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ABSTRACT: Intrinsic cardiorespiratory fitness (iCRF) indicates the CRF level in
the sedentary state. However, even among sedentary individuals, a wide
interindividual variability is observed in the iCRF levels, whose associated
molecular characteristics are little understood. This study aimed to investigate
whether serum and skeletal muscle metabolomics profiles are associated with
iCRF, measured by maximal power output (MPO). Seventy sedentary young
adults were submitted to venous blood sampling, a biopsy of the vastus lateralis
muscle and iCRF assessment. Blood serum and muscle tissue samples were
analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy.
Metabolites related to iCRF were those supported by three levels of evidence: (1) correlation with iCRF, (2) significant difference
between individuals with low and high iCRF, and (3) metabolite contribution to significant pathways associated with iCRF. From 43
serum and 70 skeletal muscle analyzed metabolites, iCRF was positively associated with levels of betaine, threonine, proline,
ornithine, and glutamine in serum and lactate, fumarate, NADP+, and formate in skeletal muscle. Serum betaine and ornithine and
skeletal muscle lactate metabolites explained 31.2 and 16.8%, respectively, of the iCRF variability in addition to body mass. The
results suggest that iCRF in young adults is positively associated with serum and skeletal muscle metabolic levels, indicative of the
amino acid and carbohydrate metabolism.
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1. INTRODUCTION

Cardiorespiratory fitness (CRF) reflects the ability of the
circulatory and respiratory systems to capture, transport, and
supply oxygen to muscles during exercise training and can be
directly assessed by measuring maximal oxygen uptake
(V̇O2MAX) or represented indirectly by maximal power output
(MPO), maximal running speed, and time to exhaustion
obtained in incremental exercise tests.1−3 Low CRF levels are
associated with a higher incidence of cardiovascular diseases
and death from all causes.4,5

For a better understanding of CRF level effects on health, it
is important to distinguish intrinsic CRF (iCRF) from
acquired CRF. iCRF indicates the level of CRF in the
sedentary state, while acquired CRF shows the level gained
after exposure to regular exercise programs.6 However, there is
no substantial relationship between iCRF levels and the
magnitude of CRF gains acquired post-training.7

Even in sedentary individuals without a history of
substantial involvement in regular exercise programs, large
interindividual differences are observed in iCRF levels.6,8,9 In
healthy and sedentary adults aged 17−41 years, the
distribution of intrinsic CRF may vary from 14 to 58 mL·
kg−1·min−1 when measured by V̇O2MAX.

6 As seen in data from
the HERITAGE Family Study, several factors may contribute
to this variation, with heredity explaining 51% of the variation

in V̇O2MAX adjusted for age, sex, body weight, lean body mass,
and body fat.10

Although physiological and genetic aspects of iCRF have
received some attention,6,8−11 little is known about molecular
determinants and pathways related to variation in iCRF.
Recently, studies have used comprehensive methods such as
metabolomics to identify biomarkers associated with
CRF.12−16

Metabolomics allows comprehensive identification and
quantification of metabolites, which are small molecules
resulting from cellular biochemical and physiological pro-
cesses.17,18 Metabolites are the end products of interactions
between genome, transcriptome, proteome, and cellular/tissue
environments, which can provide accurate information about
complex phenotypes such as CRF.19 Particularly, nuclear
magnetic resonance (NMR) spectroscopy is one of the most
widely employed metabolomics platforms for detecting and
measuring metabolites related to physical activity, exercise,
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and health.20,21 The metabolomics based on NMR is known
for its reproducibility, minimal sample preparation require-
ments, and nondestructive nature.22

Previous metabolomics-based studies have reported differ-
ences in the metabolic profile for different CRF lev-
els,12,13,15,16 where young adults with elevated CRF presented
lower baseline plasma levels of metabolites γ-tocopherol,13

isoleucine, 4-aminobutyrate, proline, 4-hydroxyproline, serine,
phenylalanine, lysine,15 and choline,12 as well as higher
baseline plasma levels of phosphatidylcholine,12 creatinine,
and docosahexaenoic acid13 when compared to individuals
with low CRF. In addition, significant associations of CRF
with baseline serum (piperine, pyridoxine, glycerol, 3-
methoxytyrosine, and 2-hydroxyisobutyrate)14 and urinary
(cis-aconitate, tyrosine, guanidinoacetate, uracil, lactate, 3-
aminoisobutyrate, trans-aconitate) metabolic levels have been
demonstrated,16 whose combination of these metabolites were
able to explain the CRF variance in 80% for an unadjusted
model including only males14 and 17.6%16 for a model
adjusted for age, sex, menopausal status, and lean body mass,
respectively. On the other hand, a study with an animal model
showed lower levels of glutamine, O-acetylcarnitine, citrate,
and proline and higher levels of glycerol, alanine, and
methionine in the skeletal muscle of rats with high CRF
when compared to those in rats with low CRF.23 However, to
the best of our knowledge, no previous study has investigated
the relationship between the metabolic profile of skeletal
muscle and interindividual variation of iCRF in humans.
In this sense, studying systemic integrative molecular bases

and skeletal muscle through a metabolomics profile has the
potential to clarify the mechanisms linked with heterogeneous
levels of iCRF among individuals with similar phenotypic
traits. The identification of serum molecules associated with
iCRF has implications for the discovery of easily accessible
future biomarkers, possibly enabling an assessment of
individual health status without exhaustive assessments of
high cost and complexity. While the identification of skeletal
muscle metabolites contributes to elucidating the underlying
physiology and biochemistry of iCRF. Therefore, this study
aimed to investigate whether the baseline serum and skeletal
muscle metabolic profile is associated with iCRF levels among
sedentary young males.

2. MATERIALS AND METHODS

2.1. Participants

Participated in this study seventy healthy young men from the
TraInability and MEtabolomicS study (TIMES study).
Additional information and details can be found in a previous
publication.24 Briefly, participants were sedentary, defined as
not engaged in regular exercises lasting 30 min·wk−1 or more,
involving an energy expenditure of 6 metabolic equivalents
(METS) or more in the previous 4 months.3,24,25 All
participants provided a detailed medical history and received
a medical examination that included an electrocardiogram at
rest. All participants were free from smoking, hypertension
(blood pressure > 140/90 mmHg), diabetes (fasting glucose >
7.0 mmol·L−1), obesity (defined as body mass index > 33 kg·
m−2), dyslipidemia (based on medication use), heart diseases,
metabolic disorders, significant chronic respiratory conditions,
or musculoskeletal problems interfering with exercise.24 The
sample size was sufficient to promote statistical power above
80% in analyses of association with values of r2 ≥ 0.2.26,27 The

study was conducted following the Declaration of Helsinki.
The protocol was approved by the Research Ethics
Committee of the University (number, 2.717.688; CAAE,
52997216.8.0000.5404), and all participants gave their
informed consent for inclusion before they participated in
the study.
2.2. Experimental Design

First, blood samples and biopsy of the vastus lateralis muscle
were collected after 12 h overnight fasting following a
standardized meal as recommended for metabolomics
studies.28 The standardized meal was balanced (60%
carbohydrates, 25% lipids, and 15% proteins) and based on
30% of estimated daily energy.28−30 After 72 h, body
composition was evaluated through plethysmography, fol-
lowed by cardiorespiratory assessment and retest after 48 h.31

2.3. Blood and Muscle Tissue Collection

Samples of venous blood and muscle tissue were collected
between 7 and 10 am. After that, the blood samples were
centrifuged at 5000 rpm for 10 min and then serum aliquots
were stored in a freezer at −80 °C. After blood collection, a
biopsy of the vastus lateralis muscle of the dominant lower
limb was performed according to previously described
procedures.32 Prior to tissue extraction, the area was shaved
and cleaned with an antiseptic. A small area of the selected
region was anesthetized with 2% xylocaine injected subcuta-
neously. After anesthesia, a small incision (∼5 mm) was
performed until muscle fascia using a surgical scalpel. The
biopsy needle was then inserted into the muscle (∼3 cm) to
obtain the muscle tissue sample. After removing the tissue, the
incision was closed and covered with a bandage. The samples
were cleaned (free from blood and excess connective tissue),
separated in aliquots, immediately frozen in liquid nitrogen,
and stored at −80 °C for further analyses.24

2.4. Body Composition Assessment

Participants were instructed to drink only water and not to eat
or exercise for a period of 2 h before the assessment. All
measurements were performed with participants without shoes
and metallic accessories, wearing only swimsuits and shower
caps. Body mass and height were measured using a digital
scale and a stadiometer (BOD POD, Cosmed, Chicago),
respectively. Then, body density was assessed by a whole-body
plethysmograph that was calibrated under standard conditions
of room temperature and humidity, according to the
manufacturer’s recommendations (BOD POD; Body Compo-
sition System; Life Measurement Instruments; Concord,
CA).33 Then, body density was converted into body fat
percentage using the Siri equation.34

2.5. Cardiorespiratory Assessment

The cardiorespiratory assessment was performed using a cycle
ergometer with electromagnetic braking (Corival 400,
Quinton Instrument Co., Groningen, The Netherlands).
After 5 min rest (sitting position), blood pressure was
measured using the auscultatory method by a mercury column
sphygmomanometer (Narcosul, Brazil). Then, the test started
with a 3 min warm-up at 50 W, followed by increments of 25
W·min−1 until exhaustion.35 The pedaling rate was 70−80
rpm. The test was interrupted when the participant was
unable to continue or keep a minimum rate of 70 rpm, despite
verbal encouragement.36

Heart rate (HR) was continuously monitored during the
whole test using a cardiofrequency monitor (S810, Polar,
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Keple, Finland), and the ratings of perceived exertion were
recorded in the final 15 s of each exercise stage using Borg’s
scale.37 The cycle ergometer was calibrated according to the
manufacturer’s recommendations before and after each test.
Maximal heart rate (HRMAX) was obtained from the mean

values in the final 10 s of the test. Maximal power output
(MPO) was calculated as Wcompleted + [25·(t/60)], where
Wcompleted is the last fully completed workload level and t is the
number of seconds in the final workload.38 The highest MPO
value recorded between tests and its respective time to
exhaustion was considered for the analyses and defined as the
measure of iCRF. MPO’s test−retest presented high
reproducibility (coefficient of variation = 2.8% and intraclass
correlation coefficient = 0.98).24

2.6. Blood Sample Preparation for Metabolomics Analysis

Prior to the metabolomics analysis by 1H NMR spectroscopy,
3 kDa filters (Amicon Ultra) were washed with 500 μL of
Milli-Q water, followed by centrifugation at 14 000 rpm for 10
min at 4 °C. This process was repeated five times. After the
fifth wash, spinning (filter reverse and rotation at 8000 rpm
for 5 s) was performed to eliminate any residue of Milli-Q
water. After that, 500 μL of blood serum was added to the
filter and it was centrifuged at 14 000 rpm for 45 min at 4 °C.
Then, 250 μL of filtered serum was transferred to a 5 mm
NMR tube (Wilmad Standard Series 5 mm, Sigma-Aldrich)
containing 60 μL of phosphate buffer [(monobasic sodium
phosphate, NaH2PO4 H20, 137.99 g·mol−1; dibasic sodium
phosphate, Na2HPO3, 141.96 g·mol−1), TMSP-d4 (3-(trime-
thylsilyl)-2,2′,3,3′-tetradeuteropropionic acid), at 50 mmol·
L−1 in D2O (6.06 μL) (internal reference)] and 290 μL of
D2O (99.9%; Cambridge Isotope Laboratories Inc.).21,24,39

2.7. Muscle Tissue Sample Preparation for Metabolomics
Analysis

Muscle tissue samples were processed as described in a
previous publication.24 Briefly, muscle tissue fragments (∼40
mg) were weighed and added to a cold methanol/chloroform
solution (2:1 v/v, total 2.5 mL). Then, the tissues were
homogenized on ice (for 30 s, three times, alternating with a
10 s pause) and sonicated (for 1 min, three times, alternating
with a 10 s pause). After that, a cold solution of chloroform/
Milli-Q water (1:1 v/v, total 2.5 mL) was added to the
samples. The samples were briefly vortexed to form an
emulsion and centrifuged (2000g, for 30 min, at 4 °C). The
upper phase of the mixture (containing methanol, water, and
polar metabolites) was collected and evaporated in a vacuum
concentrator (miVac Duo Concentrator, Genevac, U.K.). The
remaining solid phase was rehydrated in 0.6 mL of deuterium
oxide containing phosphate buffer (0.1 M, pH 7.4) and 0.5
mM TMSP-d4 and then added to a 5 mm NMR tube
(Wilmad Standard Series 5 mm, Sigma-Aldrich) for scanning
and acquisition of the spectrum on the spectrometer.

2.8. Spectrum Acquisition and Metabolite Quantification

Each spectrum of 1H NMR was acquired using VnmrJ
software (Varian NMR Systems) and a Varian Inova 1H NMR
spectrometer (Agilent Technologies Inc., Santa Clara),
operating at 600 MHz frequency and a constant temperature
of 298 K (25 °C). A total of 256 free induction decays (FIDs)
were collected over a spectral width of 8000 Hz, with an
acquisition time of 4 s and relaxation delay intervals of 1.5 s.
After spectrum acquisition, baseline corrections, identifica-

tion, and quantification of metabolites present in the samples

were conducted using Suite 7.6 Chenomx software (Chenomx
Inc., Edmonton, AB, Canada) by the TMSP signal (known
concentration) as an internal reference to quantify other
metabolites. All spectra were processed with 0.5 Hz line
broadening (lb) to attenuate the noise in the spectral signals
(Figures S1 and S2). Metabolites involved in the sample
collection/preparation process (ethanol and acetone in serum,
methanol in skeletal muscle) were excluded from the analysis,
as well as those previously reported as presenting low
reproducibility in serum (2-aminobutyrate, 2-hydroxybutyrate,
2-oxoglutarate, acetate, acetoacetate, fumarate, glucose,
methylamine, and oxypurinol).24

2.9. Statistical analysis

For all variables, the normal distribution of data was verified.
When appropriate (skewness values > 3.0), logarithmic
transformations (log2) were applied to improve normal
distribution.24

First, the variables of sample characterization were
correlated to iCRF using Pearson’s correlation test (r).
Then, partial Pearson correlations (order 1) were performed
between baseline concentrations of serum and skeletal muscle
metabolites with iCRF, controlling the effects of body mass.
All metabolites presenting coefficient r ≥ |0.2| were retained
for subsequent analysesthis threshold for the correlation
coefficient was selected as it represents a potentially important
effect expected for molecular predictors of cardiorespiratory
fitness.16,24 Next, the participants were ranked and subdivided
into two groups based on the first tertile (low iCRF) and third
tertile (high iCRF) of the distribution of iCRF values. For the
comparison of retained metabolites (r ≥ |0.2|) between low-
iCRF and high-iCRF groups, a univariate general linear model
(ANCOVA) was used, assuming group as a fixed factor and
body mass as a covariate. These analyses were conducted
using PASW Statistics software version 18.0 (SPSS, Chicago,
IL). Given the large number of tests performed in this study,
the level of significance was 1%, assuming that Bonferroni
correction would be very conservative, leading to a high rate
of false-negative results. To supplement this approach, the
95% confidence intervals of the effect size (ES: mean
difference divided by pooled standard deviation from all
subjects) of each metabolite concentration between low-iCRF
and high-iCRF groups were calculated. Then, if the confidence
intervals did not cross zero, the difference also was considered
significant.40

From retained metabolites (r ≥ |0.2|), metabolic pathways
were analyzed by over-representation and topology based on
the “Homo sapiens” library using Hypergeometric Test for
Over Representation Analysis and Relative-Betweenness
Centrality for Test Pathway Topology Analysis.41 For the
identification of significant metabolic pathways related to
iCRF, a false discovery rate of 0.142 was used to control type I
errors (Table S1).43 These analyses were conducted using
MetaboAnalyst 4.0 (http://www.metaboanalyst.ca).
Afterward, to determine the metabolites associated with the

levels of iCRF, only those metabolites supported by three
levels of evidence were selected: (1) correlations with iCRF,
(2) differences between the groups of participants with low
iCRF and high iCRF, and (3) contribution to significant
pathways associated with iCRF. This approach was used to
minimize the occurrence of metabolites occasionally related to
the studied phenotype.24 Finally, to determine the overall
predictors of iCRF, stepwise multiple linear regression models
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were performed separately in serum and skeletal muscle,
including body mass as a covariate and those metabolites
retained by the three levels of evidence. Variables entered and
remained in the model only if they were statistically significant
(P < 0.05) after inclusion. To validate the models, the
assumption of multicollinearity of measures between the
independent variables was assessed by the variance inflation
factor (VIF ∼ 1); the normality of residue distribution was
determined by inspecting the frequency histograms, and the
global influence of each case in the model was analyzed by
inspecting the standardized residues and Cook’s distance.

3. RESULTS

3.1. Participants

Table 1 shows the sample characterization data. No significant
difference was observed between participants with low and

high iCRF for variables age, height, body fat (%), fasting
glucose, systolic and diastolic blood pressure, maximal heart
rate, heart rate at rest, and ratings of perceived exertion (P >
0.01 for all variables). However, participants with low iCRF
had lower body mass and body mass index (BMI) when
compared to participants with high iCRF (P < 0.01). Besides,
as expected, participants with low iCRF also presented lower
maximal power output and time to exhaustion (P < 0.001 for
both). Then, subsequent comparative analyses were per-
formed using body mass as a covariate.
3.2. Associations between Baseline Metabolic Levels and
MPO

No significant correlation was observed between the
characteristics of the participants (age, height, body fat,
BMI, fasting glucose, systolic and diastolic blood pressure,
maximal heart rate and heart rate at rest) and iCRF (P > 0.01
for all variables), except for body mass (r = 0.307, P =
0.0097). Then, subsequent correlational analyses were
performed to control the effects of body mass.

For blood serum, of all 43 metabolites identified, 13 had
baseline levels correlated with iCRF at r ≥ |0.2|: 2-hydroxy-
isocaproate, asparagine, betaine, choline, dimethylamine,
glutamine, glycine, histidine, ornithine, proline, succinate,
threonine, and valine. For muscle tissue, of all 70 metabolites
identified, 10 were correlated with MPO at r ≥ |0.2|: formate,
glutamate, NADP+, O-acetylcarnitine, taurine, trimethylamine,
3-methylxanthine, acetate, fumarate, and lactate (Table 2).

3.3. Differences between Participants with Low and High
CRF

For blood serum, participants with high iCRF presented
higher levels in baseline concentrations of metabolites: betaine
(P = 0.003), glutamine (P = 0.025), ornithine (P = 0.004),
proline (P = 0.014), and threonine (P = 0.061) when
compared to participants with low iCRF (Table 3). On the
other hand, in muscle tissue, higher levels were observed in
baseline concentrations of formate (P = 0.023), NADP+ (P =
0.074), O-acetylcarnitine (P = 0.041), fumarate (P = 0.047),
and lactate (P = 0.038), as well as lower levels of 3-
methylxanthine (P < 0.01), in participants with high iCRF
(Table 3). Comparisons whose P values were greater than
0.01 had their significance confirmed by analyzing the
confidence intervals of measurements of effect size that did
not cross zero (Table 3).

3.4. Metabolic Pathways

For pathway analysis, baseline metabolites that were
correlated at r ≥ |0.2| with iCRF were used (serum, 13
metabolites; muscle tissue, 10 metabolites). From a total of 40
pathways indicated by the retained metabolic profile, 7
pathways for serum and 5 pathways for muscle tissue were
significantly enriched and associated with iCRF, considering a
false discovery rate of 0.1. From all observed significant
pathways, four were related to iCRF in both serum and
muscle tissue: glyoxylate and dicarboxylate metabolism;
alanine, aspartate, and glutamate metabolism; arginine biosyn-
thesis; and glutathione metabolism. On the other hand,
aminoacyl-tRNA biosynthesis; glycine, serine, and threonine
metabolism; and valine, leucine, and isoleucine biosynthesis
were significant only in serum, while pyruvate metabolism was
significant only in muscle tissue (Figure 1; Table S1).

3.5. Summary of Metabolites and Pathways Associated
with MPO

The baseline metabolites most associated with iCRF were
identified from the three levels of evidence described above:
(1) correlations with iCRF (r ≥ |0.2|), (2) differences
between low and high iCRF, and (3) contributions in
significant pathways related to iCRF.
The metabolites supported by all three levels of evidence

were betaine (a), glutamine (b), ornithine (c), proline (d),
and threonine (e) in serum; and formate (f), fumarate (g),
lactate (h), and NADP+ (i) in muscle tissue. The most
significant pathways and their metabolites associated with
iCRF suggested by this metabolic profile were aminoacyl-
tRNA biosynthesis (b, d, e); arginine biosynthesis (b, c, g);
alanine, aspartate, and glutamate metabolism (b, g);
glutathione metabolism (c, i); glycine, serine, and threonine
metabolism (a, e); glyoxylate and dicarboxylate metabolism
(b, f); pyruvate metabolism (g, h); and valine, leucine, and
isoleucine biosynthesis (e) (Table 4; Figure 2).

Table 1. Characteristics of Participantsa,b

variables

all
participants
(n = 70)

low iCRF
(n = 24)

high iCRF
(n = 24)

age (years) 23.4 ± 3.1 22.9 ± 2.6 23.7 ± 3.0
height (m) 1.74±0.06 1.72 ± 0.06 1.74 ± 0.06
body mass (kg) 72.7 ± 10.8 65.5 ± 9.7 75.2 ± 8.8f

body fat (%) 20.9 ± 7.2 20.0 ± 7.0 20.0 ± 7.4
BMI (kg·m−2) 24.0 ± 3.0 22.0 ± 2.7 24.8 ± 2.5f

fasting glucose
(mmol·L−1)c

4.1 ± 0.5d 4.0 ± 0.5e 4.2 ± 0.6

systolic BP (mmHg) 115.6 ± 12.0 111.0 ± 11.1 116.5 ± 11.3
diastolic BP (mmHg) 72.8 ± 9.8 69.8 ± 9.0 73.9 ± 8.5
HR at rest
(beats·min−1)

70.8 ± 8.3 72.2 ± 8.1 70.6 ± 8.3

HRMAX (beats·min−1) 192.3 ± 8.6 191.7 ± 8.4 195.2 ± 7.3
ratings of perceived
exertion (points)

19.3 ± 0.9 19.1 ± 0.9 19.4 ± 0.9

time to exhaustion (s) 577.0 ± 83.5 492.8 ± 42.8 672.6 ± 40.5f

maximal power output
(W)

239.2 ± 34.5 204.6 ± 17.7 278.7 ± 16.8f

aData are mean ± standard deviation. bBMI, body mass index; BP,
blood pressure; HR, heart rate; HRMAX, Maximal heart rate; iCRF,
intrinsic cardiorespiratory fitness. cFasting glucose levels were derived
from 1H NMR analysis. d(n = 69). e(n = 23). fP < 0.01 when
compared to low iCRF.
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Table 2. Partial Pearson’s Correlation Coefficients (r) and P Values for the Association between iCRF and Baseline
Concentration Levels of Serum and Skeletal Muscle Metabolitesa

serumc rb P-value skeletal musclec rb P-value

amino acids alcohols and polyols
alanine 0.09 0.481 ethylene glycol −0.03 0.820
asparagine 0.31 0.011 myo-inositol 0.12 0.321
glutamine 0.31 0.010 amino acids
glycine 0.24 0.052 alanineLT 0.07 0.578
histidine 0.22 0.078 anserineLT −0.14 0.264
isoleucine 0.10 0.425 β-alanineLT 0.17 0.171
lysine 0.06 0.626 glutamateLT 0.22 0.079
methionine 0.13 0.273 glutamineLT 0.12 0.325
phenylalanine 0.04 0.756 glycineLT −0.01 0.947
proline 0.27 0.028 histidineLT 0.10 0.424
threonine 0.23 0.061 isoleucineLT 0.07 0.552
tyrosine 0.11 0.365 leucineLT 0.08 0.544
valine 0.20 0.098 phenylalanineLT −0.06 0.611
carboxylic acids prolineLT 0.02 0.881
betaine 0.42 <0.001 threonineLT −0.03 0.783
creatinine 0.11 0.362 tyrosineLT 0.19 0.123
guanidinoacetate 0.13 0.309 valine −0.01 0.937
N,N-dimethylglycine 0.14 0.242 carboxylic acids
ornithine 0.37 0.002 acetate 0.22 0.080
succinate 0.28 0.022 betaine 0.00 0.969
creatine −0.10 0.437 citrate 0.13 0.281
creatinephosphate 0.09 0.459 creatineLT 0.04 0.768
formate −0.09 0.482 creatinephosphateLT 0.05 0.711
fatty acids creatinine −0.15 0.219
2-hydroxy-isocaproate 0.21 0.091 formateLT 0.25 0.045
2-hydroxy-isovalerate 0.03 0.821 fumarate 0.28 0.023
methylsuccinate −0.01 0.939 glutathioneLT −0.07 0.585
O-acetylcarnitine 0.02 0.890 isobutyrateLT 0.05 0.719
hydroxy acids isocitrate −0.17 0.182
3-hydroxybutyrate −0.13 0.290 maleate 0.03 0.831
lactate 0.08 0.498 malonateLT 0.11 0.359
glycolate 0.07 0.551 N,N-dimethylglycine 0.17 0.184
imidazopyrimidines N-acetylaspartate 0.05 0.662
hypoxanthine LT 0.03 0.839 N-acetylglutamine 0.15 0.223
xanthine −0.03 0.823 nicotinurate −0.06 0.638
organic carbonic acids ornithineLT 0.12 0.320
N-methylhydantoin 0.17 0.164 succinateLT 0.07 0.596
urea 0.15 0.236 π-methylhistidineLT 0.05 0.701
organic oxygen compounds τ-methylhistidineLT 0.02 0.884
glycerol −0.06 0.616 fatty acids
carnitine 0.11 0.361 2-hydroxy-isocaproateLT 0.07 0.561
choline 0.23 0.062 3-hydroxy-isovalerateLT 0.02 0.892
citrate 0.12 0.343 O-acetylcarnitineLT 0.36 0.003
dimethyl sulfone 0.12 0.350 hydroxy acids
trimethylamine 0.14 0.256 glycolate 0.04 0.721
propyleneglycol 0.19 0.118 lactate 0.30 0.015
unclustered imidazopyrimidines
dimethylamine −0.22 0.075 3-methylxanthine −0.30 0.015
inosine 0.03 0.822 oxypurinolLT −0.13 0.307
pyruvate 0.01 0.936 theophylline 0.03 0.827

nucleosides and nucleotides
ADP −0.13 0.287
AMPLT 0.15 0.219
ATPLT 0.15 0.245
NAD+ 0.02 0.878
NADP+LT 0.21 0.094
organic oxygen compounds
2-phosphoglycerate 0.18 0.138
glucoseLT 0.08 0.527
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3.6. Variance in iCRF Explained by Serum and Skeletal
Muscle Metabolites

When all metabolites supported by all three levels of evidence
were included in multiple linear regression models, the
variation in the iCRF levels was explained by 31.2% in the
serum metabolites model (P < 0.001) and 16.8% in the
muscle tissue model (P = 0.003) in addition to body mass
(Table 5).

4. DISCUSSION

This study investigated whether baseline serum and skeletal
muscle metabolic levels are associated with iCRF. The results
were based on the identification of metabolites supported by
three levels of evidence: (1) association with iCRF, (2)
differences between participants with high iCRF and low
iCRF, and (3) metabolite contribution to significant pathways
associated with iCRF. The main findings of this study include
(i) the presence of wide heterogeneity in the levels of iCRF
among sedentary young male individuals, ranging from 170 to
315 W; (ii) identification of metabolites whose baseline levels
in serum (betaine, threonine, proline, ornithine, and
glutamine) and skeletal muscle (lactate, fumarate, NADP+,
and formate) were positively associated with iCRF; (iii)
higher concentration levels of these metabolites in individuals
with high iCRF compared to low iCRF, regardless of their
body mass; (iv) identification of metabolic pathways
associated with iCRF, being the most impacted pathways
(impact >0) related to amino acids (alanine, aspartate and
glutamate metabolism; arginine biosynthesis; glycine, serine,
and threonine metabolism; and glutathione metabolism) and
carbohydrates (pyruvate metabolism and glyoxylate and
dicarboxylate metabolism); and finally (v) identification of
serum (betaine and ornithine) and skeletal muscle (lactate)
metabolites that was able to explain 31.2 and 16.8% of the
variability inherent in iCRF, respectively, in addition to body
mass.

Of note, a baseline serum and skeletal muscle metabolic
regulation was observed, depending on the iCRF levels. A
summary of the origin and pathways of the identified
metabolites is provided in Figure 3. Regarding blood serum,
individuals with high iCRF showed higher levels of baseline
concentration of metabolites betaine, glutamine, ornithine,
proline, and threonine when compared to individuals with low
iCRF. In particular, betaine is derived from glycine and its
circulating fasting levels can be attributed to endogenous
synthesis in the liver and kidneys.44 Betaine acts as an organic
osmolyte to protect cells under stress or as an intermediate in
the production of methionine, a precursor of creatine whose
function is related to fast energy supply in skeletal muscle.45,46

Prior studies demonstrated that higher baseline levels of
circulating betaine are associated with better performance in
aerobic exercises.47 Threonine and proline are blood glucose
precursor amino acids that can be converted into pyruvate
(threonine) or intermediates in the citric acid cycle (both),
possibly reflecting a more accelerated mechanism of
maintenance of the glycemic level in individuals with high
iCRF.48 In contrast, Morris et al. observed higher circulating
levels of threonine and proline in women with low CRF when
compared to high CRF.15 Although these discrepancies have
not been fully explained, these women with low CRF, when
compared to those with high CRF, had greater evidence of
insulin resistance,15 which has been associated with an
increase in circulating proline49 and threonine,50,51 and did
not have the physical activity reported level, limiting direct
comparisons with the results based on iCRF in our study.
Regarding ornithine, it is synthesized in the cytoplasm from
arginine and plays a critical role in the urea cycle and
mitochondrial metabolic processes, producing indirectly
proline among other products.52 Perhaps, a higher level of
serum ornithine in individuals with high iCRF reflects an
increased rate of the urea cycle, required to inhibit an increase
in circulating ammonia, transferred between tissues by

Table 2. continued

serumc rb P-value skeletal musclec rb P-value

glycerol 0.13 0.293
organic nitrogen compounds
carnitine 0.18 0.147
choline 0.03 0.822
dimethylamineLT 0.19 0.131
histamineLT 0.15 0.243
methylamineLT 0.12 0.335
N-nitrosodimethylamine 0.09 0.484
trimethylamineLT 0.23 0.061
trimethylamine-N-oxideLT −0.04 0.745
tartrate −0.08 0.508
unclustered
2-hydroxyphenylacetate −0.07 0.586
acetamide 0.14 0.267
carnosine 0.07 0.582
dimethyl sulfone −0.09 0.487
niacinamide 0.16 0.206
pyrimidineLT −0.11 0.366
pyruvate −0.01 0.956
taurineLT 0.21 0.086

aiCRF, intrinsic cardiorespiratory fitness. LTData log-transformed before analysis. Bold values are correlation coefficients (r) above |0.2|.
bCorrelation coefficient adjusted for body mass. cChemical taxonomy of metabolites was based on classes and subclasses of the Human
Metabolome Database.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.0c00905
J. Proteome Res. 2021, 20, 2397−2409

2402

pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.0c00905?rel=cite-as&ref=PDF&jav=VoR


glutamine, due to the degradation of amino acids53 like
threonine and proline, which presented increased levels. There
is evidence that dietary supplements with ornithine have a
fatigue-reducing effect while practicing aerobic exercises as it
improves energy supply and ammonia excretion.53 Finally,
glutamine is a precursor to the synthesis of glutamate, which
plays an important role in energy supply through the citric
acid cycle,54 responsible for the transfer of nitrogen between
organs, detoxification of ammonia, and maintenance of the
acid−base balance in the kidneys.55−58 Increased circulating
levels of glutamine also have been observed in parallel with
increases in cardiorespiratory fitness induced by endurance
training.59

On the other hand, in skeletal muscle, higher levels of
baseline concentration of metabolites, lactate, fumarate,
NADP+, and formate, were observed in participants with
high iCRF when compared to those in participants with low
iCRF. Lactate is the end product of anaerobic glucose
breakdown and has an important physiological role, serving at
least three purposes: a source of energy for mitochondrial
respiration, the main gluconeogenic precursor, and a signaling
molecule.60 There is evidence that glycolysis proceeds to
lactate under fully aerobic conditions in healthy humans.60,61

In this case, considering that serum lactate levels were not
different between participants with high and low iCRF, we
suggest the greatest availability of skeletal muscle lactate in
high-iCRF participants to be useful in providing a source of
energy for mitochondria by converting it to pyruvate and then
to oxaloacetate, an intermediate of the citric acid cycle.60,61

This reasoning is supported by the significant involvement of
the skeletal muscle lactate in pyruvate metabolism, which was
a pathway positively associated with iCRF, evidencing a more
active carbohydrate metabolism for resting and fasting
conditions in the high-iCRF group. Regarding fumarate, it is
one of the intermediates in the citric acid cycle. An increased
concentration of intramuscular fumarate indicates an
augmented rate of the citric acid cycle flux at rest in high-
iCRF individuals. This result corroborates with previous
studies that demonstrated increased citric acid cycle flux,
evidenced by higher levels of fumarate, after exercise to
exhaustion62 and in individuals with higher aerobic perform-
ance.63 NADP+ (nicotinamide adenine dinucleotide phos-
phate) is a coenzyme that acts as a cofactor and substrate for
many enzymes promoting the maintenance of cellular redox
homeostasis. Deficient NADP+ levels cause a disturbance in
the redox status of the cell and metabolic homeostasis, leading
to oxidative stress, energy stress (impairment of ATP turnover
conditions), and eventually pathological states.64 In this study,
higher levels of NADP+ were associated with higher iCRF,
suggesting cellular redox homeostasis as a relevant factor for
iCRF. Finally, formate is an indirect product of glyoxylate
(Figure 3), glycine, choline, serine, or methanol.65 In our
study, formate was related to glyoxylate and dicarboxylate
metabolism and positively associated with iCRF. In the
glyoxylate and dicarboxylate metabolism, formate is an
indirect product of glyoxylate that can be converted into
malate, an intermediate of the citric acid cycle (Figure 3).
Although the relationship of formate with iCRF or physical
exercise is little known,66 previous studies with animal models
corroborate the results obtained here, showing greater
activation of glyoxalate and dicarboxylate metabolism in rats
with high iCRF compared to those with low iCRF,23 inT
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addition to a positive association with increased fatigue

resistance in rats submitted to exhaustive aerobic exercise.67

In summary, these results suggest that, at rest, individuals

with high iCRF probably have a more active mechanism for

the supply of cellular energy via carbohydrate and amino acid

metabolism and are supported by a better excretion system of

byproducts, for example, through the urea cycle. It is

supported by the skeletal muscle metabolic pathways related

Figure 1. Summary of serum and skeletal muscle pathways related to iCRF. The numbers in the figures refer to pathways that were most enriched
for both serum and muscle tissue. All numbered pathways had a false discovery rate of 0.1. The pathway impact on the horizontal axis represents
the relative contribution of all matched metabolites concerning all metabolites in the given pathway. (1) Aminoacyl-tRNA biosynthesis (A,
asparagine, histidine, glutamine, glycine, valine, threonine, and proline); (2) glycine, serine, and threonine metabolism (A, choline, betaine,
glycine, and threonine); (3) pyruvate metabolism (B, lactate, fumarate, and acetate); (4) glyoxylate and dicarboxylate metabolism (A, glycine and
glutamine; B, glutamate, acetate, formate); (5) alanine, aspartate, and glutamate metabolism (A, asparagine, glutamine, and succinate; B,
glutamate and fumarate); (6) valine, leucine, and isoleucine biosynthesis (A, threonine and valine); (7) arginine biosynthesis (A, glutamine and
ornithine; B, glutamate and fumarate); and (8) glutathione metabolism (A, glycine and ornithine; B, glutamine and NADP+).

Table 4. Levels of Evidence for the Identification of Metabolites in Serum and Skeletal Muscle Associated with iCRF

metabolites
association
with iCRFa significant pathways associated with iCRF

difference between low
iCRF and high iCRF

Serum
2-hydroxy-
isocaproate

0.21

asparagine 0.31 aminoacyl-tRNA biosynthesis; alanine, aspartate, and glutamate metabolism
betaine 0.42 glycine, serine, and threonine metabolism low iCRF < high iCRF
choline 0.23 glycine, serine, and threonine metabolism
dimethylamine −0.22
glutamine 0.31 aminoacyl-tRNA biosynthesis; alanine, aspartate, and glutamate metabolism; glyoxylate and

dicarboxylate metabolism
low iCRF < high iCRF

glycine 0.24 aminoacyl-tRNA biosynthesis; glycine, serine, and threonine metabolism; glyoxylate and
dicarboxylate metabolism; glutathione metabolism

histidine 0.22 aminoacyl-tRNA biosynthesis
ornithine 0.37 arginine biosynthesis; glutathione metabolism low iCRF < high iCRF
proline 0.27 aminoacyl-tRNA biosynthesis low iCRF < high iCRF
succinate 0.28 alanine, aspartate, and glutamate metabolism
threonine 0.23 aminoacyl-tRNA biosynthesis; glycine, serine, and threonine metabolism low iCRF < high iCRF
valine 0.20 aminoacyl-tRNA biosynthesis; valine, leucine, and isoleucine biosynthesis

Skeletal Muscle
3-
methylxanthine

−0.30 low iCRF > high iCRF

acetate 0.22 pyruvate metabolism
formate 0.25 glyoxylate and dicarboxylate metabolism low iCRF < high iCRF
fumarate 0.28 alanine, aspartate, and glutamate metabolism; arginine biosynthesis; pyruvate metabolism low iCRF < high iCRF
glutamate 0.22 alanine, aspartate, and glutamate metabolism; arginine biosynthesis; glutathione metabolism;

glyoxylate and dicarboxylate metabolism
lactate 0.30 pyruvate metabolism low iCRF < high iCRF
NADP+ 0.21 glutathione metabolism low iCRF < high iCRF
O-acetylcarnitine 0.36 low iCRF < high iCRF
taurine 0.21
trimethylamine 0.23
aMetabolites selected with a correlation coefficient of r ≥ |0.2|.
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to carbohydrate (pyruvate metabolism and glyoxylate and
dicarboxylate metabolism) and amino acid (alanine, aspartate,
and glutamate metabolism and arginine biosynthesis)
metabolism positively associated with iCRF; increased levels
of serum glucose precursor amino acids (threonine and
proline); increased serum metabolites related to transport of
byproducts of amino acid metabolism (glutamine); and
increased serum urea cycle intermediate (ornithine).
Some strengths and limitations must be considered in the

present study. This is an observational study based on a
specific cohort of participants (young healthy sedentary men)
analyzed. Therefore, causal relationships and extrapolation of
the findings from this study to other populations should be
avoided. The low and high iCRF terminologies must be taken
with caution when comparing studies, as they reflect the
context and the distribution of iCRF values in the population
studied herein. On the other hand, we should point out our
results are based on a considerable cohort size (70
participants), which was characterized by highly standardized
clinical and physiological examinations, diet control 12 h prior
to blood and muscle tissue collection, and a strictly scheduled
experimental setting. Our exploratory analysis was based on
only one metabolomics technique; therefore, a relatively small
number of metabolites were detected. Although the current

number of metabolites is comparable in quantity to most of
the studies previously reported on this topic,12,13,15,16 other
complementary measures such as mass spectrometry can help
to identify metabolites undetected in this study also linked to
iCRF. Most of the previous studies have shown associations
between baseline metabolism and ACR measured by V̇
O2MAX

14,16 but not necessarily referencing MPO or iCRF,
which makes it difficult to compare with our results. However,
MPO as a surrogate of CRF is known to have a high
correlation (r = 0.94) with V̇O2MAX using a similar maximal
incremental test in sedentary men.68 In addition, MPO is a
better predictor of endurance performance compared to V̇
O2MAX

69 since the power output provides a direct and
immediate measure of work rate, as opposed to the subject’s
perceptual or cardiovascular response to exercise intensity.70

Finally, MPO presents a lower typical measurement error
compared to V̇O2MAX

71,72 which is suitable for tracking real
small differences between groups with distinct iCRF but
similar physical characteristics, as in the present study.

5. CONCLUSIONS

This study showed that baseline levels of iCRF were positively
associated with serum and skeletal muscle metabolites, with

Figure 2. Summary of serum and skeletal muscle metabolites matching the three levels of evidence and their pathways associated with iCRF. All
of these metabolites presented higher concentration levels in individuals with high iCRF compared to low iCRF. Created in Canva.com.

Table 5. Results of Multiple Linear Regression Models for the iCRF Levelsa

model B β CI 95% for B P-value partial R2 model R2 adjusted R2

Serum
(constant) 81.35 18.4−144.3 0.012 0.312 0.280
body mass (kg) 1.29 0.41 0.6−2.0 0.000 0.093
betaine 877.83 0.33 282.6−1473.1 0.004 0.162
ornithine 720.41 0.25 99.9−1341.0 0.024 0.057

Muscle Tissue
(constant) 133.81 73.0−194.6 0.000 0.168 0.142
body mass (kg) 1.13 0.36 0.4−1.9 0.003 0.087
lactate 5.43 0.29 1.1−9.8 0.015 0.081

aB, slope; β, standardized slope; iCRF, intrinsic cardiorespiratory fitness.
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the most relevant metabolic pathways related to the

metabolism of amino acids (alanine, aspartate, and glutamate

metabolism; arginine biosynthesis; glycine, serine, and

threonine metabolism; and glutathione metabolism) and

carbohydrates (pyruvate metabolism; and glyoxylate and

dicarboxylate metabolism) in young healthy sedentary men.

Regardless of body mass, individuals with high iCRF

presented higher baseline serum levels of betaine, threonine,

proline, ornithine, and glutamine and higher levels in the

skeletal muscle of lactate, fumarate, NADP+, and formate

when compared to individuals with low iCRF. Furthermore,

serum betaine and ornithine and skeletal muscle lactate

metabolites were able to explain 31.2 and 16.8% respectively,

of the variability inherent in iCRF in addition to the body

weight.
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Phone: +55 19 3521-6625; Email: marapatricia@
fef.unicamp.br

Authors

Renata G. Duft − Laboratory of Exercise Physiology, School
of Physical Education, University of Campinas, Campinas
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