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Abstract: The stability and sizes of chiral skyrmions in ultrathin magnetic films are calculated
accounting for the isotropic exchange, Dzyaloshinskii–Moriya exchange interaction (DMI),
and out-of-plane magnetic anisotropy within micromagnetic approach. Bloch skyrmions in ultrathin
magnetic films with B20 cubic crystal structure (MnSi, FeGe) and Neel skyrmions in ultrathin films
and multilayers Co/X (X = Ir, Pd, Pt) are considered. The generalized DeBonte ansatz is used to
describe the inhomogeneous skyrmion magnetization. The single skyrmion metastability/instability
area, skyrmion radius, and skyrmion width are found analytically as a function of DMI strength d.
It is shown that the single chiral skyrmions are metastable in infinite magnetic films below a critical
value of DMI dc, and do not exist at d > dc. The calculated skyrmion radius increases as d increases
and diverges at d→ dc − 0 , whereas the skyrmion width increases monotonically as d increases up
to dc without any singularities. The calculated skyrmion width is essentially smaller than the one
calculated within the generalized domain wall model.
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1. Introduction

The individual (single) magnetic skyrmions have attracted considerable attention from researchers
assuming potential applications in spintronic and information processing devices [1]. To achieve
efficient manipulation of the skyrmion spin textures and to realize skyrmion-based low energy
consumption devices, it is essential to understand the magnetic skyrmion stability and dynamics,
for instance, in ultrathin ferromagnetic films.

The chiral magnetic skyrmions are a kind of magnetic topological soliton [2] in 2D spin systems
characterized by a non-zero skyrmion number (topological charge, degree of mapping) defined as
N =

∫
d2ρm · (∂xm× ∂ym)/4π, where m(ρ) = M(ρ)/Ms is the unit magnetization vector, Ms is

the material saturation magnetization, and ρ = (x, y) are in-plane spatial coordinates. The number
N = ±1, ±2, . . . is an integer for an infinite film. This topological charge can be interpreted as a
quantized flux of the emergent magnetic field [3] through the film surface, Φ = |N|Φ0, where Φ0 = h/e
is the flux quantum.

The relativistic Dzyaloshinskii–Moriya exchange interaction (DMI) leads to the stabilization of
chiral Neel or Bloch skyrmions with a given sense of the magnetization rotation within their internal
configuration [1]. The role of the DMI in skyrmion stabilization was discussed in Refs. [4–7]. Following
the ideas of Dzyaloshinskii [4], in Ref. [5] it was found that adding the term D[m · (∇×m)] (linear in
spatial derivatives of magnetization) to the magnetic energy density of an infinite cubic ferromagnet
leads to the stabilization of an inhomogeneous magnetization texture for any finite value of the DMI
parameter D. Such terms are allowed in magnetic crystals whose symmetry group lacks the space
inversion symmetry operation (e.g., in the B20 cubic crystals MnSi, FeGe, etc. [1]). Then, it was
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shown [6] that accounting for DMI in the form of the Lifshitz invariants in a bulk uniaxial ferromagnet
results in the instability of the uniform ferromagnetic state at D > Dc = (4/π)

√
AK, where A is the

exchange stiffness and K is a uniaxial anisotropy constant. The 1D spin spiral becomes the ground
state at D > Dc. Therefore, DMI can stabilize 2D vortices (Bloch skyrmions, in modern terminology)
for moderate values of D. Ivanov et al. [7] showed that the Bloch skyrmions in infinite films with
easy axis anisotropy can be stabilized either by DMI or a high-order exchange interaction. Another
kind of single chiral skyrmion (Neel skyrmions) was recently observed at room temperature by
Boulle et al. in Pt/Co/MgO [8], Moreau-Luchaire et al. in Ir/Co/Pt [9], Woo et al. in Pt/Co/Ta,
Pt/CoFeB/MgO [10], and Pollard et al. in Pd/Co [11] ultrathin multilayer films and dots. These Neel
skyrmions are stabilized by the DMI existing at the ferromagnetic metal and heavy metal interface.
Such interfacial DMI can be represented as the energy density εDMI = D[mz(∇ ·m)− (m · ∇)mz],
where the unit vector z is normal to the interface. The DMI lowers the skyrmion energy for the proper
skyrmion chirality.

In the case of an infinite ferromagnetic film, the critical D value presumably remains the same as for
bulk crystals, Dc = (4/π)

√
AK, although the effective anisotropy constant K is different. The isolated

skyrmions are metastable at D < Dc at zero external magnetic field, and other configurations (e.g.,
spin spirals, skyrmion lattices, stripe domains) are stabilized at D > Dc [12,13].

In this article, we calculate the magnetic energy of a single chiral skyrmion in ultrathin magnetic
film and determine the area of the skyrmion metastability, skyrmion magnetization profiles, and the
equilibrium skyrmion radius and width. The case of an effective out-of-plane magnetic anisotropy
is analyzed.

2. Methods

Let us consider an infinite magnetic film with thickness L of about 1 nm, and parameterize the unit
magnetization vector by the spherical angles, m = m(Θ, Φ). The spatial distribution of magnetization
is assumed to be independent of the thickness coordinate z. The angles Θ, Φ are functions of the
polar radius vector ρ = (ρ, φ) located in the film plane. For this kind of magnetization configuration,
the total magnetic energy functional is E[m] = L

∫
d2ρε(m) [6,7], with the energy density

ε(m) = A(∇m)2 + εDMI(m)− Kum2
z + εm(m), (1)

where A is the material exchange stiffness, εDMI is the DMI energy density, with D being the
DMI parameter, Ku > 0 is the out-of-plane uniaxial anisotropy constant, mz is the magnetization
z-component, and εm is the magnetostatic energy. The interface DMI density is εDMI(m) =

D[mz(∇ ·m)− (m · ∇)mz] for the Neel skyrmions, or εDMI(m) = D[m · ∇ ×m] for the Bloch
skyrmions, in thin films of the B20 cubic crystals.

The magnetostatic energy εm(m) is non-local in a general case. The volume and surface magnetic
charges contribute to the magnetostatic energy. However, within the limit of ultrathin film, the volume
magnetic charges can be neglected, and only surface magnetic charges on the film top/bottom surfaces
related to the out-of-plane magnetization component mz contribute to the magnetostatic energy.
Then, the magnetostatic energy density can be essentially simplified and written in the local form
εm(m) = µ0M2

s m2
z/2 [2,7] for both kinds of skyrmion. Therefore, the energy is accounted via an

effective uniaxial anisotropy constant K = Ku − µ0M2
s /2 > 0. We also define the characteristic

magnetic material length l =
√

A/K, and the reduced dimensionless DMI strength d = Dl/A.
We search for axially symmetric inhomogeneous magnetization configurations (m depends only

on the radial coordinate ρ), that is, the magnetization angles are Θ = Θ(ρ), Φ = ϕ + ϕ0 (ϕ0 = 0, π for
the Neel skyrmions or ϕ0 = ±π/2 for the Bloch skyrmions). The total skyrmion magnetic energy
as a functional of the skyrmion magnetization is represented by the polar magnetization angle Θ(ρ),
E = E[Θ(ρ)]. The DMI energy depends on the skyrmion chirality C = ±1, which is defined as
C = sin ϕ0 for the Bloch skyrmions and C = cos ϕ0 for the Neel skyrmions. The sign of DMI strength
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D depends on the particular ferromagnetic material. Appropriate choice of the sign of chirality at
given D ensures that the product DC corresponds to negative DMI energy. We use the total reduced
energy of the radially symmetric Bloch or Neel skyrmion (in units of 2πAL)

E[Θ(r)] =
∞∫
0

drr
[
(Θ′r)

2
+
(

1
r2 + 1

)
sin2 Θ + dC

(
Θ′r +

1
r sin Θ cos Θ

)]
,

r = ρ
l ,

(2)

which depends only on one material parameter: the reduced DMI strength, d.
The simplest magnetization distribution Θ(ρ) = 0 corresponds to the energy E[0] = 0 and

describes the magnetic film ground state. However, there are metastable magnetization configurations
with non-trivial dependence Θ(ρ), which can be found from the solution of the Lagrange–Euler
equation corresponding to the energy functional given by Equation (2). The Lagrange–Euler equation
is a non-linear differential equation and cannot be solved analytically. Therefore, we use the
different approximate solutions below or trial functions for the skyrmion magnetization profile Θ(ρ).
Introducing a trial function (skyrmion ansatz) to the energy functional (2), one can calculate the
energy of the skyrmion configuration. The simplest trial function, sometimes used in the theory
of domain walls and skyrmions [12], is a linear ansatz: Θ(ρ) = π(1− ρ/2Rs) if ρ ≤ 2Rs (Rs is
the skyrmion radius), and Θ(ρ) = 0 otherwise. The simplicity of this ansatz allows conduction of
the integration in Equation (2) to get the energy Elin(rs) = λ + r2

s − πdrs, where d > 0, λ = 6.154.
The skyrmion equilibrium radius rs = Rs/l within the model is rs = πd/2, and the skyrmion
energy is Elin = λ− π2d2/4. The linear model predicts that the skyrmion is in a metastable state
at d < 2

√
λ/π ≈ 1.58 and that its energy is lower than the energy of the collinear out-of-plane

magnetization state at d > 2
√

λ/π.
We can write the Lagrange–Euler equation for the function Θ(ρ) to minimize the skyrmion energy

(2) using the substitution tan (Θ(r)/2) = exp (− f (r)) [14]. The boundary conditions for the function
Θ(ρ) are Θ(0) = π and Θ(∞) = 0 [2,15] or f (0) = −∞ and f (∞) = ∞. We define the skyrmion radius
by the equation mz(Rs) = 0, Θ(Rs) = π/2 or f (rs) = 0, where the reduced radius is rs = Rs/l.

The approximate solution of the Lagrange–Euler equation at r >> 1, far from the skyrmion center
r = 0, and d = 0, is f (r) = (r− rs). This is an often-used radial domain wall ansatz taken from the
theory of bubble domains in infinite films [16]. This ansatz does not satisfy the boundary condition
f (0) = −∞, resulting in singularity of the exchange energy at r = 0. Many authors, including
Rohart et al. [17] and Buettner et al. [18], considered the skyrmion magnetization configuration as
a circular domain wall (DW) located at the skyrmion radius position Rs, described by the singular
domain wall ansatz tan (Θ(ρ)/2) = exp (±(ρ− Rs)/∆), where ∆ is the wall width. In the limit of
large radius skyrmion with a sharp edge Rs/∆ >> 1, the radial DW model becomes asymptotically
exact. Recently, it was generalized by Kravchuk et al. [15] considering the domain wall width as a
variable δ different from its nominal value ∆ =

√
A/K. The generalized DW ansatz can be used with

caution only within the limit rs/δ >> 1 (i.e., for the large radius skyrmions) if one conducts integration
in Equation (2) in the interval r ∈ [rs − δ, rs + δ] near the skyrmion edge. To avoid singularity at
the origin r = 0 and describe the whole range of the skyrmion radii rs, we use the trial function
f (r) = ln (r/rs) + (r− rs)/δ suggested by DeBonte [19] to describe the bubble domains in infinite
films. Although such a function is not a solution of the Lagrange–Euler equation, it is evident that f (r)
leads to finite exchange energy and satisfies the boundary conditions.

Below, we use the generalized DeBonte ansatz f (r) = ln (r/rs) + (r− rs)/δ, where the skyrmion
radius rs and the skyrmion width δ are variable and depend strongly on the DMI strength, d.
The equalities cos Θ(r) = tanh f (r), sin Θ(r) = 1/ cosh f (r) allow us to calculate the skyrmion energy
(2) and find the areas of the skyrmion metastability/stability. We consider that a skyrmion’s state is
stable when it has the lowest energy (ground state) in comparison with other magnetization states.
A skyrmion state is metastable when it corresponds to a minimum of the magnetic energy, however,
its energy is higher than that of some other magnetization configurations (a local minimum of the
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energy). The Bloch (Neel) skyrmion energy E(rs, δ) within the generalized DeBonte model is a function
of two parameters, rs and δ. Accounting Θ′r = −(1/δ + 1/r) sin Θ we rewrite the skyrmion exchange
energy in the form

Eex(rs, δ) =

∞∫
0

dr
r

cosh2 f (r)

[(
1
δ
+

1
r

)2
+

1
r2

]
. (3a)

The exchange energy (3) was calculated by DeBonte, yielding the simple expression

Eex(ξ) = 4 +
(

1− 1
ξ

)2
ln (1 + e2ξ), (3b)

where ξ = rs/∆ ≥ 1 is the reduced skyrmion radius, and 1/∆ = 1/rs + 1/δ is the reduced inverse
skyrmion width. In the limit of small radius skyrmion rs → 0 , when the exchange energy dominates
over other contributions to the energy density, the exchange energy is reduced to the well-known
Belavin–Polyakov soliton limit [20], Eex( ξ → 1 ) = 4, which is determined solely by the skyrmion
charge |N| (|N| = 1 for the skyrmions considered here).

The magnetic anisotropy and DMI energy can be represented using DeBonte ansatz as

Ean(ξ, rs) = r2
s Fa(x), EDMI(ξ, rs) = −dCrsF(x), (4)

where x = ξ − 1, and the functions Fa(x), F(x) are defined as integrals

Fa(x) =
∞∫
0

dρρ 1
cosh2 f (ρ,x)

,

F(x) =
∞∫
0

dρ 1
cosh f (ρ,x) [1 + xρ− tanh f (ρ, x)],

f (ρ, x) = ln ρ + x(ρ− 1).

The function F(x) > 0, therefore we chose the sign of dC > 0 and below use the substitution
dC→ d .

3. Results and Discussion

The total skyrmion magnetic energy within the model can be represented as function of two
variable parameters, ξ and ∆:

E(ξ, rs) = 4 + (1− 1
ξ
)

2
ln (1 + e2ξ) + r2

s Fa(ξ − 1)− drsF(ξ − 1). (5)

The equation ∂E(ξ, rs)/∂rs = 0 leads to rs(ξ) = dF(ξ − 1)/2Fa(ξ − 1) and allows us to exclude
rs from the minimization procedure and write an analytical equation for the equilibrium skyrmion
radius as an inverse function of the DMI parameter d(ξ)

d2(ξ) =
∂Eex

∂ξ

2F2
a (x)

F(x)
[

F′(x)Fa(x)− 1
2 F(x)Fa

′(x)
] . (6)

It immediately follows from Equation (6) that the reduced skyrmion radius ξ is a function of
d2, ξ = φ(d2), and for large radius skyrmions ξ >> 1, d(ξ >> 1)→ dc = 4/π , or the equilibrium
skyrmion reduced radius diverges, ξ(d)→ ∞ , at d→ dc − 0 . In the vicinity of dc, Equation (6) yields

simple expressions for the equilibrium skyrmion radius ξ(d) = 1/
√

1− (d/dc)
2, width ∆(d) = d/dc,

and the energy E(d) = 4
√

1− (d/dc)
2. These expressions coincide with ones calculated within the

generalized DW model by Kravchuk et al. [15]. At ξ >> 1 Fa(ξ − 1) = ξ−2 ln (1 + exp (2ξ)) ≈
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2/ξ, F(ξ − 1) ≈ π + O(e−ξ), the skyrmion energy is essentially simplified, E(ξ, rs) = 2ξ − πdrs +

2(1 + r2
s )/ξ, and is reduced to one, accounted in the generalized DW model. We note that the DMI

and anisotropy energies are proportional to rs, whereas the exchange energy is not: it contains the
term 1/rs even within the simplified DW model. This is in disagreement with the statement by
Bernand-Mantel et al. [21] that the exchange energy is linearly proportional to rs. Note that the critical
value of dc = 2/π, two times smaller than dc = 4/π ≈ 1.273, was calculated for the isolated chiral
skyrmions in infinite films in zero external magnetic field by Kiselev et al. [12], and later this value
was corrected by Leonov et al. [13] to be dc = 1.224.

In the limit of small DMI strength d << 1, rs(d) cannot be directly determined from the equation
rs(d) = dF(0)/2Fa(0) because F(0) = 4 is finite, but Fa( x → 0 )→ ∞ is singular. The non-analytic
behavior of the function Fa(x) at x → 0 can be approximately presented as Fa(x) = Fa(1)/xα.
To calculate ξ(d), we need to analyze the exchange energy. The approximate Equation (3b) has
very good accuracy at ξ ≥ 2, but it predicts a wrong asymptotic behavior at ξ → 1 + 0 and the exact
Equation (3a) should be used instead within this limit. We rewrite the exchange energy in the form

Eex(x) = x2=1(x) + 2x=0(x) + 2=−1(x),=n(x) =
∞∫

0

dρρn 1
cosh2 f (ρ, x)

. (7)

The functions =n(x) are not analytic at x = ξ − 1→ 0 , but it is possible to calculate =0(0) = π

and =−1(x) = =−1(0) + =′−1(0)x, =−1(0) = 2, =′−1(0) = −π. Therefore, the asymptotic behavior
of the function Eex(x) is determined by the first term in Equation (7), Eex(x) = 4 + x2Fa(x) = 4 +

Fa(1)x2−α, Fa(x) ≡ =1(x). Using this expression, we can solve Equation (6) in the limit x = ξ − 1→ 0

and get ξ(d) = 1 + (d/κ1/2)
1/(1−α)

, where κ = 4(2/α− 1)F2
a (1)/F2(0). Then, from the equation

rs(d) = dF(x)/2Fa(x), accounting F(0) = 4, we immediately get the expression rs(d) = ∆(d) =

2F−1
a (1)κα/2(α−1)d1/(1−α). Numerical calculation of the asymptote of Fa( x → 0 ) showed that the

exponent α = 2/3, and Fa(1) = 1.121. Therefore, the skyrmion radius calculated within the generalized
DeBonte model at d << 1, rs(d) = ∆(d) = (4/F3

a (1))d3, is essentially smaller than the radius predicted
by the generalized DW model. The skyrmion energy is E(d) = 4

[
1− F−3

a (1)d4]. It is slightly higher

than the DW model energy EDW(d) = 4
[
1− (d/dc)

2/2
]
. This is not a surprise because the DW model

containing integration in the vicinity of rs always underestimates the skyrmion energy at d < dc.
The equilibrium skyrmion radius, width, and energy vs. the DMI strength are shown in
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Figure 1. The skyrmion radius in units of l =
√

A/K vs. the Dzyaloshinskii–Moriya exchange interaction
(DMI) strength, d = |D|l/A: (1) Generalized DeBonte ansatz (solid green line); (2) generalized domain
wall (DW) ansatz [15] (dashed red line); (3) linear ansatz [12] (dotted blue line). The radius obtained from
numerical minimization of the skyrmion energy (2) is shown by deep green squares.



Materials 2018, 11, 2238 6 of 9

Materials 2018, 11, x FOR PEER REVIEW  7 of 11 

 

 

Figure 1. The skyrmion radius in units of /l A K  vs. the Dzyaloshinskii–Moriya exchange 

interaction (DMI) strength, /d D l A : (1) Generalized DeBonte ansatz (solid green line); (2) 

generalized domain wall (DW) ansatz [15] (dashed red line); (3) linear ansatz [12] (dotted blue line). 

The radius obtained from numerical minimization of the skyrmion energy (2) is shown by deep green 

squares. 

 

 

Figure 2. The skyrmion width in units of /l A K  vs. the DMI strength, /d D l A : (1) 

Generalized DeBonte ansatz (solid green line); (2) generalized DW ansatz [15] (dashed red line). 

0.0 0.5 1.0
0

1

2

3

4

1

3

2

S
k
y
rm

io
n

 r
a

d
iu

s
, 
R

s
/l

Reduced DMI strength, d

d
c

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

2

S
k
y
rm

io
n

 w
id

th
, 


/l

Reduced DMI strength, d

d
c

1
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√

A/K vs. the DMI strength, d = |D|l/A: (1) Generalized
DeBonte ansatz (solid green line); (2) generalized DW ansatz [15] (dashed red line).
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Figure 3. The skyrmion energy in units of 2πAL vs. the DMI strength, d = |D|l/A: (1) Generalized
DeBonte ansatz (solid green line); (2) generalized DW ansatz [15] (dashed red line); (3) linear
ansatz [12] (dotted blue line). The numerical minimization of the skyrmion energy (2) is shown
by deep green squares.

The DW ansatz and linear skyrmion ansatz result in the incorrect dependence rs(d), especially
at small d (d < 1) (see Figure 1). The generalized DW model [15] predicts the skyrmion width for
intermediate values of d, which is approximately two times larger than one calculated within the
generalized DeBonte ansatz (see Figure 2). The skyrmion energies calculated within the DeBonte
and DW models are very close for 0 < d < dc, whereas the linear model [12] overestimates the
skyrmion energy up to 50% and predicts the wrong value of dc (see Figure 3). The skyrmion radius
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rs(d) (Figure 1) and skyrmion energy (Figure 3) calculated analytically using the DeBonte ansatz and
numerically practically coincide.

Above, we calculated the stability of the chiral Bloch and Neel skyrmion magnetization
configurations in ultrathin films as a function of the DMI strength. The second derivative of the
skyrmion energy (5) ∂2E/∂r2

s = 2Fa(x) > 0. Therefore, the sufficient condition of existence of the
skyrmion local energy minimum (∂2E/∂r2

s )(∂
2E/∂ξ2)− (∂2E/∂rs∂ξ)

2
> 0 is satisfied for the skyrmion

solution ξ(d), rs(d) within the interval 0 < d < dc. The isolated skyrmions are metastable within
a range of the values of d satisfying the inequality d < dc and do not exist at d > dc (the skyrmion
minimum transforms to an energy maximum at d = dc).

To describe skyrmion magnetization analytically we used the DeBonte radial domain wall
ansatz [19], the accuracy of which was numerically checked for circular dots in Ref. [22]. The calculated
equilibrium skyrmion radius Rs(d) and the skyrmion width ∆(d) increase with increasing DMI
strength (Figure 1). However, the continual model becomes inaccurate for the sizes below 1 nm.
The typical values of A= 10 pJ/m and K= 0.1 MJ/m3 yield the magnetic length l = 10 nm for ultrathin
films. The conditions Rs(d) ≥ 1 nm, ∆(d) ≥1 nm mean that the continual model can be applied if
the reduced DMI strength d ≥ 0.2 or |D| ≥ 0.2 mJ/m2 in absolute units. Simulations [23] within a
discrete model on a simple cubic lattice with period a showed that the skyrmion state collapses to
the uniformly magnetized state at Rs ≈ (4÷ 5)a or Rs ≈1.0–1.3 nm for Co. We note that in restricted
geometry (circular dots) the skyrmion radius dependence on the DMI strength Rs(d) has an inflection
point at d ≈ dc [17,24] and the skyrmion width ∆(d) reveals a broad maximum in the vicinity of dc [24].
The typical value of DMI strength, D, accessible in experiments with ultrathin films like X/Co (X = Pt, Ir,
Pd) is 1–2 mJ/m2 [8–11]. Therefore, all observed Neel skyrmions in these nanostructures are metastable
(if d < dc) or unstable (if d > dc) in a zero out-of-plane magnetic field. To compare the calculated
skyrmion sizes with the experimental data [8,9,11], we used the experimental values of the exchange
stiffness, A, the effective magnetic anisotropy constant, K, the DMI strength, D, and the skyrmion
radius, Rs. Using the set A = 10 pJ/m, K = 0.17 MJ/m3, D = 1.6 mJ/m2 for Ir/Co/Pt multilayer films
taken from Ref. [9], we calculated the parameters l =

√
A/K = 7.7 nm, and d = |D|l/A = 1.227.

The measured skyrmion radius in the smallest out-of-plane magnetic field of 12 mT was Rexp
s = 40 nm,

or rexp
s = Rexp

s /l = 5.2. The calculations within the generalized DeBonte model yielded the value
rcal

s = 4.0. The measured value in Ref. [8] of Ku = 1.37 MJ/m3 for Pt/Co/MgO film allows calculation of
the effective anisotropy constant K = Ku − µ0M2

s /2 = 0.138 MJ/m3, assuming the Co-layer saturation
magnetization Ms = 1400 kA/m. The value of the DMI strength measured by a Brillouin light
scattering [8] is D = 2.05 mJ/m2. Given that the Co layer is relatively thick (i.e., 1.0–1.1 nm), we used
the Co exchange stiffness constant close to its bulk value, A = 20 pJ/m, and calculated l = 12.0 nm
and d = 1.234. The measured skyrmion radius was Rexp

s = 65 nm, or rexp
s = Rexp

s /l = 5.4, whereas the
calculations yielded the value rcal

s = 4.2. Using the experimentally found values of K = 0.24 MJ/m3,
D = 2.0 mJ/m2, and the estimated value of A = 11 pJ/m for Co/Pd multilayer films [11], we could
calculate l = 6.8 nm and d = 1.231. The skyrmion radius, measured by Lorentz transmission electron
microscopy [11], is Rexp

s = 45 nm, or rexp
s = Rexp

s /l = 6.6, whereas the calculations yielded the value
rcal

s = 4.1. The agreement of the skyrmion sizes measured by X-ray imaging [8,9] and by our calculations
is reasonably good. The skyrmion size measured by Lorentz transmission microscopy was larger than
the calculated one. This can be explained by the different mechanisms of image formation in these
experiments. The image contrast is proportional to the magnetization out-of-plane component m · z
for the X-ray imaging [8–10], whereas the contrast is proportional to the out-of-plane component of
the magnetization curl (∇×m) · z, for Lorentz microscopy imaging. The parameters K and D can be
extracted with reasonable accuracy from independent experiments. The exchange stiffness A is poorly
defined for ultrathin films with ferromagnetic layer thickness 0.5–1 nm. The skyrmion sizes measured
in Refs. [8,9,11] are quite large, 40–65 nm. This means that the DMI parameter d is also large and close
to its critical value dc, and the value of the skyrmion radius is very sensitive to the exact value of d (see
Figure 1). According to its definition d = |D|/

√
AK, the DMI parameter depends on A. This leads
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to an uncertainty in the interpretation of the experimental data [8,9,11]. This uncertainty may lead
to the case d > dc for Ir/Co/Pt multilayer films [9]. Decreasing the out-of-plane magnetic field can
essentially increase the skyrmion sizes (see Figure 2 in ref [9]), indicating that the single skyrmion state
is unstable in zero out-of-plane field. We note that the dependences of the skyrmion radius Rs on the
DMI strength D for different values of A, simulated in Ref. [11], can be reduced to the universal curve
Rs(d) presented in Figure 1 if one changes the variable D to dimensionless variable d.

The case of magnetic dots considered in Refs. [14,17,22,24,25] is more complicated because the
skyrmion configuration can be the dot ground state. The Neel skyrmions in circular dots can be
metastable or stable even at D > Dc = (4/π)

√
AK. The calculated value of D for a transition between

the metastable and stable Neel skyrmions in ultrathin circular dots is 1.5–2 times larger than one for
infinite films for weak effective magnetic anisotropy 2K/µ0M2

s << 1 [14]. It was also shown that the
Bloch skyrmions can be the dot ground state for in-plane magnetic anisotropy K < 0 and D = 0 [25].

In the investigated case of out-of-plane effective magnetic anisotropy K > 0, the large values of
the Dzyaloshinskii–Moriya interaction strength D > Dc cause the nucleation of more complicated
magnetization configurations (nπ-skyrmions [17], spin spirals, labyrinth domain, etc.), that is, the
individual Neel or Bloch magnetic skyrmion state with the topological charge |N| ≈ 1 is no
longer metastable.

4. Conclusions

We found that the isolated Bloch and Neel skyrmions in ultrathin magnetic films are metastable
within the range of the DMI strength 0 ≤ d < dc, where dc = 4/π or Dc = 4A/πl in absolute units,
A is the material exchange stiffness, and l =

√
A/(Ku − µ0M2

s /2) is the material magnetic length.
The calculated skyrmion radius Rs increases as d increases and diverges at d→ dc − 0 , whereas the
skyrmion width ∆ increases monotonically as d increases without any singularities at d→ dc − 0 .
The calculated skyrmion width is essentially smaller than the one calculated within the generalized
domain wall model. The generalized DeBonte ansatz is a very good approximation to calculate the
skyrmion radius, width, and energy. The linear skyrmion model cannot be applied for quantitative
analysis of the skyrmion energy and size.
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