;
Paraouty et al., 2021; Yao and Sanes, 2021; Saldeitis et al., 2022; Penikis and Sanes,
2023).

Here, we made continuous 20-day audio recordings from three separate gerbil families
(2 parents, 4 pups) in an enlarged home cage that was isolated from other gerbils and
humans. Specifically, we recorded audio over a period beginning at postnatal day
11-13 when auditory cortex is particularly sensitive to acoustic experience, and
extending to postnatal day 31-32, the time when animals are typically weaned. Our
goal was to acquire a descriptive dataset of the spectrotemporal structure of
vocalizations emitted throughout daily family life, and without human intervention.
Using emerging methods in unsupervised vocalization analysis, we quantitatively
describe the spectrotemporal structure of vocalizations over multiple timescales and
demonstrate that vocal repertoire usage differs between families.

Results

Longitudinal familial audio recording
We obtained acoustic recordings (four microphones, 125 kHz sampling rate) from three
separate gerbil families, each containing two adults and four pups (Figure 1A).
Continuous recordings began at P11-13, lasted 20 days, and pups were weaned at
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P29 (Figure 1B). As shown in Figure 1C, we extracted all sound events (yellow) using
amplitude thresholding of acoustic power. To isolate vocalizations (blue) from
non-vocal sounds (red), we computed the spectral flatness of each sound event and
classified sounds with a threshold value of <0.3 as vocalizations. A similar approach
has previously been used in mice (Castellucci et al., 2016), and we verified that a
threshold value of 0.3 minimized the number of false positives (Figure S1). Using this
approach, 10,267,972 sound events were extracted, containing 583,237 vocalizations
and 9,684,735 non-vocal sounds detected across the three families. Sound events
were produced at an average rate of 6,726 +/- 1,260 times per hour (Figure 1D), which
reveals the rate of auditory object processing (Griffiths & Warren, 2004) for gerbil
families in an undisturbed setting. Vocalizations represent 6.99 +/- 3.07% of all sound
events over the recording period (Figure 1E) and were emitted at an average rate of 405
+/- 103 times per hour (Figure 1F), although this varied with time of day (see below).

Unsupervised discovery of the Mongolian gerbil vocal repertoire
To quantify the full array of vocalizations obtained from the three families, we trained a
variational autoencoder (VAE) on vocalization spectrograms. The VAE learned a
low-dimensional representation of latent acoustic features, thereby enabling analysis of
such a large dataset with a larger representational capacity than standard acoustic
features (Goffinet et al. 2021). Figure 2A shows a schematic of the VAE architecture
used (Goffinet et al., 2021), where spectrograms (top; 128x128 pixels) are reduced via a
deep convolutional neural network “encoder” to a latent vector (middle;
32-dimensional). A deep convolutional neural network “decoder” then reconstructs a
spectrogram (bottom) from the 32-dimensional latent representation. The
encoder/decoder networks are jointly trained to minimize the discrepancy between the
original and reconstructed spectrograms (Figure S2A-B), resulting in a low-dimensional
latent representation, or “code”, which depicts each vocalization. To cluster
vocalizations into distinct categories, we trained a Gaussian Mixture Model (GMM) on
VAE latent representations. Using a combination of the elbow method on held-out log
likelihood and established knowledge for how many vocal types gerbils emit (see
Methods, GMM clustering), we selected a model with 70 vocal clusters as a
parsimonious description of the data (Figure S2C). Figure 2B shows a UMAP
embedding of the VAE latents (center), used for visualization purposes only, which
demonstrates that the gerbil vocal repertoire is more discrete than mouse, yet less
discrete than zebra finch (Sainburg et al., 2020; Goffinet et al., 2021). Vocalizations
occur as either single syllables bounded by silence (monosyllabic) or consist of
combinations of single syllables without a silent interval (multisyllabic). Representative
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examples from 12 monosyllabic vocalization clusters are shown with their relative
position in UMAP space, one of which appears similar in form to naked mole rat family
specific chirp (blue box with asterisk; Barker et al., 2021). Furthermore, monosyllabic
vocalizations (56/70 vocal clusters) can be flexibly strung together to create
multisyllabic or “composite” vocalizations (9/70 of vocal clusters; Kobayasi &
Riquimaroux, 2012). The remaining 5 clusters contained a mixture of monosyllabic and
multisyllabic vocalizations. Figure 2C shows 8 examples of multisyllabic vocalizations
and their monosyllabic component boundaries, some of which have been reported
previously (Kobayasi & Riquimaroux 2012) and some of which are newly characterized
(white asterisks). To assess how family structure influences vocal repertoire usage, we
compared vocal usage one day prior and one day after pup weaning, showing a drastic
decrease in vocal emission (Figure S3A). A large-magnitude vocal repertoire change is
also observed, with the repertoire confined to a small region of vocal space following
weaning (Figure S3B-D).

Family specific usage of vocal clusters
We next asked whether gerbil families display different vocalization usage patterns.
First, we visualized the entire vocal repertoire usage of each family as a probability
density heatmap and determined that vocal repertoire usage significantly differed
between families (Figure 3A, Figure S2D). Next, using GMM vocalization clusters, we
compared the proportion usage of each vocal cluster for the three families, revealing
specific vocal cluster differences between families (Figure 3B). All families used each of
the 70 vocal types (i.e. no cluster usage is 0), but each family relied more heavily on
some clusters as compared to others. Importantly, this result is stable across a wide
range of GMM clusters (Figure S4).

Sorting the GMM cluster labels by the pairwise difference in vocal type usage between
the three families revealed which vocal types differed most (Figure 3C). Examples of
top preferred vocal clusters for each family are shown in Figure 3D, along with the
position of those vocal clusters in UMAP embedding space. Families overexpress
dissimilar vocal clusters relative to each other (e.g. clusters 4 and 8 in Family 2) and
similar vocal clusters relative to each other (e.g. cluster 14 in Family 1 and cluster 1 in
Family 3; cluster 9 in Family 1 and cluster 5 in Family 2).

Vocal usage differences remain stable across days of development
It is possible that the observed vocal usage differences could result from varying
developmental progression of vocal behavior or overexpression of certain vocal
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clusters during specific periods within the recording. To assess the potential effect of
daily variation on family specific vocal usage, we visualized density maps of vocal
usage across days for each of the families (Figure 4A). There are two noteworthy
trends: 1.) the density map remains coarsely stable across days (rows) and 2.) the
maps look distinct across families on any given day (columns). This is a qualitative
approximation for the repertoire’s stability, but does not take into account variation of
call type usage (as defined by GMM clustering of the latent space). Figure 4B, shows
the normalized usage of each cluster type over development for each family. Cluster
usages during the period of “full family, shared recording days” (postnatal days
beneath the purple bars) are stable across days within families – as is apparent by the
horizontal striations in the plot – though each family maintains this stability through
using a unique set of call types. This is addressed empirically in Figure 4C, which
shows clearly separable PCA projections of the cluster usages shown in Figure 4B
(purple days, concatenated into a 45 day x 70 cluster matrix). Finally, we computed the
pairwise Mean Max Discrepancy (MMD) between latent distributions of vocalizations
from individual recording days for each of the families (Figure 4D). This shows that
across-family repertoire differences are substantially larger than within-family
differences. This is visualized in a multidimensional scaling projection of the MMD
matrix in Figure 4E.

Transition structure, but not emission structure, shows family specific differences
To assess whether temporal features also harbor family differences, we analyzed
vocalization emission over a range of ethologically relevant timescales. First, we
summed the total vocal emission for each hour of the day over the entire recording
period, which revealed a diurnal activity pattern that was similar across the three
families recorded (Figure 5A). We then analyzed a shorter time scale, the
inter-vocalization-interval. The distribution of intervals between subsequent
vocalizations is broad, with some vocalizations occurring rapidly after one another (e.g.
within tens to hundreds of milliseconds) and others separated by many seconds. The
majority of vocalizations occurred in bouts (58.5 +/- 0.9%), which we extracted using
two criteria: (1) vocalizations within a bout display inter-vocalization-interval of <2
seconds, and (2) a bout contains at least 5 vocalizations (based on Rose et al., 2021).
The distribution of bout durations, inter-vocalization-intervals, and vocalization
durations for each family are highly overlapping and contain the same peaks (Figure
5B-D), suggesting that the temporal structure of vocal emission does not vary by
family. Vocalization bouts show striking structure in vocal type sequencing (Figure
5E-F), therefore we next assessed whether vocal cluster sequencing varied by family.
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Vocal cluster transition matrices revealed a strong self-transition preference for all vocal
clusters across families (Figure 5G), however the proportion usage of different
transitions (including self-transitions) drastically varied by family (Figure 5H).

To determine whether differences in 1-gram structure contribute to differences in the
transition (2-gram) structure, we performed a number of controls. Although subtle,
vertical streaks are clearly present in shuffled transition matrices that correspond to
1-gram usages (Figure S5A-B). Given the shuffled data structure, we sought to
determine whether the observed transition probabilities differed significantly from
chance levels. We randomly shuffled label sequences 1000 times independently for
each family to generate a null transition matrix distribution. Using these null
distributions and the observed transition probabilities, we computed a p-value for each
transition using a one-sample t-test and created a binary transition matrix indicating
which transitions happen above chance levels (Figure S5C, black pixels, p <= 0.05 after
post hoc Benjamini-Hochberg multiple comparisons correction). As is made clear in
Figure S5C, most transitions for each family occur significantly above chance levels,
despite the inherent 1-gram structure. Moreover, by looking at transitions from a highly
usage cluster type used roughly the same proportion across families (cluster 12), we
show that families arrange the same sets of vocal clusters into unique sequences
(Figure S5D). We believe that this provides compelling evidence that the 1-gram
structure does not change the interpretation of the main claim that transition structure
varies by family.

Discussion
Understanding the neural mechanisms that support natural behaviors depends upon
our ability to quantify specific actions over a range of ethologically relevant contexts
and timescales (Miller et al., 2022). In principle, this requires continuous, undisturbed,
and longitudinal recording that takes place in nature or a naturalistic context. This need
has led to the emergence of powerful video tools for long-term monitoring and
machine-learning based analyses (Datta et al., 2019; Pereira et al., 2020; Shemesh &
Chen, 2023). In contrast, most studies of natural behavior have not acquired and
analyzed acoustic information over prolonged periods, or from a socially intact cohort.
Therefore, to characterize vocal communication in a canonical social group, we
obtained continuous audio recordings from 3 separate Mongolian gerbil families over a
20 day period (Figure 1). By expanding the recording duration, and permitting animals
undisturbed interaction with their family unit, we sought to capture a more diverse
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vocal repertoire, and to determine whether vocal attributes were associated with family
identity.

Capitalizing on advances in computational bioacoustics, which aid in the
characterization of complex and high-dimensional vocal behavior (Sainburg et al.,
2020, 2021; Goffinet 2021), we extracted vocalization spectrograms and used a VAE to
perform unsupervised analysis of a large number of familial gerbil vocalizations
(n=583,237). At least one new vocal type and numerous multisyllabic vocal types were
discovered using this approach (Figure 2). Also, we provide evidence that family
structure is necessary to elicit the full vocal repertoire (Figure S3). These findings
underscore the advantage of a longitudinal naturalistic approach, and suggest that
further elaborations (e.g., providing a larger-scale naturalistic environment) could reveal
new aural communication behaviors.

Social vocalizations can convey pivotal information about an animal’s identity. For
example, female macaques learn to recognize the vocalizations of their own offspring
during the second postnatal week, and retain this ability for at least 6 months
(Jovanovic et al., 2003; Shizawa et al., 2005). Similarly, kittens learn their mother’s
vocalizations, and Australian sea lions can recall their mother’s voice up to 2 years after
weaning (Pitcher et al., 2010; Szenczi et al., 2016). Furthermore, the meaning of vocal
cues are often learned through long-term social experience. For example, when
exposed to a chicken maternal call during development, socially reared mallard
ducklings come to prefer it over their own species’ call (Gottlieb, 1993). Similarly, wood
ducklings must be exposed to sibling vocalizations in order to remain selectively
responsive to its mother’s assembly call (Gottlieb, 1983). Horseshoe bats, naked mole
rats, and dolphins each model their calls based on early social experience (Jones &
Ransome, 1993; Fripp et al., 2005; Favaro et al., 2016; Barker et al., 2021). Finally,
rodent vocalizations can also harbor information about the individual identity and
colony membership of the vocalizer (Barker et al. 2021). In fact, research on song
learning in zebra finches shows that a reward learning mechanism may support the
transmission of vocal repertoires: exposure to a live singing tutor, but not song
playback, selectively activates dopamine neurons in the juvenile periaqueductal gray
which is thought to mediate learning (Tanaka et al., 2018). Therefore, there is a
compelling rationale for exploring the diversity of vocalizations within the gerbil family
social group, and to pursue the underlying neural mechanisms in the future.
To address whether gerbils also exhibit family specific vocal features, we compared
GMM-labeled vocal cluster usages across the three recorded families and showed
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differences in vocal type usage (Figure 3). Although we chose 70 clusters for our
analyses, the general finding was robust across a wide range of GMM clusters (Figure
S4). The differences in this study align with the definition of human vocal dialect, which
is a regional or social variety of language that can differ in pronunciation, grammatical,
semantic and/or language use differences (Henry et al., 2015). This definition of dialect
is inclusive of both pronunciation differences (e.g. a Bostonian’s characteristic
pronunciation of “car” as “cah”) and usage differences (e.g. a Bostonian’s preferential
usage of the words “Go Red Sox” vs. a New Yorker’s preferential usage of the words
“Go Yankees”). In our case, vocal clusters can be rarely observed in some families yet
highly overexpressed in others (e.g. analogous to language usage differences in
humans), or highly expressed in both families, but contain subtle spectrotemporal
variations (Figure 3D, Family 1 cluster 11 vs. Family 3 clusters 2, 18, 30; e.g. analogous
to pronunciation differences in humans). Like another fossorial species, the naked
mole-rat, it is possible that gerbils may also possess the ability to acquire family
specific vocal behavior through experience (Barker et al. 2021). Unlike the naked
mole-rat which showed the presence of a colony-specific vocal dialect in a single vocal
type, the soft chirp, we show that fine spectrotemporal variations in multiple different
gerbil vocal types could harbor dialects (Figure 3D).

The described family differences collapse data from multiple days into a single
comparison, however it’s possible that factors such as vocal development and/or high
usage of particular vocal types during specific periods of the recording could explain
family differences. Therefore, we took advantage of the longitudinal nature of our
dataset to assess whether repertoire differences remain stable across time. First, we
visualized vocal repertoire usage across days as either UMAP probability density maps
(Figure 4A) or daily GMM cluster usages (Figure 4B). Though qualitative, one can
appreciate that family repertoire usage remains stable across days and appears to
differ on a consistent daily basis across families. To formally quantify this, we first
projected GMM cluster usages from Figure 4B into PC space and show that family
GMM cluster usage patterns are highly separable, regardless of postnatal day (Figure
4C). If families had used a more overlapping set of call types, then the projections
would have appeared intermixed. Next, we performed a cluster-free analysis by
computing the pairwise MMD distance between VAE latent distributions of
vocalizations from each family and day (Figure 4D). This analysis shows very low MMD
values across days within a family (i.e. the repertoire is highly consistent with itself),
and high MMD values across families/days (greater than would be expected by
chance; see shuffle control in Figure S2D). The relative differences in this matrix are
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made clear in Figure 4E, which provides additional evidence that family vocal
repertoires remain stable across days and are consistently different from other families.
Taken together, we believe that this is compelling evidence that differences in vocal
repertoires between families are not driven by dominating call types during specific
phases in the recording period; rather, families consistently emit characteristic sets of
call types across days. This opens up the possibility to assess repertoire differences
over much shorter time periods (e.g. 24 hours) in future studies.

Vocalization emission statistics and behavioral syllable transition patterns can signify
differences between groups of animals (Castellucci et al. 2018, Wiltschko et al., 2015,
Markowitz et al., 2018). Therefore, it’s possible that vocal emission patterns or vocal
cluster transition patterns may be family specific. To address this, we first compared
vocalization emission rates over multiple ethologically relevant timescales, which
revealed highly consistent emission patterns across families (Figure 5A-D). First, we
observed that vocal emission follows a diurnal pattern, with peaks of activity in the
morning and afternoon. This result complements prior work in gerbils showing diurnal
activity patterns in gerbil groups for non-vocal behaviors (Pietrewicz 1982), but extends
our understanding to vocal behavior. Vocalizations are rarely emitted in isolation.
Rather, they are emitted in sequences (“bouts”) with a modal duration of 4 seconds
and a duration distribution that does not vary between families. These emission
statistics are somewhat consistent with the common phoneme rate in humans
(Edwards and Chang, 2013; Ding et al., 2017). Also, the distributions of
inter-vocalization interval and vocalization duration did not differ between families.
Taken together, the temporal emission structure is highly consistent across families and
suggests that these features are likely not exploited for kinship identification. However,
this does not rule out the possibility that the sequential organization of vocalizations
could vary. Vocalization bouts (Figure 1C, Figure 5E-F) show that temporal sequencing
of vocalization clusters is non-random and has a compelling transition structure with
potential to vary across families. To formally quantify this we calculated vocalization
transition matrices for each family, which revealed that all families strongly favor
vocalization self-transitions (Figure 5G), though hinted that non self-transitions
(off-diagonal) vary by family. To visualize this, we generated bigram transition graphs of
highly expressed vocalization transitions, which provides evidence that vocalization
transition structure varies by family (Figure 5H, Figure S4). Importantly, families arrange
the same sets of vocal clusters into unique sequences (Figure S4D).
There are limitations to this study that deserve consideration. First, a fully realized
assessment of vocalization usage should be integrated with continuous sub-second
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synchronized videographic data from which one can extract animal pose estimation
and behavioral categorization. For example, such data could allow us to control for the
total number and type of social interactions, which may explain differences in the
amount or usage of specific syllables. Second, although we used four microphones, it
was not possible to localize the majority of vocalizations with sufficient spatial
resolution (using Mouse Ultrasonic Source Estimation software; Neunuebel et al.,
2015). To properly address whether individual animals emit a unique vocalization
repertoire, we will require significant advances in the field of computational
bioacoustics. In anticipation of future research in this area, we have computed acoustic
features of vocalizations in each of the GMM clusters as a reference (Figure S6).

Although we were not able to attribute vocalizations to individual family members, we
did seek to determine the importance of family structure by comparing audio
recordings before and after removal of the pups at P30. The results show a clear effect
of family integrity, and the sudden reduction of sonic calls following pup removal
(Figure S3) could suggest that these vocalizations are produced selectively by pups.
However, there is ample evidence that adult gerbils also produce sonic vocalizations.
For example, a number of low frequency call types are used by adults during a range of
social interactions (Ter-Mikaelian et al., 2012; Furuyama et al., 2022), some of which are
similar to a low frequency call type used by pups (Silberstein et al., 2023). Vocalization
patterns of developing gerbils depend on isolation or staged interactions. Thus, when
gerbil pups are recorded during isolation, ultrasonic vocalization rate declines and
sonic vocalizations increase for animals that are in a high arousal state (De Ghett 1974,
Silberstein et al., 2023). As gerbils progress from juvenile to adolescent development
(P17-55) a significant increase in ultrasonic vocalization rate is observed during dyadic
social encounters, with a distinct change in usage pattern that depends upon the sex
of each animal (Holman & Seale 1991, Holman et al. 1995). The development of
vocalization types has been assessed in another member of the Gerbillinae subfamily,
called fat-tailed gerbils (Pachyuromys duprasi), during isolation and handling. Here, the
number of ultrasonic vocalization syllable types increase from neonatal to adult animals
(Zaytseva et al. 2019), while some very low frequency sonic call types were rarely
observed after P20 (Zaytseva et al. 2020). By comparison, mouse syllable usage
changes during development, but pups produced 10 of the 11 syllable types produced
by adults (Grimsley et al. 2011). In summary, our understanding of the maturation of
vocalization usage remains limited by our inability to obtain longitudinal data from
individual animals within their natural social setting. For example, when recorded in
their natural environment, chimpanzees display a prolonged maturation of vocalization
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complexity, such as the probability of a unique utterance in a sequence, with the
greatest changes occuring when animals begin to experience non-kin social
interactions (Bortolato et al. 2023).

These results reveal that Mongolian gerbil families possess a rich repertoire of
vocalizations used during day-to-day communication. Our findings indicate that
long-term behavioral monitoring of a core social unit (i.e. the family) reveals richer vocal
behavior than has previously been reported in the species. Leveraging unsupervised
machine learning to quantify vocalizations, we reveal family-specific vocalization usage
and transition structure. Taken together, these findings establish the Mongolian gerbil
as a useful model organism for studying the neurobiology of vocal interactions in
complex social groups.

Methods

Experimental animals
Three gerbil families (Meriones unguiculatus, n=6 per family: 2 adults, 4 pups) were
used in this study (Charles River). All procedures related to the maintenance and use of
animals were approved by the University Animal Welfare Committee at New York
University, and all experiments were performed in accordance with the relevant
guidelines and regulations.

Audio recording
Four ultrasonic microphones (Avisoft CM16/CMPA48AAF-5V) were synchronously
recorded using a National Instruments multifunction data acquisition device (PCI-6143)
via BNC connection with a National Instruments terminal block (BNC-2110). The
recording was controlled with custom python scripts using the NI-DAQmx library
(https://github.com/ni/nidaqmx-python) which wrote samples to disk at a 125 kHz
sampling rate. In total, 13.084 TB of raw audio data were acquired across the three
families. For further analyses, the four-channel microphone signals were averaged to
create a single-channel high-fidelity audio signal.

Audio segmentation
Audio was segmented by amplitude thresholding using the AVA python package
(https://github.com/pearsonlab/autoencoded-vocal-analysis). First, sound amplitude
traces are calculated by computing spectrograms from raw audio, then summing each
column of the spectrogram. The “get_onset_offsets” function, which performs the
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segmenting, requires the selection of a number of parameters which affect segmenting
performance. The following values were tuned via an interactive procedure which
validated that the segmenting could detect low amplitude vocalizations and capture
individual vocal units apparent by eye:

seg_params = {
'min_freq': 500 # minimum frequency
'max_freq': 62500, # maximum frequency
'nperseg': 512, # FFT
'noverlap': 256, # FFT
'spec_min_val': -8, # minimum STFT log-modulus
'spec_max_val': -7.25, # maximum STFT log-modulus
'fs': 125000, # audio sample rate
'th_1': 2, # segmenting threshold 1
'th_2': 5, # segmenting threshold 2
'th_3': 2, # segmenting threshold 3
'min_dur':0.03, # minimum syllable duration (s)
'max_dur':0.3, # maximum syllable duration (s)
'smoothing_timescale': 0.007, # amplitude
'softmax': False, # apply softmax to the frequency bins to calculate amplitude
'temperature':0.5, # softmax temperature parameter
'algorithm': get_onsets_offsets

}

Sound onsets are detected when the amplitude exceeds 'th_3' (black dashed line,
Figure 1C), and sound offset occurs when there is a subsequent local minimum e.g.,
amplitude less than 'th_2' (gray dashed line, Figure 1C), or 'th_1' (black dashed line,
Figure 1C), whichever comes first. In this specific use case, th_2 (5) will always come
before th_1 (2), therefore the gray dashed line will always be the offset. A subsequent
onset will be marked if the sound amplitude crosses th_2 or th_3, whichever comes
first. For example, the first sound event detected in Figure 1C shows the sound
amplitude rising above the black dashed line (th_3) and marks an onset. Subsequently,
the amplitude trace falls below the gray dashed line (th_2) and an offset is marked.
Finally, the amplitude rises above th_2 without dipping below th_3 and an onset for a
new sound event is marked. Had the amplitude dipped below th_3, a new sound event
onset would be marked when the amplitude trace subsequently exceeded th_3 (e.g.
between sound event 2 and 3, Figure 1C). The maximum and minimum syllable
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durations were selected based on published duration ranges of gerbil vocalizations
(Ter-Mikaelian et al. 2012, Kobayasi & Riquimaroux, 2012).

Vocalization extraction
We computed the spectral flatness of each detected sound event using the python
package librosa (https://github.com/librosa). Consistent with prior literature (Castellucci
et al., 2016), we used a threshold on spectral flatness to separate putative vocal and
non-vocal sounds. This threshold value was determined empirically, by calculating the
false positive vocalization rate (Figure S1) of groups of randomly sampled
vocalizations. For each spectral flatness value in Figure S1B, 100 randomly sampled
vocalization spectrograms less than the working threshold value were assembled into
10x10 grids and visually inspected for false positives (e.g. non-vocal sounds; Figure
S1C). This procedure was repeated 10 times for spectral flatness thresholds of 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, and 0.4. We quantified the false positive vocalization rate for
each threshold value and selected 0.3, which had a 5.5 +/- 1.96% false positive rate.

Variational Autoencoder Training
Extracted vocalizations were converted to 128x128 pixel spectrograms using the
“process_sylls” function from AVA with the following preprocessing parameters:

preprocess_params = {
'get_spec': get_spec, # spectrogram maker
'max_dur': 0.3, # maximum syllable duration
'min_freq': 500, # minimum frequency
'max_freq': 62500, # maximum frequency
'nperseg': 512, # FFT
'noverlap': 256, # FFT
'spec_min_val': -8, # minimum log-spectrogram value
'spec_max_val': -5, # maximum log-spectrogram value
'fs': 125000, # audio sample rate
'mel': False, # frequency spacing, mel or linear
'time_stretch': True, # stretch short syllables?
'within_syll_normalize': False, # normalize spectrogram values on a

# spectrogram-by-spectrogram basis
'max_num_syllables': None, # maximum number of syllables per directory
'sylls_per_file': 100, # syllable per file
'real_preprocess_params': ('min_freq', 'max_freq', 'spec_min_val',
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'spec_max_val', 'max_dur'), # tunable parameters
'int_preprocess_params': ('nperseg','noverlap'), # tunable parameters
'binary_preprocess_params': ('time_stretch', 'mel',

'within_syll_normalize'), # tunable parameters
}

A VAE was trained for 50 epochs using a model precision of 40. We removed additional
false positive vocalizations by inspecting a 2D UMAP embedding of the VAE latent
space and removing UMAP clusters containing non-vocal sounds from further analysis.

Gaussian Mixture Model
GMMs were fit to cluster VAE latent feature vectors. To reduce computation time, we fit
the model on 7 of 32 VAE latents (Figure S2E), as these explained 99.5% of the
variance in the original feature space. The model was implemented in Stan
(https://mc-stan.org/cmdstanpy), however similar clustering results were achieved
using the scikit-learn Gaussian Mixture model class with a diagonal covariance matrix
(https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.ht
ml). We fit the model using stochastic variational inference, an approximate Bayesian
inference technique that recasts the task of learning a posterior distribution as an
optimization problem and enables vast speedups (Hoffman et al., 2013). GMMs
typically assume that the whole population selects clusters with the same probabilities,
however we modified this assumption to allow, though not enforce, the model to learn
different cluster usage patterns for each family. Specifically, we used the following
model:

Let D be the dimensionality of the VAE latents used (in our case, D = 7) and K be the
number of clusters. Denote our parameters by:

Mixture means ( ) for cluster j:β β
𝑗

∈ ℝ𝐷

Mixture covariance matrix ( ) for cluster j: , forΣ Σ
𝑗

= [𝑑𝑖𝑎𝑔(σ
𝑗
)]2 σ

𝑗
∈ ℝ𝐷

Cluster usage probabilities for cohort : with𝑖 θ
𝑖

∈ ℝ𝐾,  
𝑗=1

𝐾

∑ θ
𝑖,𝑗

= 1

Cluster assignment for vocalization k of cohort i: 𝑧
𝑖𝑘

∈ {1,  ...,  𝐾}

We selected our hyperparameters according to Stan’s guidelines for weakly informative
priors, yielding the model:

Mixture means for cluster j : β
𝑗

∼ 𝑁𝑜𝑟𝑚𝑎𝑙
𝐷

(0,  5)
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Mixture standard deviations ( ) for cluster j:σ σ
𝑗

∼ 𝐻𝑎𝑙𝑓–𝑁𝑜𝑟𝑚𝑎𝑙
𝐷

(3)

Cluster usage probabilities for cohort :𝑖 θ
𝑖

∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1,  ...,  1)

Cluster assignment for vocalization k of cohort i: 𝑧
𝑖𝑘

~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(θ
𝑖
)

VAE feature embedding for vocalization k of cohort i: 𝑥
𝑖𝑘

~ 𝑁𝑜𝑟𝑚𝑎𝑙(β
(𝑧

𝑖𝑘
)
, Σ

(𝑧
𝑖𝑘

)
)

To select the number of clusters, K, we held out 25% of our data, trained models with
varying values for K, and calculated the log probability of seeing the held-out data
under each model (Figure S2C). Using the elbow method, we determined that ~70
clusters was a reasonable selection for K. Previous work documenting the Mongolian
gerbil repertoire (Ter-Mikaelian 2012, Kobayasi 2012) has revealed ~12 vocalization
types that vary with social context. It is likely that we are capturing these ~12 (plus a
few more, as illustrated in Figure 2C) as well as individual or family-specific variations
of some call types. Although the number of discrete call types is likely less than 70, it’s
plausible that variation due to vocalizer identity pushes some calls into unique clusters.
This idea is supported by the fact that both naked mole rats and Mongolian gerbils
have been shown to exhibit individual-specific variation in vocalizations, though only in
single call types (Barker 2021, Figure 1; Nishiyama 2011, Table I). Importantly, the core
result is not affected by cluster size (Figure S5).

Maximum Mean Discrepancy Permutation Test
Clustering analyses are notoriously challenging (Kleinberg, 2002). Thus, we performed
a complementary analysis to investigate whether different gerbil families utilize different
vocal repertoires. In particular, we pursued an approach that makes no assumptions
about the number, character, or even existence of vocalization clusters.

Specifically, we used maximum mean discrepancy (MMD) to quantify the difference
between two latent distributions of vocalizations. This test considers two sets of
observed data points (e.g. N vocalizations from Family 1 and N vocalizations from
Family 2), which are assumed to be independent and identically distributed random
variables from underlying probability distributions, and returns a distance metric
corresponding to the equality of the two distributions (Gretton et al., 2012). Lower
values suggest distributions are more similar and higher values suggest distributions
are more dissimilar. We investigated the null hypothesis that the gerbil families used the
same vocal repertoire—i.e. that the probability distribution over VAE latent space for
each family was identical, corresponding to a MMD2 distance of zero. To test this null
hypothesis, we computed the MMD2 distance between the empirical distributions of
family pairs in batches of 1000 randomly sub-sampled vocalizations. This yielded a
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histogram of empirically observed MMD2 distance values for each family pair, which we
compared a null distribution generated by randomly permuting the family label
attached to each vocalization. The empirically observed MMD2 distances were much
higher than the shuffle control, favoring the alternative hypothesis that gerbil families
utilize distinct syllable usage statistics (Figure S2).

Transition Analysis
Vocalization transition sequences were generated by concatenating vocal cluster labels
chronologically for each family and calculating the number of transitions for all possible
transition types. The resulting transition matrix was normalized such that each row
sums to 1, thus reflecting the probability that vocalization transitions to vocalization𝑖

, i.e. (Figure 5G). The transition matrix used to generate the bigram𝑖 + 1 𝑝
𝑖
(𝑗)

probability graph in Figure 5H was normalized such that edge and node widths
correspond to the probability of each vocalization pair, i.e. (Shannon, 1948).𝑝(𝑖, 𝑗)

Acoustic Feature Calculations
First, raw audio from the most probable vocalization samples (n=100) from each vocal
cluster were extracted. Next, using the VocalPy (Nicholson 2023) `similarity_features’
function (a python implementation of the Sound Analysis Pro Sound Analysis Tools
library: http://soundanalysispro.com/matlab-sat), the following acoustic features were
calculated: fundamental frequency (pitch), amplitude, entropy, frequency modulation,
goodness of pitch. In addition to these features, spectral flatness was computed using
librosa (https://librosa.org/doc/latest/generated/librosa.feature.spectral_flatness.html),
and duration was computed from the raw audio itself. Finally, start and stop
frequencies were computed by taking the median fundamental frequency within the
first third and last third (time) of each vocalization, respectively.

The following spectrogram parameters were used: nfft = 512, noverlap (a.k.a
hop_length) = 256, Fs = 125000, min_freq=65, max_freq=62500. Features are
computed on a spectrogram frame-by-frame basis. Single values for each vocalization
were extracted by taking the median acoustic feature value across all spectrogram
frames. The single exception to this was spectral flatness (to remain consistent with the
spectral flatness calculation used for amplitude thresholding), which took the mean
across all spectrogram frames and used the following spectrogram parameters:
n_fft=256, hop_length=128, win_length=256, center = False, power=2.0.
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Detailed description of the units associated with each feature are located here:
http://soundanalysispro.com/manual/chapter-4-the-song-features-of-sap2. Code to
compute acoustic features is available on GitHub
(https://github.com/ralphpeterson/gerbil-vocal-dialects).

Data availability
Raw and pre-processed data are available upon request. Code and basic instructions
for analysis are located on GitHub
(https://github.com/ralphpeterson/gerbil-vocal-dialects).
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Figure 1. Longitudinal familial audio recording. (A) Recording apparatus. Four ultrasonic
microphones sampled at 125 kHz continuously recorded a family in an enlarged environment.
(B) Experiment timeline. Three gerbil families with the same family composition (2 adults, 4
pups) were recorded continuously for 20 days. (C) Extraction of sound events from raw audio
using sound amplitude thresholding (Gray threshold = “th_2”, black threshold = “th_1” and
“th_3”; see Methods). Vocalizations (n=583,237) are separated from non-vocal sounds
(n=9,684,735) using a threshold on spectral flatness (Figure S1, see methods). (D) Summary of
total sound event emission and average emission per hour. (E) Proportion of all sound events
that are vocal or non-vocal sounds. (F) Summary of total vocalization emission and average
emission per hour.
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Figure 2. Unsupervised discovery of the Mongolian gerbil vocal repertoire. Variational
autoencoder and clustering. (A) Vocalization spectrograms (top) are input to a variational
autoencoder (VAE) which encodes the spectrogram as a 32-D set of latent features (middle).
The VAE learns latent features by minimizing the difference between original spectrograms and
spectrograms reconstructed from the latent features by the VAE decoder (bottom). A gaussian
mixture model (GMM) was trained on the latent features to cluster vocalizations into discrete
categories. (B) Representative vocalizations from 12 distinct GMM clusters featuring
monosyllabic vocalizations are shown surrounding a UMAP embedding of the latent features.
Asterisk denotes vocal type not previously characterized. (C) Examples of multisyllabic
vocalizations. White vertical lines indicate boundaries of monosyllabic elements. Asterisks
denote multisyllabic vocal types not previously characterized.
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Figure 3. Family specific vocal usage. (A) UMAP probability density plots (axes same as
Figure 2B) show significant differences between family repertoires (p < 0.01, MMD permutation
test on latent space; see Methods). (B) Vocal type usage by family. Clusters sorted by
cumulative usage across all families. Families show distinct usage patterns of different vocal
clusters. (C) Clusters are resorted by the usage difference between families. (D) Spectrogram
examples from top differentially used clusters (left) and location of clusters in embedding space
(right).
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Figure 4. Vocal usage differences remain stable across days of development. (A) UMAP
probability density plots for each day of the recording, across families. Purple box indicated
recording days that are shared across families. These days are used for subsequent analyses in
C-E. (B) GMM vocal cluster usage per day. Usages are normalized on a per-day basis. A
unique color is used for each cluster type. (C) PCA projection of daily usages within the purple
(shared recording days) period showing that families use a unique subset of clusters stably
across days. (D) Mean max discrepancy (MMD) distance between VAE latent distributions of
vocalizations between days and across families. (E) Multidimensional scaling projection of
MMD matrix from (D). Family vocal repertoires are distinct and remain so across days.
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Figure 5. Transition structure, but not emission structure, shows family specific
differences. (A) Vocalizations are emitted in a diurnal cycle. (B) Vocalizations consistently occur
in seconds-long bouts across families. (C) Vocalization intervals (onset-to-onset) are consistent
across families. (D) Vocalization durations are consistent across families. (E) Raw data
examples of bouts. (F) Bouts typically occupy a similar area of vocal space. (G) Vocal cluster
transition matrix. Vocalizations strongly favor self-transition. (H) Bigram probability graph. Self
and other vocalization transition tendencies show family specific transitions (edges > 0.001
usage shown).
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Figure S1. Vocalization extraction. (A) Distribution of the spectral flatness of all sound events
extracted. Vertical red line = 0.3. (B) False-positive percentage derived from human labeling of
noise detected in randomly sampled 10x10 vocalization matrices. Random samples came from
putative vocalizations with spectral flatness less than a moving threshold of 0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4 (n=10 random samples per group). (C) Example random sample matrix of
vocalizations with spectral flatness <0.3. Four false positives observed in this grid.
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Figure S2. VAE training and GMM clustering. (A) VAE reconstruction examples for different
vocalization types. (B) VAE test and training loss show plateau in performance after a few
epochs (model used in this study is epoch 50). (C) GMM held-out log likelihood as a function of
the number of clusters used during model training. Seventy clusters were used in this study. (D)
MMD2 permutation comparisons. All family comparisons occur greater than expected by
chance (p<0.01, independent t-test). (E) Number of latent features used by VAE.
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Figure S3. Pup removal biases vocal repertoire usage. (A) Pup weaning causes a consistent
reduction in vocal emission across families. (B) UMAP probability densities of the vocal
repertoire pre and post pup weaning. Example vocalization from high density post-weaning
regions. (C.) Difference in probability densities and total percent-change in repertoire pre-post
pup weaning. (D) Quantification of day-to-day percent-change throughout the experiment
shows that the percent-change magnitude observed in C is rare.
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Figure S4. Family specific cluster usages do not depend on GMM cluster size. (A) GMM
cluster usages for each family over a range of GMM cluster sizes. (B) Quantification of pairwise
cluster usage differences showing stability of family differences over all cluster sizes.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2023.03.11.532197doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532197
http://creativecommons.org/licenses/by-nc/4.0/


Figure S5. Vocalization transitions are non-random and family specific. (A) Vocal cluster
transition matrix (same as Figure 5G). (B) Random transition matrix, computed after shuffling
vocal cluster label sequence. (C) Transitions that occur greater than expected by chance
(1000-iteration random shuffle with one-sample t-test and post hoc Benjamini-Hochberg
multiple comparisons correction; see Methods). (D) Most common transitions (>0.04% usage)
from cluster 12 (roughly equally used across all families) to other clusters. Red lines indicate
transitions that are shared across families, black lines indicate unique family specific
transitions.
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Figure S6. Acoustic features for GMM clusters. Acoustic features computed on the top 100
most probable vocalizations from each GMM cluster. Mean values +/- standard deviation
shown. Details on acoustic feature calculation are described in the Methods section.
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