
Review Article
A Comprehensive Review of Computation-Based Metal-Binding
Prediction Approaches at the Residue Level

Nan Ye ,1 Feng Zhou,2 Xingchen Liang,2 Haiting Chai,3 Jianwei Fan,2 Bo Li,4

and Jian Zhang 2

1School of Finance and Economics, Xinyang Agriculture and Forestry University, Xinyang 464000, China
2School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
3College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
4College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

Correspondence should be addressed to Nan Ye; leavesyn@yeah.net

Received 2 January 2022; Accepted 4 March 2022; Published 31 March 2022

Academic Editor: Bing Wang

Copyright © 2022 Nan Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Clear evidence has shown that metal ions strongly connect and delicately tune the dynamic homeostasis in living bodies. They
have been proved to be associated with protein structure, stability, regulation, and function. Even small changes in the
concentration of metal ions can shift their effects from natural beneficial functions to harmful. This leads to degenerative
diseases, malignant tumors, and cancers. Accurate characterizations and predictions of metalloproteins at the residue level
promise informative clues to the investigation of intrinsic mechanisms of protein-metal ion interactions. Compared to
biophysical or biochemical wet-lab technologies, computational methods provide open web interfaces of high-resolution
databases and high-throughput predictors for efficient investigation of metal-binding residues. This review surveys and details
18 public databases of metal-protein binding. We collect a comprehensive set of 44 computation-based methods and classify
them into four categories, namely, learning-, docking-, template-, and meta-based methods. We analyze the benchmark
datasets, assessment criteria, feature construction, and algorithms. We also compare several methods on two benchmark testing
datasets and include a discussion about currently publicly available predictive tools. Finally, we summarize the challenges and
underlying limitations of the current studies and propose several prospective directions concerning the future development of
the related databases and methods.

1. Introduction

Metal ions are certain atom compounds that usually form cat-
ions that have (a) positive electric charge(s). Metal ions play
pivotal roles in protein structure, function, regulation, and sta-
bility [1, 2]. Common metal ions include zinc (Zn2+), calcium
(Ca2+), magnesium (Mg2+), manganese (Mn2+), iron (Fe3+ or
Fe2+), copper (Cu2+), cobalt (Co2+), sodium (Na+), potassium
(K+), and nickel (Ni2+) ions. Recent estimates have shown that
approximately 30%-40% of proteins require one or several
metal cofactors to together express biological function [3].
The proportion varies in different types of organisms or tis-
sues. For instance, K+ is mostly found inside the cell, while
Na+ is abundant outside of the cell [4]. Mn2+ is found accumu-

lated in leafy green plants [5]. In the human body, Ca2+

accounts for approximately 1.5% of total body weight. The
bulk of Ca2+ is aggregated in bones and teeth [6].

Metal ion binding proteins, i.e., metalloproteins, play
critical roles in a biological and chemical process in cellular
reactions [7]. Inside the cell, the dynamic homeostasis of
the metal ions is strongly connected and delicately tuned
[8]. Reinhard et al. claimed that K+ and Na+ are involved
in processing cell signaling, intercellular communication,
and maintaining tissue electrolyte balance [9]. A small
change in the concentration of metal ions may shift the
effects of metal ions from natural beneficial to harmful
[10]. A recent study pointed out that metalloproteins are
associated with degenerative diseases, including Parkinson’s
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disease and Alzheimer’s disease [11]. For instance, α-synu-
clein (Cu2+-protein complex) constitutes the main compo-
nent in Lewy bodies in Parkinson’s disease [11]. Mn2+ and
Fe3+ are responsible for inducing tangle pathology in Alzhei-
mer’s disease [8]. The aging of the brain or the development
of diseases is associated with the deregulation of the manage-
ment of metal ions [10]. Particularly, recent evidence indi-
cates that if different types of metalloproteins interact in a
certain salt solution, the potential galvanic erosion may dis-
solute the compound surface and result in inducing tumor
formation [12, 13].

Elucidated protein-metal ion interactions rely in part on
the advancement of various accurate characterizations and
predictions of metalloproteins at the residue level. The tradi-
tional methods that are used to identify metal-binding con-
formation or binding residues include biophysics- or
biochemistry-related wet-lab experiments, such as mass
spectrometry [14], X-ray crystallography [15], and surface
Plasmon resonance [16]. Since these technologies need
expensive instruments, complex procedures, and elaborate
labors, they shall benefit from the recent development of
computation-aided methods.

We found 12 reviews that focused on the topic of explor-
ing metal-binding residues or proteins in the past decade [7,
10, 11, 17–24]. Mallick et al. shed light on in silico methods
including nine predictive tools and discussed the intrinsic
mechanisms of metal-protein binding [24]. Thirumoorthy
et al. investigated metallothionein isoforms and their role
in pathophysiology [17]. They also provided the analysis of
how metallothionein impact complex disease scenarios. In
[18], the authors focused on structural variability and corre-
sponding mechanisms of polymorphic amyloid oligomers
complexed with metal ions. Bal et al. discussed ability con-
stants, dissociation rates, and coordination chemistry of
metal-binding residues in albumin [19]. Roohani et al.
reviewed the literature related to zinc biochemical and phys-
iological functions, metabolism, and zinc bioavailability in
the human body [20]. The authors in [21] summarized the
web tools that were proposed to identify metal-binding res-
idues. Liu et al. systematically analyzed the structural fea-
tures of Zn2+-binding sites and proposed an online
predictor [22]. Akcapinar and Sezerman collected and sur-
veyed computational toolboxes designed for the recognition
of metal-binding sites or metalloproteins [7]. Quintanar and

Kim summarized the research in degenerative diseases
related in metal ions [11]. Witkowska and Rowińska-Żyrek
overviewed the analytical and biophysical methods utilized
for studies on metal-protein interactions [23]. Krzywos-
zyńska detailed the involvement of metal ions in signaling
processes within the cell and its influence in health and dis-
ease [10]. Rauer et al. scrutinized computational approaches
that are associated with the prediction of protein functional
sites and also discussed metal-binding related works [25].

Broadly speaking, these reviews discuss some aspects of
the predictive methods. Some of them provide sufficient cov-
erage of databases and predictive models and discuss the
challenges and limitations of considered approaches. These
reviews bring informative clues for the following researchers
in this field. From the pertinence of the research, the predic-
tion of metal-binding can be divided into general and spe-
cific approaches. The former recognizes metal-binding
residues without considering their types, while, the latter is
aimed at identifying one or several specific metal-protein
interactions. According to the basic design and scheme, we
classify these methods into four categories, namely, learn-
ing-, docking-, template-, and meta-based methods.

This review covers a comprehensive set of 44
computation-based methods, and 25 of them were published
in the past three years. Specifically, we survey 32 learning-
based, 4 docking-based, 6 template-based, and 2 meta-
based methods. Depending on whether the structure of a
target protein is known or available, we further divide
learn-binding methods into the structure- and sequence-
based ones. We discuss their benchmark datasets, features,
algorithms, and measurements, respectively. We also detail
the docking-, template-, and meta-based methods and point
out their advantages and limitations.

2. Public Databases for Metal Binding

The development in biochemistry and biophysics leads to a
fast increasing number of protein-metal ion binding com-
plexes. Figure 1 draws the top 10 metal-binding annotations
in PDB. Our survey reveals that Zn2+, Ca2+, and Mg2+

occupy the top three prevalent metal ions. The Zn2+ is cur-
rently the best-explored and described metal ion [26]. Zn2+

participates in many biological processes, such as metabolism,
immune system, neurotransmission, hormone secretion, and
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Figure 1: Fraction of top 10 metal-binding interactions that stored in PDB (date: December 20, 2021).
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signaling [27]. According to a rough statistic, approximately
10% of eukaryotic proteins bind Zn2+ [28]. Ca2+ is mainly
aggregated in bones and teeth vertebrates [29]. It helps form
solid support structures through biomineralization [6]. Mg2+

is usually associated with solvent water molecules, which
endow it with a good capability of binding affinity with pro-
teins and movement. The solvation state of Mg2+ usually
serves as the enzyme in which Mg2+ acts as a coenzyme [6].

Besides RCSB PDB (https://www.rcsb.org/) [30], recent
years have witnessed several specific databases that collect,
categorize, and store these metal-protein interactions.
Table 1 summarizes the publication year, considered metal
ions, size of the database, web link, citations, and availability
for the recently released database. We use citations as a one
direct and good way to quantify the impact of these
resources within the community [31]. The citation counts
were collected from Google Scholar (https://scholar.google
.com/) on December 20, 2021.

Specifically, InterMetalDB collects and presents metal
ion binding proteins from RCSB PDB. It uses MMseq2
[32] to cluster the structure chains with the 50% sequence
identity. Then, it groups similar binding sites and selects
the best-resolution structure as a representative. MeLAD is
a metalloenzyme-ligand association database, which con-
tains structural data, metal-binding pharmacophores, and
ligand chemical similarity of metalloenzyme-ligand interac-
tions [33]. MetalPDB details the local environment, three-

dimensional (3D) structure, secondary structure, and solvent
accessibility of the metal ion binding sites [34, 35]. BioLiP is
a semimanually curated database, which includes protein-
peptide, protein-nucleic acid, and protein-ligand annota-
tions [36]. BioLiP stores and periodically updates all types
of metal ion binding information from PDB. ZiFDB is a
database that collects information about individual zinc fin-
gers, engineered zinc-finger arrays, and related target
sequences [37, 38]. BioMe provides a web interface for biol-
ogists to capture coordination numbers, distances, geometry,
and percentage of monodentate and bidentate bound aspar-
tic acid and glutamic acid carboxyl groups [39]. MetLigDB is
specially designed to select chelating groups or chemical
moieties that might be presented in the inhibitor of a metal-
loprotein [40]. MIPS stores the geometric information, mac-
romolecular function, different chemical behavior of metals,
and metalloproteins [41]. MEDB presents quantitative infor-
mation on metal-binding sites in protein structures and can
be used for the identification of trends or patterns in the
metal-binding sites [42]. MetalMine automatically collects
and categorizes different types of metal-binding sites that
derived from the structures of protein-metal-ion complexes
[43]. Metal-MACiE gathers all available metalloenzymes
and includes structural and functional information of metal
ions in the context of the catalytic mechanisms of these
metalloenzymes [44]. ZifBASE deposits engineered and natu-
ral zinc finger proteins and provides sequences and structural

Table 1: Summary of recently released database of metal ion binding interactions.

Name Year Considered metal ions
Number
of sites

Web link Ref. Citation Availability

InterMetalDB 2021 All metal ion binding 6,423 https://intermetaldb.biotech.uni.wroc.pl/ [26] N/A Yes

MeLAD 2020 All metal ion binding N/A https://melad.ddtmlab.org/ [33] 9 Yes

ZincBindDB 2019 Zn 24,992 https://github.com/samirelanduk/ZincBindDB [49] 23 Yes

MetalPDB
(v2)

2018 All metal ion binding N/A http://metalweb.cerm.unifi.it [34] 90 No

BioLiP 2013 All metal ion binding 146,969 https://zhanggroup.org/BioLiP/ [36] 446 Yes

ZiFDB (v2) 2013 Zn N/A http://bindr.gdcb.iastate.edu/ZiFDB [37] 25 No

MetalPDB
(v1)

2013 All metal ion binding N/A http://metalweb.cerm.unifi.it [35] 108 No

BioMe 2012 All metal ion binding 20,307 http://metals.zesoi.fer.hr [39] 30 No

MetLigDB 2011
Zn, Mn, Fe, Ni, mg, cu,

co, Mo
732 http://silver.sejong.ac.kr/MetLigDB [40] 13 Yes

MIPS 2010 All metal ion binding N/A http://dicsoft2.physics.iisc.ernet.in/mips/ [41] 28 Yes

MEDB 2010 All metal ion binding N/A http://www.uohyd.ernet.in/anambs/ [42] 14 No

ZiFDB (v1) 2009 Zn N/A http://bindr.gdcb.iastate.edu/ZiFDB [38] 87 No

MetalMine 2009 All metal ion binding 412 http://metalmine.naist.jp [43] 3 No

Metal-
MACiE

2009 All metal ion binding N/A
https://www.ebi.ac.uk/thornton-srv/databases/

Metal_MACiE/home.html
[44] 60 Yes

ZifBASE 2009 Zn N/A https://web.iitd.ac.in/~sundar/zifbase/ [45] 35 Yes

MESPEUS 2008
Na, mg, K, ca, Mn, Fe,

co, Ni, cu, Zn
34,896 http://eduliss.bch.ed.ac.uk/MESPEUS/ [46] 102 No

MSDsite 2005 All metal ion binding N/A http://www.ebi.ac.uk/msd-srv/msdsite [47] 122 Yes

MDB 2002 All metal ion binding N/A http://metallo.scripps.edu/ [48] 276 No
1We estimate the availability on December 1st, 10th, and 20th of 2021, respectively.
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features and associated potential target sites of these proteins
[45]. MESPEUS [46] focuses on the geometry of metal sites
in proteins at resolution ≤ 2:5Å. It provides an open web
interface for further identifying and displaying the metal sites.
MSDsite deposits computation-based metal-binding geome-
tries and residues [47]. MDB offers quantitative information
about metalloproteins [48]. It provides functions to analyze
the binding attributes such as metal-ligand bond distances
and side-chain torsion angles in metal sites.

We show that twelve source databases are designed for
all metal ion binding data. Two databases, namely,
MetLigDB and MESPEUS, consider several types of metal
ions. There are four specific zinc-binding-related databases.
Our survey also reveals that BioLiP is the most favored data-
base, given the fact that its citations are average about 56
(446/8≈56) per year. Moreover, we notice that only half of
the databases are available. Thus, we recommend that future
databases shall be chronically maintained, periodically
updated, and easy expanded.

3. Method Development of Metal-
Binding Prediction

Figure 2 illustrates the flowchart of computation-based
methods for the prediction of metal-binding residues. Gen-
erally, based on the basic design and scheme, these methods
can be categorized into four groups. The learning-based
methods regard the identification of metal-binding residues
as a typical classification problem and attempt to use
machine learning or deep learning algorithms to construct
prediction models. The docking-based approaches are aimed
at finding proper binding conformation as well as the appro-
priate target binding residues by scanning protein surface.
The scoring functions are introduced to assess the selected
pockets and quantify the strength of binding affinity. The
template-based methods are designed to select the optimal

template structures for a given unknown protein. Then, they
map and transfer the binding annotations from similar spa-
tial conformation to the target protein. By contrast, the
meta-based methods focus on combing the predictions from
other methods in order to build more accurate predictors.

3.1. Benchmark Datasets. The sequences and structures of
protein-metal ion complexes are available in public data-
bases for the end-users to customize the benchmark datasets.
As shown in Table 2, the considered methods use various
numbers of sequences/chains, ranging from several dozens
to thousands. Besides that, protein complexes with high res-
olution indicate relatively more comprehensive and accurate
annotations of protein-metal ion interactions. According to
our survey, 12 out of 23 sequence-based and 6 out of 9
structure-based methods filter the candidate complexes
using high resolution with ≤3Å. Some methods [50–57]
remove the sequences/chains whose lengths are less than
50 residues (or 45 residues [58]) since they might be poten-
tial segments or peptides. To build an unbiased dataset, it is
necessary to remove homologous or redundant proteins.
The cutoff threshold which researchers choose varies from
minimal 25% to maximal 90%. Generally, a higher identity
means a higher chance in local alignments [59]. The litera-
tures in [60, 61] point out that if a pair of proteins have a
sequence identity lower than 30%, they have little chance
to share the same biological processes. Three tools, namely,
BLASTclust [62], PISCES [63], and CD-HIT [64], are mainly
used to cluster homologous proteins.

3.2. The Validation and Evaluation Metrics

3.2.1. Cross-Validation and Independent Test. To construct a
predictor with high accuracy and decent generalization abil-
ity, it is necessary to avoid potential overfitting. In practice,
cross-validation and independent test are two popular ways

Learning-based Docking-based Meta-based

Feature extraction &
selection

Model construction &
optimization

Model evaluation

Method selection
Searching algorithm

Scoring function

Docking assessment

Prediction weighting

Final prediction
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Figure 2: The flowchart of computation-based methods for prediction of metal-binding residues.
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(Table 2) to evaluate the proposed models [31]. Specifically,
k-fold cross-validation is usually adopted on the training
dataset when building the prediction model and optimizing
the related parameters [61]. First, the training dataset is
equally divided into k parts. The division can be done at res-
idue level or protein level. Next, k-1 subsets are used to train
the model, and the last one subset is used for testing. The
procedure repeats k times until every subset is been pre-
dicted. The performance of the model is usually evaluated
by averaging the results of the k repeats.

3.2.2. Performance Measures. According to Table 2, the mea-
sures that used to evaluate the performance of the predictors
can be divided into binary value-based and propensity score-
based ones. The former needs preset thresholds to compute
the number of putative binding residues and nonbinding
residues. These measures include sensitivity (SN)/recall/true
positive rate (TPR), specificity (SP), false positive rate (FPR,
FPR = 1-SP) precision (PRE), accuracy (ACC), F1-score
(F1), and Matthew’s correlation coefficient (MCC). They
are defined as follows:

SN = TPR =
TP

TP + FN
,

SP = 1 − FPR =
TN

TN + FP
,

PRE =
TP

TP + FP
,

F1 =
2TP

2TP + FP + FN
,

ACC =
TP + TN

TP + FN + TN + FP
,

MCC =
TP × TN − FN × FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ × TP + FPð Þ × TN + FPð Þ × TN + FNð Þp
,

ð1Þ

where TP (true positive) indicates the number of correctly
recognized metal-binding residues, FP (false positive) means
the number of non-metal-binding residues that are incor-
rectly predicted as metal-binding residues, TN (true nega-
tive) stands for the number of correctly predicted non-
metal-binding residues, and FN (false negative) is the num-
ber of metal-binding residues that are incorrectly predicted
as non-metal-binding residues.

The prediction of metal-binding residues is a typical
imbalanced classification problem. That is, the number of
metal-binding residues is much less than that of the non-
metal-binding ones. Therefore, F1-score and MCC are
regarded as key criteria since they are featured by assessing
the prediction performance for both metal-binding and
non-metal ion binding residues.

The propensity score-based measures include receiver
operating characteristic curve (ROC curve) and precision-
recall curve (PR curve). The ROC curve draws the TPR (true
positive rate) against the FPR (false positive rate) at various
thresholds. The AUC computes the area under the ROC
curve and can be used to quantify the ROC curve. The PR

curve plots PRE values on the y-axis and recalls values on
the x-axis, and the AUPRC estimates the area under the
PR curve.

3.3. Learning-Based Methods. Learning-based methods treat
the recognition of metal-binding residues as a typical pat-
tern recognition problem. Specifically, the metal-binding
residues and nonbinding ones are encoded by using math-
ematical descriptors, i.e. features. According to the informa-
tion that used to compute the features, the learning-based
methods can be further categorized into sequence-based
and structure-based methods. The former only needs simple
protein sequences to extract features when encoding the
binding residues. These features include sequence directly
derived, evolutionary profile-based, and putative structure-
based features, while the latter uses both sequence and native
structure data to mathematically describe a binding residue.
We make a comprehensive literature search and collect 23
sequence- and 9 structure-based methods that were pub-
lished after the year 2010.

3.3.1. Feature Construction

(1) Sequence Directly Derived Features. We define sequence
directly derived features as the ones that are computed from
protein primary sequences without using any other informa-
tion. In Figure 3, 14 out of 32 considered methods consider
amino acid composition [50], which quantifies the relative
difference in abundance of a given amino acid type [65,
66]. Amino acid pairs, or dipeptides, are based on the obser-
vation that amino acid pairs show different propensities in
protein structure and function. For instance, pairs of lysine
are found present in close spatial vicinity [67]. Moreover,
the concept of k-spaced amino acid pairs is introduced in
[68]. It calculates the amino acid pairs with k spaces between
two residues. Our survey also shows that the majority of
studies use physicochemical properties to describe the local
environment of the metal-binding residues. The basic phys-
icochemical environment of a metal-protein binding inter-
face is reflected by the specific roles the metal plays in
biostructural chemistry and protein function. These proper-
ties are crucial since they underpin many of the functional
roles of metal ions. These properties include aliphatic [69],
sulphur [70], aromatic [71], hydrophobic [72], charge [73],
polar [74], positive [73], acidic [75], and hydroxylic [76].
The position-related features mainly consider the influence
of the specifically located residues, such as autocross covari-
ance [77] and sequence length [78, 79].

(2) Evolutionary Profile-Based Features. Recent studies [54,
56, 57, 80, 81] pointed out that functional or structural
important residues tend to show higher evolutionary conser-
vation. The conserved residues are usually involved in
enzyme activity, ligand binding, or protein structural stabil-
ity [82]. The conserved residues and regions can be identi-
fied by multiple sequence alignment [83]. These multiple
sequence alignments, also named conservation profiles,
include aligning families of homologous sequences and hav-
ing knowledge of their evolutionary relationships [84]. For
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an unknown protein, although its accurate function is not
available, it is expected that we can use its homologous pro-
teins to speculate the function since they share the similar
evolutionary profile [85]. Many studies use position-
specific scoring matrix (PSSM), which is computed from
PSI-BLAST [62], to quantify the evolutionary conservation.
PSSM scores the substitution probability of each residue in
the protein being substituted by other types of amino acids.
Liu et al. [56] and Hu et al. [57] set different weights accord-
ing to the positions of considered residues within the win-
dow and construct position weight matrix (PWM). Wang
et al. proposed a customized position matrix scoring
(PMS) algorithm, which uses known sequence patterns to
describe the composition of amino acids at different posi-
tions [50]. Haberal and Oğul introduced a point accepted
mutation (PAM) scoring matrix, which measures the rate
at which point mutations that substitute one residue for
another during evolution [65]. Jiang et al. adopted evolu-
tionary matrix scoring (EMS) algorithm to extract the posi-
tion conservation of amino acid residues from segments
with low dimension feature parameters [77].

(3) Putative Structure-Based Features. For an unknown pro-
tein, although the accurate function is not available, it is
expected that we can use its homologous proteins or tem-
plate structures to speculate the structure. The secondary
structure mainly involves α-helix, β-sheet, and coil, which
are fundamental elements of protein tertiary structure [86].
Natively disordered or unstructured regions are proved to
be associated with molecular assembly, protein translation,
modification, and molecular recognition [78, 79, 87]. Previ-
ous studies [79, 87] indicate that disordered regions are
strongly correlated with local solvent accessibility areas.
Figure 3 reveals that 16 methods introduce secondary struc-
ture features and 3 approaches use disorder features, respec-
tively. The secondary structure can be obtained from the
primary sequence by using PSIPRED [88]. Putative intrinsic
disorder data can be computed by using DISOPRED [89].

(4) Structure-Based Features. The structure-based features
include descriptors that are computed from protein 3D
structure. These features include solvent exposure, B-factor,
spatial cluster properties, and native secondary structure.

Type Method Amino Acid 
Composition

Amino acid 
pairs1

Physiochemical 
properties

Position 
related

Evolution 
profile2

Conservation 
scores Disorder Secondary 

structure
Residue 
attributes

local 
structure

Contact 
graph3

Sliding 
Window

Feature 
selection4

Se
qu

en
ce

-b
as

ed

Liu et al. [56] PWM 7,9,11,13 ×
MIonSite [90] PSSM 7,9,11,13 ×
MPLs-Pred [91] PSSM 7 ×
SXGBsite [92] PSSM 17 ×
Wang et al. [50] PMS 7,9,11,13 ×
znMachine[51] k-Spaced PSSM 11 ×
SSWPNN [93] PSSM 13 ×
ZinCaps [94] 25 ×
Haberal et al.[65] PAM 15 ×
ZincBinder[87] PSSM 19 ×
EC-RUS [95] PSSM 7,17 ×
Cao et al. [52] 7,9,11,13 ×
Kumar[96] × ×
DeepMBS [97] PAM 15 ×
Qiao et al. [98] PSSM 17 ×
IonCom[99] PSSM 29 ×
Jiang et al. [77] EMS 17 ×
TargetCom[53] PSSM 9,11,15 ×
OSML[100] PSSM 17 ×
TargetS [101] PSSM 17 ×
ETMB-RBF [102] PSSM 13 FFS
ZincExplorer[103] k-Spaced PSSM 15 ×
Horst et al.[58] PSSM × ×

St
ru

ct
ur

e-
ba

se
d

Nguyen et al. [104] × EB
TMP-MIBS [54] PSSM TS 17 ×
Zincbindpredict[105] 3,5 ×
Wang et al.[81] 5,7,8,11 BA
DELIA[80] PSSM DM 37 ×
Hu et al.[57] PWM 7,9,11,13 BA
MetalExplorer[79] GTN 11 mRMR, FFS
FINDSITE-metal[55] × ×
Zincidentifier[78] RRCG 9 MDGI

The light green cells indicate sequence directly derived features; The light blue cells stand for profile-based features; The light red cells mean putative structure-based features; The light grey cells are 
native structure-based features. 1 In the amino acid pairs column, the cells without annotations indicate original amino acid pairs; the cells annotated using ‘k-spaced’ means k-spaced amino acid pairs. 
2 PWM: position weight matrix; PSSM: position specific scoring matrix; PMS: position matrix scoring; PAM: point accepted mutation; EMS: evolutionary matrix scoring. 3 TS: topology structure; DM: 
distance matrix; GTN: graph theoretic network; RRCG: residue-residue contact graphs. 4 FFS: forward feature selection; EB: experience-based; BA: Boruta algorithm; mRMR: minimum-redundancy 
maximum-relevancy; MDGI: mean decrease gini index.

Figure 3: Summary of the feature construction and selection for learning-based methods. The light green cells indicate sequence directly
derived features. The light blue cells stand for profile-based features. The light red cells mean putative structure-based features. The light
grey cells are native structure-based features. 1In the amino acid pair column, the cells without annotations indicate original amino acid
pairs; the cells annotated using “k-spaced” means k-spaced amino acid pairs. 2PWM: position weight matrix; PSSM: position specific
scoring matrix; PMS: position matrix scoring; PAM: point accepted mutation; EMS: evolutionary matrix scoring. 3TS: topology structure;
DM: distance matrix; GTN: graph theoretic network; RRCG: residue-residue contact graphs. 4FFS: forward feature selection; EB:
experience-based; BA: Boruta algorithm; mRMR: minimum-redundancy maximum-relevancy; MDGI: mean decrease Gini index [50–51,
53–58, 65, 77–81, 87, 90–105].
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Compared with the abovementioned putative structure-
based features, the native structure-based features are more
accurate since they are directly computed by using residue
coordinate data. Besides that, a residue contact network is
also considered by some literature. In [79], two residues
are defined as being in contact if the distance of their Cα
atoms is less than a predefined cutoff distance of 6.5Å. These
features include clustering coefficient, degree, density, dis-
tance, topology structure, and graph theoretic network [55,
79, 80].

3.3.2. Sliding Window Optimization and Feature Selection.
As shown in Figure 3, many methods adopt a sliding win-
dow scheme when they construct different types of features.
It is because residues in proteins are influenced by adjacent
residues. Besides that, binding residues tend to cluster
together. If a central residue is a native-binding residue, its
adjacent residues usually have a relatively higher chance to
bind the same ligands. Usually, the residues with a long dis-
tance away have a lower impact on the central residues when
compared with the residues with short distance. Figure 3
summarizes that 19 out of 23 methods use the sliding win-
dow scheme. The size of the shortest window is 3 [105],
while the size for the longest one is 25 [94]. Some studies
[50, 52, 53, 56, 57, 81, 90, 105] use more than one type of
window because they consider different types of metal-
binding residues. A long window means the introduction
of more features.

However, a bigger number of features do not abso-
lutely mean a better prediction performance [106, 107].
The existence of potential “bad” features may interfere
with the classifiers and cause unpredictable consequences
[108]. The so-called “bad” features include irrelevant and
redundant ones. To avoid their terrible influences, it is
necessary to perform feature selection before training the
model [109]. Figure 3 reveals that 6 out of 32 methods adopt
feature selection before training the model. These feature
selection approaches include forward feature selection [79,
102], experience-based [104], Boruta algorithm [57, 81],
minimum-redundancy maximum-relevancy [79], and mean
decrease Gini index [78].

3.3.3. Prediction Algorithms. Learning-based methods use
machine-learning or deep-learning-based algorithms to
train the model and perform predictions [110]. As shown
in Table 2, a variety of algorithms are introduced for solving
the problem of correctly recognizing metal-binding residues.
Support vector machine (SVM) is a popular machine learn-
ing algorithm in bioinformatical research. It is aimed at find-
ing a hyperplane or decision boundary that can segregate a
high-dimensional space [111]. Particularly, it uses kernel
functions to reduce computation time to avoid strapping
into dimension disaster [112]. Sequential minimal optimiza-
tion (SMO) is an algorithm that is specially used for training
support vector machines [113]. The procedure of training
large data by SVM usually leads to a complex quadratic pro-
gramming optimization problem [114]. SMO breaks large
programming optimization problems into small ones, which
endows SVM a good generalization on large data [113]. The

idea of a neural network (NN) comes from the work system
of neurons in the biological brain [115]. It learns the corre-
lations between inputs and outputs, making generalizations
and build models [116]. The NN algorithm assigns and
adjusts different weights for neurons and edges as learning
proceeds. The radial basis function network (RBFN) is a var-
iant of the original NN [117]. It adopts radial basis functions
as activation functions, which can be used for accelerating
learning speed due to their universal approximation [118].
The multilayer perceptron (MLP) algorithm is an improved
back propagation NN [119]. It mainly includes three proce-
dures: forward propagation, error evaluation, and error
backpropagation [120]. The MLP is featured by its strong
generalization and fault tolerance [121]. Therefore, it is
proved to be an efficient classification algorithm. The logistic
regression (LR) adopts a logistic function to model the prob-
ability of an unknown sample being a certain class [122].

Our survey also reveals that the ensemble algorithms are
favored by eight studies. The random forest (RF) aggregates
the predictions of all the decision trees and performs deci-
sions by most trees [123]. RF can be used for classification,
regression, and optimization problems [124]. Adaptive
boosting (AdaBoost) is aimed at combining weak learners
with strong ones [125, 126]. The key point of AdaBoost is
to ensure the diversities of individual learners, which makes
it a good generalization ability [90, 127]. The gradient boost-
ing machine (GBM) is another popular ensemble algorithm.
During the iterative process, GBM dynamically increases the
weight of wrong recognitions and reduces that of the correct
ones [128–131]. It should be noted that GBM focuses on the
sample residual of the previous iteration instead of the sam-
ple itself [132].

Besides machine-learning algorithms, recent studies also
use deep-learning methods in this research field. The convo-
lutional neural network (CNN) is one of the most prevalent
algorithms that is widely used in bioinformatics [133]. The
CNN consists of three main layers, which are the convolu-
tional layer, pooling layer, and fully connected layer
[134–136]. Although the CNN is proved to be powerful in
dealing with a variety of problems, it performs badly when
facing samples with different sizes and orientations [137,
138]. To overcome this shortcoming, the capsule network
(CN) is proposed to estimate features of objects by incorpo-
rating dynamic routing algorithms [139, 140]. Our review
finds two studies use CNN [65, 97] and one uses CN [94].

3.4. Docking-Based Methods. The investigation on the
protein-metal complex helps biologists to understand the
mechanism of protein-metal interactions. Protein-ligand
docking approaches are always based on molecular structure
and are used to explore biomolecular interactions and mech-
anisms [141]. It can be adopted to predict binding confor-
mation as well as the appropriate target binding residues
[142, 143].

As shown in Figure 2, the docking-based methods
mainly include three steps: searching algorithm, scoring
function, and docking assessment [141]. The searching algo-
rithm focuses on creating an optimum number of configura-
tions that properly include the determined binding modes
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[144]. To reduce computation time, it is necessary to make a
balance between the computational expense and the search-
ing space. The scoring function includes a series of mathe-
matical functions that quantify the strength of binding
affinity [145]. The energy-based scoring functions are always
introduced to score the potential interactions between the
protein and the corresponding ligands [141]. The frequently
used functions include empirical-based, knowledge-based,
and consensus-based ones. Finally, the putative docking
can be evaluated by using docking accuracy and the correla-
tion between putative and native docking scores [145].
Figure 4 illustrates the structure of a calmodulin (PDB:
4HEX) that is secreted by Escherichia coli in Mus musculus
[146]. Calmodulin is one of the most prevalent EF-hand cal-
cium sensor proteins in eukaryotic cells [147]. It is a highly
conserved and soluble protein, which activates enzymes
and regulates many cellular functions. 4HEX has three
Ca2+-binding and two Zn2+-binding sites. Ca2+-binding
causes a change in calmodulin conformation opening both

globular domains and exposing hydrophobic surfaces that
form binding sites for the target enzymes. Figure 4 shows
that these three Ca2+ are in the pockets. The binding pockets
are half-closed and buried, which substantially limits the
capability of Ca2+ to escape. Two Zn2+-binding sites are sur-
rounded by a shell of hydrophilic groups that are embedded
into a larger shell of hydrophobic groups. The amino acid
side chains providing ligands to Zn2+ in these structures
often form hydrogen bonds with other residues [147].

In [148], He et al. proposed a docking-based predictor
named mFASD. It first explored the local biochemical envi-
ronment of potential functional atoms and then measured
the distances between the atoms and bound metal. mFASD
also claimed that it can differentiate different types of
metal-binding sites. Zhou et al. improved the FEATURE-
based calcium model and used the grid scan algorithm to
recognize binding sites [149]. GaudiMM [150] adopted a
multiobjective genetic algorithm to search metal-binding
sites in biological scaffolds. BioMetAll focused on the
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Figure 4: Ribbon and surface model of X-ray structure of Ca2+- and Zn2+-bound calmodulin (PDB: 4HEX) in Mus musculus. Red sphere
represents bound zinc ion; green one indicates calcium ion; the spatial adjacent residues participating its coordination are shown by the stick
model.
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conformation of the potential metal-binding site, associated
with the geometric organization of the protein backbone
[151]. It was also proved to have good performance on the
applications including the modulation and mutation of the
metal-binding residues. Table 3 summarizes the key notes
of the abovementioned 4 docking-based methods.

3.5. Template-Based Methods. It is well known that protein
structure determines function, and similar interface con-
formation indicates similar bound regions [162]. The
template-based methods are based on the abovementioned
hypothesis. Therefore, the most important thing for
template-based methods is to find and validate proper
structural templates. The fold recognition algorithms,
which quantify the best matches from candidate templates,
are commonly used to select the optimal template struc-
tures [163]. Next, the selected templates are used to map
onto the target protein given the alignments with the tem-
plate structures [164].

As shown in Table 3, Goyal and Mande analyzed the
metal-binding sites by using structure templates and design-
ing 3D motifs for several types of metal-binding interactions
[153]. In [154], the authors analyzed whether structural
models based on remote homology are effective in recogniz-
ing structural metal-binding residues based on simple pro-
tein primary sequences. Deng et al. applied a graph theory
algorithm to identify, predict, and analyze calcium-binding
residues [152]. However, it should be noted that this strategy
produces good prediction performance when a decent com-
plex is available as a template. If the template structure infor-
mation is not available, this strategy might have poor
predictions [164]. The FunFOLD was an automatic method
that uses protein structure superposition of distantly related

templates to a modelled protein for the clustering of ligands
and prediction of metal binding residues [155]. The Fun-
FOLDQA [156] approach determined the reliability of our
FunFOLD [155] by assigning the quality assessment scores.
FunFOLD2 was a web server that integrated cutting edge
function and putative 3D structures to identify metal-
binding residues [157].

3.6. Meta-Based Methods. The meta-based methods use a
meta-learning strategy from fewer samples than traditional
machine learning models. Since meta-based methods can
only use limited data, they must ensure that the data is fea-
tured with high accuracy. As a result, a meta-based approach
always directly combines the predictions of other methods.
It uses weights or voting strategy on the available propensity
scores or binary values. Thus, the meta-based method prom-
ises a robust accurate prediction on the metal-binding resi-
dues. In [158], Li et al. collected the predictions from
ZincExplorer [103], ZincFinder [159], and ZincPred [160]
(Table 3). Then, they built a linear regression model and
optimized corresponding parameters on the training dataset.
They claimed that the meta-model, which was named meta-
zincPrediction, improves the AUPRC by about 2%~8%.
IBayes_Zinc [161] was another meta-based predictor for
the identification of zinc-binding residues (Table 3). It firstly
computed the predictions of zinc-binding probabilities from
ZincExplorer [103], ZincFinder [159], and ZincPred [160].
Next, IBayes_Zinc processed the missing attribute values
and adopts Bayesian theory [165] to construct a meta-
based model. The performance on the independent dataset
proved that the MCC value of IBayes_Zinc was about
5~13% higher than the considered three predictors.

Table 3: Summary of docking-based, template-based, and meta-based methods.

Type Method Year Notes

Docking-based

mFASD [148] 2015
Capture the characteristics of metal-binding sites and discriminate most types

of these sites

Zhou et al. [149] 2015
Use a FEATURE-based calcium model and convert high scoring regions

into specific site predictions

GaudiMM [150] 2019 Find poses that satisfy metal-derived geometrical rules and use post optimizations

BioMetAll [151] 2020
Predict metal-binding sites with particular motifs, determine transient sites in

structures, and predict potential mutations to generate convenient sites

Template-based

Deng et al. [152] 2006
Use a graph theory algorithm to find oxygen clusters of the protein

(high potential for calcium binding)

Goyal et al. [153] 2008
Describe generation of 3D-structural motifs for metal-binding sites from the

known metalloproteins

Levy et al. [154] 2009
Analyze whether structural models based on remote homology are effective in

predicting 3D metal binding sites

FunFOLD [155] 2011 Use an automated method for ligand clustering and identification of binding residues

FunFOLDQA [156] 2012
Use a fully automated agglomerative clustering approach for both ligand

identification and residue selection

FunFOLD2 [157] 2013
Propose a method that include protein-ligand binding prediction and quality

assessment protocol

Meta-based
Li et al. [158] 2017 Integrate the results of ZincExplorer [103], zincFinder [159], and zincPred [160]

IBayes_Zinc [161] 2019
Adopt Bayesian method and combine the predictions from ZincExplorer [103],

zincFinder [159], and zincPred [160]
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3.7. Prediction Results. This review surveys 44 computation-
based methods. It is necessary to make a consensus com-
parison for these methods. However, since there is no stan-
dard benchmark dataset and some methods are not
currently available, we use two datasets that are used by
some methods to perform the evaluations. The first dataset
is compiled by Yu et al. in [101], which includes five types
of metal ions binding annotations. The second dataset is
obtained from [52], consisting of ten types of metal ions
binding annotations.

Figure 5 illustrates the predictive performance on two
benchmark test datasets. Details are provided in Table S1
and Table S2 in Supplementary Materials, respectively; the
corresponding results are sourced from [56, 57, 81, 92].
We notice that the predictors show relatively big
differences in recognizing various types of metal-binding
residues. On Yu et al.’s dataset [101], TargetS shows the
best results in predicting Ca2+-, Zn2+-, and Mn2+-binding
residues; EC-RUS [95] performs best in recognizing Mg2+-
binding residues; OSML [100] achieves the highest MCC
on Fe3+-binding predictions. Besides that, Figure 5(a)
indicates that all five methods show a decent performance
on recognizing Fe3+-binding residues (MCC values close or
higher than 0.4), compared with MCC close or less than
0.2 on Ca2+ binding residues. Figure 5(b) draws the bars of
AUC values for SXGBsite [92], EC-RUS [95], and TargetS
[101], respectively. These three predictors all achieve high

AUC scores (close or higher than 0.9) on Zn2+- and Fe3+-
binding residues. Figure 5(c) summarizes the results of ten
metal ions binding residues on Cao et al.’s dataset [52].
Among these predictors, Liu et al. [56] performs the best
on Zn2+, Fe3+, and Cu2+, compared to [81], Wang et al.
shows best on Zn2+ and Cu2+, and Hu et al. [57] achieves
the highest on Fe2+. Interestingly, the binding residues
associated with relatively inactive metal (Zn2+, Fe3+, and
Cu2+) ions show relatively better results compared to that
of the active metal ions (Na+ and K+). Particularly, four
methods all give better results on Fe3+-binding residues
than that on Fe2+-binding residues, which keep consistent
with our observations as mentioned above.

3.8. Publicly Available Tools. The publicly available standa-
lone software or web server that implements the proposed
approach provides convenience for biologists and
researchers [79, 105, 122]. These tools help the community
to repeat the results and build a platform for easy under-
standing and improvement. Table 4 summarizes the public
availability of implementations for the considered methods.
These 28 predictors are implemented as standalone software
or web servers. Among these predictive tools, 16 (or 57%) of
them are currently publicly available. Standalone software
requires the biologists to build the same running environ-
ment. By contrast, the web server provides the most conve-
nient since the users only need to submit their queries via
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Figure 5: Comparative assessment of several predictors on two benchmark dataset. (a) and (c) indicate the MCC bar charts for considered
methods on different metal ion binding residues on Yu et al.’s and Cao et al.’s testing datasets, respectively. (b) draws the AUC values of
three predictors on corresponding metal ion binding residues.
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the browser, and the server helps to do the computations.
Three methods, namely, znMachine [51], ZincBinder
[103], and FunFOLD [155], provide both web server and
standalone software. TMP_MIBS [54] is designed to predict
general metal-binding residues and deployed using the
Python language. DELIA [80] requires PDB-formatted 3D
coordinates input and produces both binary prediction and
putative probability of a residue being potential specific
metal-binding. BioMetAll uses a docking-based strategy to
scan specific motifs, putative mutations, and binding resi-
dues. Another available docking-based method is mFASD,
which distinguishes different types of metal-binding sites
according to the interaction distances. MPLs-Pred [91],
SXGBsite [92], MIonSite [90], OSML [100], EC-RUS [95],
and TargetS [101] are all sequence-based predictive tools,
which accepts FASTA-formatted input and produced the
results of putative metal-binding residues. ZinCaps [94],
SSWPNN [93], and ZincBinder [103] are specially designed
for the identification of zinc-binding residues. FunFOLD
[155], FunFOLDQA [156], and FunFOLD2 [157] are a series
of template-based methods.

4. Conclusions and Future Perspectives

This review summarizes the public database of metal ions
binding interactions, discusses the architectures of
computation-based methods for identifying binding resi-
dues, and comparatively evaluates four types of methods.
Based on the observations made in this work, we propose a
few recommendations for future research in this field:

First, the researchers should maintain and update the
database regularly. This will significantly improve effective-
ness and completeness for these databases and provide con-
venience for the computation-based methods, which depend
on the accurate internal database. We expect a high-quality
metal ion binding-related database with an advanced search-
ing engine, high-speed download service, complete annota-
tion information, etc. Particularly, a decent database
should be designed to open for easy expanding and improve-
ment. Second, standard benchmark datasets that related to
general or ligand-specific metal-binding residues should be
periodically compiled and made available. This will ensure
consistent evaluation and comparative analysis of the

Table 4: A breakdown of predictive tools of metal-binding residues.

Method Year Platform1 Web link Availability2

TMP-MIBS [54] 2021 SS https://github.com/QuJing785464/TMP_MIBS Yes

Wang et al. [50] 2021 WS http://39.104.77.103:8081/lsb/HomePage/HomePage.html No

Zincbindpredict [105] 2021 WS https://zincbind.bioinf.org.uk/predict/ No

DELIA [80] 2020 WS http://www.csbio.sjtu.edu.cn/bioinf/delia/ Yes

BioMetAll [151] 2020 SS https://github.com/insilichem/biometall Yes

MPLs-Pred [91] 2019 WS http://icdtools.nenu.edu.cn/ Yes

SXGBsite [92] 2019 SS https://github.com/Lightness7/SXGBsite Yes

MIonSite [90] 2019 SS https://github.com/LiangQiaoGu/MIonSite.git Yes

znMachine [51] 2019 WS&SS http://bioinformatics.fzu.edu.cn/znMachine.html No

ZinCaps [94] 2019 SS https://github.com/clemEssien/ActiveSitePrediction Yes

EC-RUS [95] 2017 SS https://github.com/6gbluewind/protein_ligand_binding_site Yes

MetalExplorer [79] 2017 WS http://metalexplorer.erc.monash.edu.au/ No

Cao et al. [52] 2017 WS http://60.31.198.140:8081/metal/HomePage/HomePage.html No

ZincBinder [103] 2017 WS&SS http://proteininformatics.org/mkumar/znbinder/ Yes

SSWPNN [93] 2017 SS http://net.jitsec.cn:88/UploadedImages/SSWPNN.rar Yes

Jiang et al. [77] 2016 WS http://202.207.29.245/ No

TargetCom [53] 2016 SS http://dase.ecnu.edu.cn/qwdong/TargetCom/TargetCom_standalone.tar.gz No

OSML [100] 2015 WS http://www.csbio.sjtu.edu.cn/OSML/ Yes

mFASD [148] 2015 SS http://staff.ustc.edu.cn/liangzhi/mfasd/ Yes

FunFOLD2 [157] 2013 WS http://www.reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html Yes

ZincExplorer [103] 2013 WS http://protein.cau.edu.cn/ZincExplorer No

TargetS [101] 2013 WS http://www.csbio.sjtu.edu.cn/TargetS/ Yes

FunFOLDQA [156] 2012 SS http://www.reading.ac.uk/bioinf/downloads/ Yes

Zincidentifier [78] 2012 WS http://protein.cau.edu.cn/zincidentifier/ No

FINDSITE-metal [55] 2011 WS http://cssb.biology.gatech.edu/findsite-metal/ No

FunFOLD [155] 2011 WS&SS http://www.reading.ac.uk/bioinf/FunFOLD/ Yes

Goyal et al. [153] 2008 WS http://sunserver.cdfd.org.in:8080/protease/PAR_3D/index.html No

Deng et al. [152] 2006 SS http://chemistry.gsu.edu/faculty/Yang/GG.htm No
1WS: web server; SS: standalone software. 2The availability was estimated on Dec 1st, 10th, and 20th of 2021, respectively.

13BioMed Research International

https://github.com/QuJing785464/TMP_MIBS
http://39.104.77.103:8081/lsb/HomePage/HomePage.html
https://zincbind.bioinf.org.uk/predict/
http://www.csbio.sjtu.edu.cn/bioinf/delia/
https://github.com/insilichem/biometall
http://icdtools.nenu.edu.cn/
https://github.com/Lightness7/SXGBsite
https://github.com/LiangQiaoGu/MIonSite.git
http://bioinformatics.fzu.edu.cn/znMachine.html
https://github.com/clemEssien/ActiveSitePrediction
https://github.com/6gbluewind/protein_ligand_binding_site
http://metalexplorer.erc.monash.edu.au/
http://60.31.198.140:8081/metal/HomePage/HomePage.html
http://proteininformatics.org/mkumar/znbinder/
http://net.jitsec.cn:88/UploadedImages/SSWPNN.rar
http://202.207.29.245/
http://dase.ecnu.edu.cn/qwdong/TargetCom/TargetCom_standalone.tar.gz
http://www.csbio.sjtu.edu.cn/OSML/
http://staff.ustc.edu.cn/liangzhi/mfasd/
http://www.reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html
http://protein.cau.edu.cn/ZincExplorer
http://www.csbio.sjtu.edu.cn/TargetS/
http://www.reading.ac.uk/bioinf/downloads/
http://protein.cau.edu.cn/zincidentifier/
http://cssb.biology.gatech.edu/findsite-metal/
http://www.reading.ac.uk/bioinf/FunFOLD/
http://sunserver.cdfd.org.in:8080/protease/PAR_3D/index.html
http://chemistry.gsu.edu/faculty/Yang/GG.htm


performance of the existing and novel methods. Third, these
predictors are expected to use delicate architectures and
powerful algorithms. Since the differences between different
types are quite small, the novel predictors shall not only cor-
rectly identify metal-binding residues but also distinguish
different types of metal ions. Fourth, the authors of the
metal-binding predictors are suggested to make their
approaches publicly available, preferably as both webservers
and standalone software. Particularly, high-throughput pre-
dictors promise a wide application among the research com-
munity since they can be used to perform large-scale
computations, such as proteome-level predictions.
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