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Lung adenocarcinoma (LUAD), which accounts for 60% of non-small-cell lung cancers, is poorly diagnosed and has a low average
5-year survival rate (approximately 20%). It remains the leading cause of cancer-related deaths worldwide. Studies on long
noncoding RNAs (lncRNAs) in LUAD-related competing endogenous RNA (ceRNA) networks are limited. We aimed to
identify novel prognostic biomarkers for LUAD using bioinformatic tools and data analysis. We systemically integrated
differentially expressed genes and clinically significant modules using weighted correlation network analysis. We performed a
functional analysis of the collected candidate genes and explored three LUAD-related genes (VWF, PECAM1, and COL1A1)
associated with the overall survival rates of patients with LUAD. Based on Cox proportional hazards analysis of candidate
mRNAs and lncRNAs together with differentially expressed microRNAs, we constructed ceRNA networks, obtained 12
lncRNAs in the ceRNA networks, and revealed seven novel lncRNAs AC021016.2, AC079630.1, AC116407.1, AC125807.2,
AF131215.5, LINC01936, and RHOXF1-AS1. These lncRNAs were found to be associated with overall survival rates and are
suitable for the prediction of prognosis by Kaplan-Meier survival and receiver operating characteristic curve analyses. In
particular, three lncRNAs—AF131215.5, AC125807.2, and LINC01936—showed an independent prognostic value of overall
survival for patients with LUAD. We evaluated the diagnostic capabilities of seven lncRNAs for patients with LUAD using
principal component analysis and the Gene Set Variation Analysis index. lncRNAs and crucial genes could be effectively used
for distinguishing LUAD tumors from normal tissues in the Gene Expression Omnibus profile. In particular, AC021016.2
showed a significant prognostic value in the validation dataset. Our findings reveal the significance of exploring lncRNAs in
cancer-related ceRNAs using bioinformatic strategies.

1. Introduction

Lung cancer is the most commonly diagnosed cancer and a
dominant cause of cancer-related deaths globally [1]. The
high mortality rate relates to an overall 5-year survival rate
estimated at 15% and unsatisfactory late diagnosis. Lung can-
cer can be classified into non-small-cell cancer (NSCLC,
85%) and small-cell lung cancer (SCLC, 15%) [2]. NSCLC
includes three subgroups: lung squamous carcinoma (LUSC),
lung adenocarcinoma (LUAD), and large-cell carcinoma
subtypes [3]. Among the three subtypes, LUAD constitutes

approximately 60% of NSCLCs and is the most frequently
diagnosed and lethal subtype [4]. Due to the high mutational
burden and complex tumor microenvironment, there is an
urgent need to improve the diagnosis and therapies of LUAD
and identify novel prognostic biomarkers and therapeutic
targets for LUAD.

Long noncoding RNAs (lncRNAs) are noncoding RNAs
with lengths greater than 200 bp. lncRNAs have been con-
firmed to be widely expressed in human cells and play essen-
tial roles in various biological processes and the progression
of cancers such as lung cancer [5]. Previous research has
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shown that lncRNA SBF2-AS1 is vital for the tumorigenesis
of early-stage LUAD [6]. lncRNA LINC00857 can predict
poor survival of lung cancer patients and promote tumor
progression via cell cycle regulation [7]. lncRNA HOXA11-
AS promotes cisplatin resistance of human LUAD cells via
the microRNA- (miR-)454-3p/Stat3 axis [8]. HCP5 is a
SMAD3-responsive lncRNA that promotes LUAD metasta-
sis via the miR-203/SNAI axis [9]. Therefore, identification
of lncRNAs associated with LUAD may be of great value
for exploring the occurrence and development of LUAD as
well as for its diagnosis and evaluation.

Weighted correlation network analysis (WGCNA) is a
systemic integration of R functions relying on weighted gene
coexpression network analysis, a system biology method for
exploring correlation patterns in microarray samples [10].
It was developed to identify highly correlated gene clusters
(modules), summarize clusters based on the module eigen-
gene or an intramodular hub gene, map modules to each
other and the clinical signatures of samples, and calculate
module membership measures. WGCNA has been employed
to obtain the most significant modules of lncRNA, miRNA,
and mRNA in LUSC and breast cancer progression [11,
12]. Correlation network analysis has been widely applied
to identify candidate biomarkers or therapeutic targets in
cancers. Hu et al. recently analyzed data related to LUSC in
The Cancer Genome Atlas (TCGA), identified a three-
lncRNA signature, and evaluated its potential value as a
prognostic biomarker [11].

In this study, we aimed to identify novel prognostic
biomarkers for LUAD using bioinformatic tools and data
analysis.

2. Materials and Methods

2.1. Collection and Integration of Data from TCGA. To
explore the differences in gene expression patterns between
primary tumor and solid tissue (normal), we queried the
TCGA database and selected the TCGA-LUAD project for
our study. The duplicated samples (two samples in RNA
sequencing (RNA-seq) and miRNA-seq) were removed; pri-
mary tumor and solid tissue (normal) samples were reserved
for downstream analysis; 20 samples with the nonprimary
tumors or normal solid tissue in RNA-seq and six samples
in miRNA-seq were deleted. Finally, RNA-seq of 572 samples
(513 primary tumors and 59 normal solid tissue) and
miRNA-seq of 559 samples (513 primary tumors and 46
normal solid tissue) were merged and integrated for further
analysis. The corresponding clinical data were collected and
integrated from TCGA.

2.2. Data Preprocessing and Identification of DERNAs. All
RNA-seq and miRNA-seq data in the TCGA-LUAD project
were normalized using the quantile method in the limma
package [13]. Genes with low expression levels were
removed. The differentially expressed RNAs (DERNAs) were
screened using the edgeR package in the Bioconductor project
(http://www.bioconductor.org/). ∣log2ðfold change ðFCÞÞ ∣ >
1:5 and false discovery rate < 0:05 were set as the cut-off cri-
teria. The ggplot2 package (https://github.com/tidyverse/

ggplot2) was used to construct the volcano plots of differen-
tially expressed genes (DEGs) and DEmiRNAs. Pheatmap
software was applied to visualize DERNAs using a heatmap.

2.3. Identifying Crucial Modules That Significantly Map to
LUAD. WGCNA was performed to construct the gene coex-
pression network of genes and to identify coexpression gene
modules. We employed soft-threshold power β = 7 and min-
imum module size = 180 to determine coexpression gene
modules and classify clinically significant modules.

2.4. Protein-Protein Interaction (PPI) and Functional
Enrichment Analysis of Candidate Genes. The genes overlap-
ping the identified DERNAs and the most prominent module
in WGCNA were considered candidate genes for further
analysis. PPI and functional enrichment analyses of candi-
date genes were performed using the DAVID database
(https://david.ncifcrf.gov/) for the annotation, visualization,
and integrated discovery of genes. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were carried out using the DAVID data-
base and visualized in a bubble plot using the R package. The
PPI was analyzed using STRING (https://string-db.org/), an
online tool providing functional protein association networks.
The outputs obtained from GO analysis and PPI interaction
network were visualized using Cytoscape software (https://
cytoscape.org/). Crucial genes were predicted using cyto-
Hubba (http://apps.cytoscape.org/apps/cytohubba), a Cytos-
cape plugin.

2.5. Construction of ceRNA Networks Based on Candidate
DEGs. Genes overlapping with DEGs and the most signifi-
cant module in WGCNA with prognostic value verified by
univariate Cox proportional hazards regression analysis
(P < 0:05) were collected to construct the lncRNA-miRNA-
mRNA ceRNA network. Database miRcode (http://www
.mircode.org/) and miRTarBase version 7.0 (http://
mirtarbase.mbc.nctu.edu.tw/) were utilized to predict
lncRNA-miRNA and miRNA-mRNA interactions. The Pear-
son correlation coefficient was used to identify the expression
correlation among lncRNAs, miRNAs, andmRNAs in ceRNA
pairs. The regulation similarity of miRNAs in the regulation of
lncRNAs and mRNAs was considered. Subsequently, the
ceRNA network was constructed and visualized using
Cytoscape.

2.6. Crucial DEG Classification and Gene Set Variation
Analysis (GSVA) Index Construction. To assess gene set
enrichment among samples, GSVA was performed using a
nonparametric method. The features of candidate DEGs
were scored and calculated in samples using GSVA [14].
Then, a matrix containing the candidate genes’ GSVA index
was obtained. To evaluate the diagnostic value of candidate
DEGs, receiver operating characteristic (ROC) analysis was
conducted based on the GSVA score. We scanned the candi-
date lncRNAs, evaluated their relationship to clinical traits
(such as survival status), and identified critical lncRNAs
based on the Kaplan-Meier (KM) method. Multivariate Cox
regression analysis was performed to explore how candidate
lncRNAs jointly influence the survival of patients with
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LUAD. To assess whether the gene matrix could distinguish
LUAD from healthy samples, principal component analysis
(PCA) was conducted using the FactoMineR function and
visualized via the factoextra package (https://CRAN.R-
project.org/package=factoextra).

2.7. Evaluating Candidate Genes with Data from the GEO
Dataset. Gene expression profiles from a recent LUAD-
related study on Chinese people were downloaded to evaluate
the prognostic significance of candidate genes and their
potential as biomarkers for LUAD [15]. Gene expression
and clinical data were collected and integrated from Gene
Expression Omnibus (GEO; GSE140343) and supplementary
profiles.

3. Results

3.1. DERNA Identification Related to LUAD. We utilized a
total of 60,483 genes from 572 samples in RNA-seq and
2,588 miRNAs from 559 samples in miRNA-seq for DERNA
analysis. We obtained 1,861 DERNAs including 1,615
mRNAs (974 upregulated and 641 downregulated) and 108
lncRNAs (81 upregulated and 27 downregulated) and visual-
ized the distribution of FC and P value in a volcano plot
(Figures 1(a) and 1(c)). We observed 114 differentially regu-
lated miRNAs (74 upregulated and 40 downregulated) and
depicted the distribution with a volcano plot (Figure 1(b)).
The expression level of DERNAs was visualized using a
heatmap (Figures 1(d)–1(f)).
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Figure 1: Differentially expressed (DE)RNAs in lung adenocarcinoma (LUAD). (a–c) Volcano plot of DE long noncoding RNAs (lncRNAs)
(a), microRNAs (miRNAs) (b), and mRNAs (c). The x-axis represents the log-transformed false discovery rate (FDR), and the y-axis
represents the mean expression differences. (d–f) Heatmap of DElncRNAs (d), DEmiRNAs (e), and DEmRNAs (f) between LUAD and
normal lung tissue samples. The x-axis represents DERNAs, and the y-axis represents the samples.
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Figure 2: Weighted gene coexpression network analysis (WGCNA) of lung adenocarcinoma (LUAD). (a) Network topology of various soft-
threshold power analysis. (b) The property test of the scale-free network. (c) Hierarchical clustering dendrogram of module eigengenes. (d)
Cluster dendrogram of the coexpression network modules based on topological overlapping differentially expressed genes (DEGs). (e)
Identification of the most significant LUAD-related module (sample type refers to the primary tumor or solid tissue). (f) Scatterplot of
gene significance (y-axis) versus module membership (x-axis) in the most significant module (green module). (g) Heatmap plot of
topological overlap in the gene network.
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3.2. The Analysis of LUAD-Related Significant Modules Using
WGCNA. Gene expression (RNA-seq) and clinical data were
employed to construct the coexpression network using the
WGCNA algorithm. The Pearson correlation matrix of genes
was converted into a strengthened adjacency matrix by soft-
threshold power β = 7 based on the scale-free topology crite-

rion with R2 = 0:9 (Figures 2(a) and 2(b)). Thirty-one
module eigengenes were clustered (Figure 2(c)), merged,
and integrated. The coexpression network modules (31 initial
modules and 27 merged modules) based on topological
overlapping DEGs were identified (Figure 2(d)). The
heatmap revealed the correlation network of the modules
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(Figure 2(g)). The correlation analysis between the modules
and clinical traits indicated that the green module
(cor = 0:54 and P = 7e − 45, containing 2,457 genes) was
most significantly associated with LUAD compared with
the other 26 modules (Figure 2(e)). The module membership
in the green module possessed the most significant correla-
tion (cor = 0:56 and P < 1e − 200; Figure 2(f)).

3.3. Functional Enrichment Analysis of Candidate Genes and
PPI Network Construction. We overlapped and integrated
2,457 genes in the green module and 1,861 DEGs; 529
DEGs—candidate genes—were obtained (including 501
DEmRNAs) for further analysis. GO enrichment analysis
indicated that these candidate genes were enriched in 273
GO terms, including 198 for biological process, 34 for cellular
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Figure 4: (a) Receiver operating characteristic (ROC) curve of top seven crucial genes; (b) Kaplan-Meier plot of seven critical genes.
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component, and 41 for molecular function. The top four of
each category were visualized, such as the plasma membrane,
extracellular space, and regulation of transcription from
RNA polymerase II promoter (Figure 3(a)). KEGG enrich-
ment analysis showed that the PI3K-AKT signaling pathway
contained the majority of the DEGs (Figure 3(b)), which are
involved in many cellular functions such as proliferation and
survival. A total of 501 differentially expressed mRNAs were
used for the PPI network construction using the STRING
database (Figure 3(c)). The top 50 DEmRNAs were collected
and visualized using Cytoscape (Figure 3(d)).

3.4. Survival and ROC Curve Analysis. Seven genes (EDN1,
COL1A1, CDH5, von Willebrand factor (VWF), PECAM1,
IL6, and FGF2) were identified with the degree score > 40
and viewed as crucial genes related to LUAD. ROC curve
analysis demonstrated that the area under the curve (AUC)
values of seven genes exceeded 0.8. The ROC curve of the
GSVA index based on the seven crucial genes showed that
the AUC score was 86.1%, indicating good performance in

distinguishing patients with LUAD from healthy individuals
(Figure 4(a)). However, no significant association was identi-
fied among the seven critical gene GSVA score matrix and
the overall prognosis of patients using KM plot analysis
(P = 0:478; Figure 4(b)). Three genes (VWF, PECAM1, and
COL1A1) were found to correlate with overall survival (OS)
in patients with LUAD and distinguish them from healthy
individuals (AUC score > 0:9).

3.5. mRNA-miRNA-lncRNA ceRNA Network Construction
Related to LUAD. The ceRNA network was constructed
based on LUAD-related 13 DElncRNAs, 168 DEmRNAs
(which were collected by overlapping DEG analysis and
WGCNA and showed a significant prognostic value in
univariate Cox regression analysis with P < 0:05), and
DEmiRNAs. We obtained a ceRNA network consisting of
12 lncRNAs, 79 miRNAs, and 32 mRNAs (Figure 5). The
12 lncRNAs that formed a network related to LUAD were
collected for further analysis.

Figure 5: LUAD-related long noncoding RNA- (lncRNA-) microRNA- (miRNA-) mRNA competing endogenous RNA (ceRNA) network.
The ceRNA network contained 12 lncRNAs (red hexagons), 79 miRNAs (yellow diamonds), and 32 mRNAs (blue circles).
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3.6. ROC and KM Analysis of 12 lncRNAs in ceRNA Networks
Related to LUAD. ROC and KM survival curves were gener-
ated to illustrate the connection between the 12 lncRNAs
and LUAD prognosis. All 12 lncRNAs displayed sound per-
formance in distinguishing LUAD patients from healthy
controls (Figure 6). The lowest AUC score (RHOXF1-AS1)
reached 88.0%, which was also the only one that was below
90%, and that of AC021016.2 reached 97.5%. Seven lncRNA-
s—AC021016.2, AC079630.1, AC116407.1, AC125807.2,
AF131215.5, LINC01936, and RHOXF1-AS1—showed poten-
tial prognostic value with P < 0:05. These results show that
patients with a higher expression of AC125807.2 (Figure 7)
had a lower probability of survival than those with a lower
expression of AC125807.2. Higher expression levels of six
genes, including AC021016.2, AC079630.1, AC116407.1,
AF131215.5, LINC01936, and RHOXF1-AS1, in patients with
LUAD showed better survival prognoses (Figure 7).

3.7. Evaluation of Seven lncRNAs as Biomarkers of LUAD.We
obtained seven candidate lncRNAs based on the ceRNA net-
work, ROC, and KM survival analyses. The PCA plot demon-
strated that the expression of these lncRNAs could effectively

distinguish patients with LUAD from healthy individuals
(Figure 8(a)). Compared with seven lncRNAs, the GSVA
index based on seven lncRNAs showed higher discrimina-
tory ability with an AUC of the ROC curve of 0.978
(Figure 8(c)). The matrix also showed good performance
in terms of prognosis (Figure 8(e)). Seven candidate
lncRNAs were merged with a linear model for multivariate
Cox regression analysis. We observed that all three overall
tests (likelihood ratio, Wald, and score) indicated signifi-
cance of the model with P value < 0.05. Covariates
AF131215.5, AC125807.2, and LINC01936 remained
significant. However, covariates AC021016.2 (P = 0:99),
AC079630.1 (P = 0:26), AC116407.1 (P = 0:19), and
RHOXF1-AS1 (P = 0:53) were not significant after adjusting
for other lncRNAs (Table 1). The boundary between tumor
and normal tissues was clearer in PCA with seven lncRNAs
(Figure 8(a)) than in those with three lncRNAs
(AF131215.5, AC125807.2, and LINC01936) with indepen-
dent prognostic values (Figure 8(b)). Compared to GSVA
without the four lncRNAs (without independent prognostic
values), GSVA containing all seven lncRNAs was more
powerful in discriminating tumor tissues (AUC of 0.978
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Figure 6: Receiver operating characteristic (ROC) curves of 12 candidate long noncoding RNAs (lncRNAs). The area under the curve (AUC)
under the binomial exact confidence interval was calculated to generate the ROC curve.
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for seven lncRNAs and AUC of 0.966 for three independent
lncRNAs) (Figures 8(c) and 8(d)), whereas GSVA estab-
lished using the three lncRNAs showed no prognostic
significance (Figure 8(f)).

3.8. Validation of Candidate Genes with GEO Dataset. The
expression of 100 samples (51 LUAD tumors and 49 clinical
normal lung tissues) was assessed for the validation process
of seven crucial genes from PPI and seven critical lncRNAs.
The examination of AF131215.5 and EDN1 failed due to the
absence of expression information, which was dropped by
the submitters. Six identified crucial genes IL6 (with the low-
est AUC = 0:869), FGF2, VWF, PECAM1, COL1A1, and
CDH5 showed good performance in identifying LUAD
tumors. lncRNAs showed the potential to distinguish LUAD
tumors from normal tissues (Figure 9). KM analysis showed
that two genes AC021016.2 (P = 0:023) and CDH5
(P = 0:018) showed prognostic significance in Chinese
patients with LUAD (Figure 9).

4. Discussion

We obtained 1,615 DEmRNAs (Figures 1(c) and 1(f)) and
108 lncRNAs (Figures 1(a) and 1(d)) along with 114 differen-
tially regulated miRNAs (Figures 1(b) and 1(e)) from DE
analysis of TCGA-LUAD. We observed 31 modules based
on WGCNA of RNA-seq of the LUAD project with soft
power = 7 and minimum module = 180 and merged them
into 27 modules with a correlation of 0.75 (Figures 2(c) and
2(d)). The module “green” containing 2,457 genes showed
that it is highly correlated with LUAD, correlation = 0:56
and P < 1e − 200 (Figures 2(e) and 2(f)). We collected, inte-
grated, and overlapped DEGs (mRNAs and lncRNAs) and
genes in module “green” and studied 501 mRNAs and 22
lncRNAs. We detected seven crucial genes—IL6, FGF2,
VWF, PECAM1, COL1A1, CDH5, and EDN1—based on the
PPI analysis of 501 mRNAs. The GSVA index of seven criti-
cal genes showed superior performance in distinguishing
patients with LUAD from healthy subjects. Three genes
(VWF, PECAM1, and COL1A1) were associated with OS in
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Figure 7: Kaplan-Meier survival of 12 candidate long noncoding RNAs (lncRNAs). Corresponding Kaplan-Meier plots of 12 lncRNAs are
depicted; the red line refers to high expression, and blue refers to low expression.
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Figure 8: Efficacy of seven candidate long noncoding RNAs (lncRNAs) as biomarkers. (a, b) Principal component analysis (PCA) plot is
based on the expression of seven candidate lncRNAs and three lncRNAs with independent prognostic values. The receiver operating
characteristic (ROC) curve of the Gene Set Variation Analysis (GSVA) index of candidate lncRNAs (c, d) and Kaplan-Meier survival plot
of the GSVA index (e, f) is depicted.
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patients with LUAD and showed superior performance in
distinguishing patients with LUAD from healthy individuals
(AUC score > 0:9). VMF is upregulated by GATA3 in the
LUAD vasculature [16]. Serum VWF can be employed for
the early diagnosis of LUAD in patients with type 2 diabetes
mellitus [17]. The imbalance between VWF secretion and
ADAMTS-13 plays a critical role in the hypercoagulability
state in advanced NSCLC [18]. PECAM1 was reported to be
involved in lung repair and regeneration in acute respiratory
distress syndrome [19] whereas COL1A1 is correlated with
hypoxia markers in NSCLC [20]. The miR-196a/COL1A1
axis is known to be regulated by lncRNA H19 in pulmonary
fibrosis [21].

The GO functional enrichment analysis of the candidate
genes overlapping DEGs and WGCNA showed that the can-
didate genes were enriched in cellular component terms such
as plasmamembrane and extracellular space, which is consis-
tent with previous research [22]. These candidate genes were
also significantly enriched in the regulation of transcription
from RNA polymerase II promoter, which is in line with a
study on HOXA13 in LUAD [23].

We constructed ceRNA networks based on 13 DElncR-
NAs, 168 DEmRNAs with prognostic value (P < 0:05 in uni-
variate Cox regression analysis), and DEmiRNAs. As a result,
12 lncRNAs, 79 miRNAs, and 32 mRNAs were identified in
the ceRNA network (Figure 5). Numerous researchers have
reported the relationship between lncRNAs in ceRNAs and
LUAD [24, 25]. We identified seven lncRNAs—AC021016.2,
AC079630.1, AC116407.1, AC125807.2, AF131215.5,
LINC01936, and RHOXF1-AS1—associated with the OS rates
of patients with LUAD by integrating DEG analysis,
WGCNA, univariate Cox regression, KM analysis, and
ceRNA construction. Three lncRNAs (AF131215.5, P =
0:047; AC125807.2 with P = 0:018; and LINC01936 with P
= 0:011) were significant in multivariate Cox regression
analysis (Table 1). Increased expression of AF131215.5 and
LINC01936 showed a strong relation to the decreased risk
of death, with a hazard ratio (HR) of 0.88 and 0.86, respec-
tively. However, AC125807.2 showed a reverse correlation
with HR = 1:19. By contrast, the significant values of
AC021016.2, AC079630.1, AC116407.1, and RHOXF1-AS1
were larger than the threshold (0.05), and their confidence
interval was 1, which indicates that the expression of these
four genes contributed little to the change in HR after adjust-
ing for others. We identified that miR-125b targeted by five

OS-related lncRNAs (AC125807.2, AC021016.2, LINC01936,
AF131215.5, and RHOXF1-AS1) could regulate the expres-
sion of the five mRNAs—NTRK3, FGFR2, LIFR, PLA2G4F,
and NES (one of top 50 critical genes). Biamonte et al. dem-
onstrated that the downregulation of miR-125b stimulates
the apoptosis of NSCLC cells by enhancing the expression
of the p53 protein [26]. Niu et al. reported the potential
prognostic value of NTRK3mutation in patients with LUAD
treated with immune checkpoint inhibitors [27]. The mem-
brane receptor FGFR2 drives LUAD progression through
aberrant protein-protein interactions mediated via its C-
terminal proline-rich motif [28]. miR-124-3p, targeted by
two OS-LUAD-related lncRNAs (AC116407.1 and
AF131215.5), was predicted to mediate the expression of
the seven genes (AFAP1L1, CDO1, MFAP4, METTL7A,
CHRDL1, HSD17B6, and KLF4). Several researchers have
demonstrated the role of miR-124-3p in the regulation of
multiple cancers such as bladder and pancreatic cancers
and hepatocellular carcinoma [29–31]. Previous research
revealed that OGFRP1 promoted the progression of NSCLC,
partly due to the upregulation of LYPD3 expression by
sponging miR-124-3p [32]. AFAP1L1 has been reported to
mediate proliferation and survival in NSCLC [33]. CDO1 is
a metabolic liability for NSCLC [34], and the functional
identification of cancer-specific methylation of CDO1 could
be applied for the diagnosis of lung cancer [35]. The expres-
sion of MFAP4 is negatively regulated bymiR-147b in LUAD
cells [36]. The deubiquitinase USP10 moderates KLF4
stability and suppresses lung tumorigenesis [37]. Although
researchers have reported on some miRNAs and genes in
ceRNA networks, further experimental methods are still
required to reveal the efficacy and mechanisms of these
ceRNA networks in regulating LUAD.

We further validated candidate genes from TCGA with
expression profiles related to Chinese patients with LUAD.
Despite the absence of the expression of the two genes, both
lncRNAs and protein-coding genes showed good perfor-
mance in distinguishing LUAD tumors from normal tissues
(Figure 9). The AUC scores of four lncRNAs and five
mRNAs were greater than 0.9. However, only two genes,
AC021016.2 (P = 0:023) and CDH5 (P = 0:018), showed
prognostic significance (Figure 9). The decreased probability
of the OS of patients with LUAD in GEO is consistent with
the findings observed in TCGA-LUAD data. However, we
observed no overlapping mRNAs or lncRNAs with a previ-
ous study that did similar research on LUAD by constructing
a ceRNA network with DEGs using Cytoscape [38]. This
might be caused by the following reasons: the definitions
set by the two studies were different (we set ∣log2FC ∣ >1:5
instead of ∣log2FC ∣ >2); we added two processes before
ceRNA network construction, including collecting LUAD-
related genes (with differential expression) based on
WGCNA and evaluating the prognostic value of genes with
univariate Cox regression; when constructing the ceRNA
network, besides interactions predicted by the database, two
rules (the correlation between the expression of lncRNAs
and mRNAs and similar roles of miRNAs in regulating their
corresponding lncRNAs and mRNAs) were considered. We
examined the prognostic significance of seven reported

Table 1: Multivariate Cox regression analysis of lncRNAs. Hazard
ratio (HR) and upper and lower 95% confidence intervals are
listed in the table.

Symbol coef HR Lower 95 Upper 95 P value

AC021016.2 -0.0009 0.9991 0.8119 1.2294 0.9932

AC079630.1 0.0503 1.0516 0.9635 1.1477 0.2599

AC116407.1 -0.0873 0.9164 0.8035 1.0453 0.1935

AF131215.5 -0.1331 0.8754 0.7679 0.9980 0.0466

AC125807.2 0.1779 1.1947 1.0307 1.3848 0.0182

LINC01936 -0.1544 0.8569 0.7612 0.9646 0.0106

RHOXF1-AS1 -0.0272 0.9732 0.8941 1.0594 0.5305
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lncRNAs in the study with Chinese LUAD data from GEO.
Only one lncRNA, H19, was observed in the expression
matrix (others were disregarded by the submitter due to
low expression) but failed to be a significant prognostic
marker with P = 0:576. These differences indicate the
remarkable variability of molecular signatures of tumor tis-
sues as markers for phenotypic traits, including the findings
in this study (prognostic significance in this study). Owing
to the complicated evolution of Darwinian-like processes of

spontaneous tumors, individual tumors contain a unique
clone with spatial and temporary heterogeneity [39]. We
observed the stability of AC021016.2 as a potential biomarker
with prognostic significance. However, the genes showed an
almost consistent ability to distinguish tumors from normal
samples in the matrices of TCGA and GEO, and the genetic
and nongenetic diversity of tumor samples contributes to
phenotypic heterogeneity, as demonstrated by Marusyk
et al. [39].
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Figure 9: Validation of candidate genes with Gene Expression Omnibus (GEO; GSE140343). The receiver operating characteristic (ROC)
curve and Kaplan-Meier plot were used to evaluate the candidate genes’ prognostic significance and potential as biomarkers for
identifying patients with lung adenocarcinoma (LUAD).
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Apart from establishing a LUAD-related ceRNA network
based on DEGs, we collected and integrated DEG outputs
and clinical trait-related modules of WGCNA. Combined
with univariate Cox proportional hazards and Pearson corre-
lation analysis, we constructed ceRNA networks with poten-
tial clinical significance based on comprehensive strategies.
Three lncRNAs (AF131215.5, AC125807.2, and LINC01936)
indicated independent prognostic value; one lncRNA,
AC021016.2, showed good performance in identifying
patients with LUAD and prognostic value in TCGA in the
GEO database. We utilized the GSVA index to systemically
integrate the signatures of seven lncRNAs, correlated with
OS rates predicted by KM survival analysis, to enhance its
ability to identify LUAD-related patients and prognosis. We
further compared the power of three independent lncRNAs
and their joint impact on identifying tumor samples and
prognostic significance (Figure 8). This indicated that four
lncRNAs contributed to the recognition of tumor tissues,
although not independently and prognostically significant.

5. Conclusions

We identified seven OS-associated lncRNAs in LUAD-
related ceRNAs with good performance in distinguishing
patients with LUAD in the TCGA database. Three lncRNAs
AF131215.5, AC125807.2, and LINC01936 represented the
independent prognostic significance of OS in patients with
LUAD in TCGA. The prognostic value of AC021016.2 and
its potential for distinguishing patients with LUAD from
healthy subjects were confirmed by its profile from the
GEO database.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by grants from the Traditional
Chinese Medical science and technology plan of Zhejiang
Province (2019ZB050).

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[2] W. D. Travis, E. Brambilla, A. P. Burke, A. Marx, and A. G.
Nicholson, “Introduction to the 2015 World Health Organiza-
tion classification of tumors of the lung, pleura, thymus, and

heart,” Journal of Thoracic Oncology, vol. 10, no. 9, pp. 1240–
1242, 2015.

[3] M. Duruisseaux and M. Esteller, “Lung cancer epigenetics:
from knowledge to applications,” Seminars in Cancer Biology,
vol. 51, pp. 116–128, 2018.

[4] A. Warth, T. Muley, M. Meister et al., “The novel histologic
International Association for the Study of Lung Cancer/Amer-
ican Thoracic Society/European Respiratory Society classifica-
tion system of lung adenocarcinoma is a stage-independent
predictor of survival,” J Clin Oncol, vol. 30, no. 13, pp. 1438–
1446, 2012.

[5] L. Bolha, M. Ravnik-Glavac, and D. Glavac, “Long noncoding
RNAs as biomarkers in cancer,” Disease Markers, vol. 2017,
Article ID 7243968, 14 pages, 2017.

[6] R. Chen, W. Xia, S. Wang et al., “Long noncoding RNA SBF2-
AS1 is critical for tumorigenesis of early-stage lung adenocar-
cinoma,” Molecular Therapy - Nucleic Acids, vol. 16, pp. 543–
553, 2019.

[7] L. Wang, Y. He,W. Liu et al., “Non-coding RNA LINC00857 is
predictive of poor patient survival and promotes tumor pro-
gression via cell cycle regulation in lung cancer,” Oncotarget,
vol. 7, no. 10, pp. 11487–11499, 2016.

[8] X. Zhao, X. Li, L. Zhou et al., “LncRNA HOXA11-AS drives
cisplatin resistance of human LUAD cells via modulating
miR-454-3p/Stat3,” Cancer Science, vol. 109, no. 10,
pp. 3068–3079, 2018.

[9] L. Jiang, R. Wang, L. Fang et al., “HCP5 is a SMAD3-
responsive long non-coding RNA that promotes lung adeno-
carcinoma metastasis via miR-203/SNAI axis,” Theranostics,
vol. 9, no. 9, pp. 2460–2474, 2019.

[10] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, no. 1, p. 559, 2008.

[11] J. Hu, L. Xu, T. Shou, and Q. Chen, “Systematic analysis
identifies three-lncRNA signature as a potentially prognostic
biomarker for lung squamous cell carcinoma using bioinfor-
matics strategy,” Translational Lung Cancer Research, vol. 8,
no. 5, pp. 614–635, 2019.

[12] L. Lan, B. Xu, Q. Chen, J. Jiang, and Y. Shen, “Weighted corre-
lation network analysis of triple-negative breast cancer pro-
gression: identifying specific modules and hub genes based
on the GEO and TCGA database,” Oncology Letters, vol. 18,
no. 2, pp. 1207–1217, 2019.

[13] M. E. Ritchie, B. Phipson, Y. H. DiWu, C. W. Law,W. Shi, and
G. K. Smyth, “Limma powers differential expression analyses
for RNA-sequencing and microarray studies,” Nucleic Acids
Research, vol. 43, no. 7, article e47, 2015.

[14] S. Hanzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[15] J.-Y. Xu, C. Zhang, X. Wang et al., “Integrative proteomic
characterization of human lung adenocarcinoma,” Cell,
vol. 182, no. 1, pp. 245–261.e17, 2020.

[16] Y. Xu, S. Pan, J. Liu et al., “GATA3-induced vWF upregulation
in the lung adenocarcinoma vasculature,” Oncotarget, vol. 8,
no. 66, pp. 110517–110529, 2017.

[17] Y.-Y. Zhou, X. Du, J.-L. Tang, Q.-P. Wang, K. Chen, and B.-
M. Shi, “Serum von Willebrand factor for early diagnosis of
lung adenocarcinoma in patients with type 2 diabetes melli-
tus,” World Journal of Clinical Cases, vol. 8, no. 10,
pp. 1916–1922, 2020.

13BioMed Research International



[18] R. Guo, J. Yang, X. Liu, J. Wu, and Y. Chen, “Increased von
Willebrand factor over decreased ADAMTS-13 activity is
associated with poor prognosis in patients with advanced
non-small-cell lung cancer,” Journal of Clinical Laboratory
Analysis, vol. 32, no. 1, article e22219, 2018.

[19] J. Villar, H. Zhang, and A. S. Slutsky, “Lung repair and regen-
eration in ARDS: role of PECAM1 and Wnt signaling,” Chest,
vol. 155, no. 3, pp. 587–594, 2019.

[20] U. Oleksiewicz, T. Liloglou, K.-M. Tasopoulou et al.,
“COL1A1, PRPF40A, and UCP2 correlate with hypoxia
markers in non-small cell lung cancer,” Journal of Cancer
Research and Clinical Oncology, vol. 143, no. 7, pp. 1133–
1141, 2017.

[21] Q. Lu, Z. Guo, W. Xie et al., “The lncRNA H19 mediates pul-
monary fibrosis by regulating the miR-196a/COL1A1 axis,”
Inflammation, vol. 41, no. 3, pp. 896–903, 2018.

[22] Y. Shi, S. Zhu, J. Yang et al., “Investigation of potential mech-
anisms associated with non-small cell lung cancer,” Journal of
Computational Biology, vol. 27, no. 9, pp. 1433–1442, 2020.

[23] Y. Deng, R. He, R. Zhang et al., “The expression of HOXA13 in
lung adenocarcinoma and its clinical significance: a study
based on The Cancer Genome Atlas, Oncomine and reverse
transcription-quantitative polymerase chain reaction,” Oncol-
ogy Letters, vol. 15, no. 6, pp. 8556–8572, 2018.

[24] X. Li, B. Li, P. Ran, and L. Wang, “Identification of ceRNA net-
work based on a RNA-seq shows prognostic lncRNA bio-
markers in human lung adenocarcinoma,” Oncology Letters,
vol. 16, no. 5, pp. 5697–5708, 2018.

[25] J. Sui, Y. H. Li, Y. Q. Zhang et al., “Integrated analysis of long
non-coding RNAassociated ceRNA network reveals potential
lncRNA biomarkers in human lung adenocarcinoma,” Inter-
national Journal of Oncology, vol. 49, no. 5, pp. 2023–2036,
2016.

[26] F. Biamonte, A. M. Battaglia, F. Zolea et al., “Ferritin heavy
subunit enhances apoptosis of non-small cell lung cancer cells
through modulation of miR-125b/p53 axis,” Cell Death & Dis-
ease, vol. 9, no. 12, p. 1174, 2018.

[27] Y. Niu, A. Lin, P. Luo et al., “Prognosis of lung adenocarci-
noma patients with NTRK3 mutations to immune checkpoint
inhibitors,” Frontiers in Pharmacology, vol. 11, p. 1213, 2020.

[28] Z. Timsah, J. Berrout, M. Suraokar et al., “Expression pattern
of FGFR2, Grb2 and Plcγ1 acts as a novel prognostic marker
of recurrence recurrence-free survival in lung adenocarci-
noma,” Am J Cancer Res, vol. 5, no. 10, pp. 3135–3148,
2015.

[29] J.-R. Wang, B. Liu, L. Zhou, and Y.-X. Huang, “MicroRNA-
124-3p suppresses cell migration and invasion by targeting
ITGA3 signaling in bladder cancer,” Cancer Biomarkers,
vol. 24, no. 2, pp. 159–172, 2019.

[30] X.-X. Hu, J. Feng, X.-W. Huang et al., “Histone deacetylases
up-regulate C/EBP _α_ expression through reduction of
miR-124-3p and miR-25 in hepatocellular carcinoma,” Bio-
chemical and Biophysical Research Communications, vol. 514,
no. 3, pp. 1009–1016, 2019.

[31] J. Du, Y. He, W. Wu et al., “Targeting EphA2 with miR-124
mediates Erlotinib resistance in K-RAS mutated pancreatic
cancer,” Journal of Pharmacy and Pharmacology, vol. 71,
no. 2, pp. 196–205, 2019.

[32] L.-X. Tang, G.-H. Chen, H. Li, P. He, Y. Zhang, and X.-W. Xu,
“Long non-coding RNAOGFRP1 regulates LYPD3 expression
by sponging miR-124-3p and promotes non-small cell lung

cancer progression,” Biochemical and Biophysical Research
Communications, vol. 505, no. 2, pp. 578–585, 2018.

[33] M. Wang, X. Han, W. Sun, X. Li, G. Jing, and X. Zhang, “Actin
filament-associated protein 1-like 1 mediates proliferation and
survival in non-small cell lung cancer cells,” Medical Science
Monitor, vol. 24, pp. 215–224, 2018.

[34] Y. P. Kang, L. Torrente, A. Falzone et al., “Cysteine dioxygen-
ase 1 is a metabolic liability for non-small cell lung cancer,”
eLife, vol. 8, 2019.

[35] J. Wrangle, E. O. Machida, L. Danilova et al., “Functional iden-
tification of cancer-specific methylation of CDO1, HOXA9,
and TAC1 for the diagnosis of lung cancer,” Clinical Cancer
Research, vol. 20, no. 7, pp. 1856–1864, 2014.

[36] Y.-Y. Feng, C.-H. Liu, Y. Xue, Y.-Y. Chen, Y.-L. Wang, and X.-
Z. Wu, “MicroRNA-147b promotes lung adenocarcinoma cell
aggressiveness through negatively regulating microfibril-
associated glycoprotein 4 (MFAP4) and affects prognosis of
lung adenocarcinoma patients,” Gene, vol. 730, article
144316, 2020.

[37] X. Wang, S. Xia, H. Li et al., “The deubiquitinase USP10 regu-
lates KLF4 stability and suppresses lung tumorigenesis,” Cell
Death & Differentiation, vol. 27, no. 6, pp. 1747–1764, 2020.

[38] X.Wu, Z. Sui, H. Zhang, Y. Wang, and Z. Yu, “Integrated anal-
ysis of lncRNA-mediated ceRNA network in lung adenocarci-
noma,” Frontiers in Oncology, vol. 10, article 554759, 2020.

[39] A. Marusyk, V. Almendro, and K. Polyak, “Intra-tumour het-
erogeneity: a looking glass for cancer?,” Nat Rev Cancer,
vol. 12, no. 5, pp. 323–334, 2012.

14 BioMed Research International


	Potential Prognostic Biomarkers of Lung Adenocarcinoma Based on Bioinformatic Analysis
	1. Introduction
	2. Materials and Methods
	2.1. Collection and Integration of Data from TCGA
	2.2. Data Preprocessing and Identification of DERNAs
	2.3. Identifying Crucial Modules That Significantly Map to LUAD
	2.4. Protein-Protein Interaction (PPI) and Functional Enrichment Analysis of Candidate Genes
	2.5. Construction of ceRNA Networks Based on Candidate DEGs
	2.6. Crucial DEG Classification and Gene Set Variation Analysis (GSVA) Index Construction
	2.7. Evaluating Candidate Genes with Data from the GEO Dataset

	3. Results
	3.1. DERNA Identification Related to LUAD
	3.2. The Analysis of LUAD-Related Significant Modules Using WGCNA
	3.3. Functional Enrichment Analysis of Candidate Genes and PPI Network Construction
	3.4. Survival and ROC Curve Analysis
	3.5. mRNA-miRNA-lncRNA ceRNA Network Construction Related to LUAD
	3.6. ROC and KM Analysis of 12 lncRNAs in ceRNA Networks Related to LUAD
	3.7. Evaluation of Seven lncRNAs as Biomarkers of LUAD
	3.8. Validation of Candidate Genes with GEO Dataset

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

