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Abstract: Microfluidic devices emerged due to an interdisciplinary “collision” between chemistry,
physics, biology, fluid dynamics, microelectronics, and material science. Such devices can act as
reaction vessels for many chemical and biological processes, reducing the occupied space, equipment
costs, and reaction times while enhancing the quality of the synthesized products. Due to this series
of advantages compared to classical synthesis methods, microfluidic technology managed to gather
considerable scientific interest towards nanomaterials production. Thus, a new era of possibilities
regarding the design and development of numerous applications within the pharmaceutical and
medical fields has emerged. In this context, the present review provides a thorough comparison
between conventional methods and microfluidic approaches for nanomaterials synthesis, presenting
the most recent research advancements within the field.

Keywords: microfluidic devices; microfluidic technology; nanoparticle synthesis; microreactors;
nanomaterials

1. Introduction

Nanotechnology gained significant importance when scientists realized that the size
of the material is a major factor that influences the properties of a substance. Since then,
several conventional methods have been employed for nanomaterials production, including
condensation, chemical precipitation, and hydrothermal synthesis as the most common
approaches [1–3]. Choosing an appropriate synthesis method with accurate control over
the reaction conditions is essential for delivering high-quality products destined for specific
applications. In this respect, a promising new technology emerged: microfluidics [4].

As one of the most prominent figures in the field of microfluidics, George Whitesides,
stated, microfluidics is “the science and technology of systems that process or manipulate
small (10−9 to 10−18 L) amounts of fluids, using channels with dimensions of tens to
hundreds of micrometers” [5–7].

Microfluidic devices’ dimensions and unique geometries allow for smaller reagent
volume use, precise control of fluid mixing, efficient mass transport, improved heat transfer,
ease of automation, and reduced reaction time [7–13]. The advantages of using microfluidic
methods over traditionally known approaches led to the design, fabrication, and usage of
portable, low-cost, and disposable devices [6,9,14].

All the characteristics mentioned above make microfluidics highly advantageous for
diverse applications, ranging from chemical, biological, and material industries to the
pharmacy, clinical diagnosis, translational medicine, and drug discovery [11,14,15]. Being
able to overcome some of the most challenging downsides of scale-up reactors, microfluidic
technology is increasingly used in preparing nanoparticles and in carrying out various
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chemical syntheses [7,16]. It should be noted that microfluidic devices are also found in the
literature under the term “microreactors” when used as synthesis vessels [7,10,14].

This work presents nanomaterials synthesis from the perspective of conventional and
microfluidic methods, the advantages and challenges of each category, and the possible
products they may yield. Thus, it provides a thorough comparison between traditional
methods and microfluidic approaches, describing the most recent advancements and
applications within the field.

2. Conventional Methods of Nanomaterials Synthesis

Nanomaterials are structures that have at least one dimension between 1 and 100 nm [17,18].
Such materials have revolutionized many domains, out of which the most intensively re-
searched are related to modern medicine, especially regarding biosensors, diagnostics,
targeted drug delivery, and therapeutics [19–37]. Having such a broad spectrum of ap-
plications, nanomaterials should be synthesized as efficiently as possible in order to gain
extensive market reach.

Nanostructure formation can be achieved using two main approaches: top-down and
bottom-up [16,38,39] (Figure 1). As the name implies, the top-down approach is based on
the size-reduction of larger structures by means of mechanical force. Such methods are pre-
ferred for industrial scale-up, but they require expensive equipment and intensive energy
without providing control over particle growth. By contrast, the bottom-up approach in-
volves the growth and self-assembly of nanostructures from atomic or molecular precursors.
Generally, this method results in the production of amorphous particles with increased solu-
bility and bioavailability, which, however, tend to agglomerate. Nonetheless, such methods
are simple, rapid, and energy- and cost-efficient, ideal for laboratory-scale production and
synthesis of smaller particle sizes with narrow particle size distribution [7,16].
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Figure 1. Nanoparticles synthesis approaches. Adapted from an open-access source [40].

A variety of techniques are available for the synthesis of nanostructures (Table 1).
Despite their diversity, these conventional approaches lack tight control over experimental
variables, generating nanoparticles with wide size distribution and large inter-batch vari-
ability [41]. The poor selectivity of batch reactors results in their mediocre performance in
terms of synthesizing products with controllable structures and properties [42].

Physical and chemical processes may provide uniform-sized nanoparticles yet at the
expense of negatively impacting the environment. In other words, such techniques release
toxic/hazardous materials into the environment [71,72], acting as pollutant sources and
high-energy consumers [73]. Moreover, the need for large spaces, expensive equipment,
and high-power consumption translates into high costs [7,71,72,74]. Other industrial scale-
up issues include alternation of synthesis conditions and insufficient control of the mixing
process during the preparation of nanoparticles [75], complex stepwise operations, waste
of resources, poor reproducibility, safety concerns [42], highly specialized and difficult to
manufacture equipment, and long synthesis times [76]. In addition to the disadvantages
associated with the synthesis process, the obtained products may also suffer from uncon-
trolled particle growth (narrow size distribution shifted to large particle dimensions [77]),
potential contamination [7], non-proper surface structures [72], and poor size distribution
(high polydispersity index values) [42], which further affect the functionalities of the mate-
rials. Such limitations contribute to the hampering of synthetic chemistry from evolving
towards green synthesis, big data, chemo/bioinformatics, and precision biomedicine [42].
Moreover, the limitations of conventional synthesis techniques result in a slow translation
from research to practical applications, especially in the medical field [78–80]. Therefore,
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it is an urgent matter to develop an easy to manipulate technique for the efficient synthesis
of high-quality nanomaterials [4].

Table 1. Conventional methods for the synthesis of nanoparticles and nanocomposites.

Synthesis Products Synthesis Method Description Refs.

Nanoparticles

Co-precipitation Simultaneous occurrence of nucleation, growth,
coarsening, and/or agglomeration processes [17,43]

Hydrothermal synthesis
Chemical reactions between substances found
in a sealed, heated solution above the ambient

temperature and pressure
[17,43]

Inert gas condensation

Metals undergo evaporation in an ultrahigh
vacuum chamber filled with He or Ar at high
pressure, collide with the gas, and condense

into small particles, forming nanocrystals
in the end

[17,44]

Sputtering Ejection of atoms from the surface of a material
by bombardment with energetic particles [17,45]

Microemulsion

An isotropic, macroscopically homogeneous,
and thermodynamically stable solution

containing a polar phase, a nonpolar phase,
and a surfactant; reactant exchange occurs

during the collision of droplets within
the microemulsion

[17,46–48]

Microwave-assisted

Synchronized perpendicular oscillations of
electric and magnetic fields produce dielectric

heating throughout the material at the
molecular/atomic level

[48,49]

Laser ablation Removing material from a (usually) solid
surface by irradiating it with a laser beam [17,48,50]

Sol-gel

5-step method: hydrolysis of precursors,
polycondensation (gel formation), aging
(continuous changes in the structure and

properties of the gel), drying,
and thermal decomposition

[51]

Ultrasound Ultrasonic cavitation induced by irradiating
liquids with ultrasonic radiation [17,52]

Spark discharge

An abrupt electric discharge occurs when a
sufficiently high electric field creates an ionized,

electrically conductive channel through a
normally insulating medium, thus producing a

highly reactive soot

[17,53]

Template synthesis
Uniform void spaces of porous materials are

used as hosts to confine the synthesized
nanoparticles as guests

[17,54]

Biological synthesis
Synthesis using natural sources, avoiding any

toxic chemicals and hazardous byproducts,
usually with lower energy consumption

[55]

Nanocomposites

Spray pyrolysis
A thin film is deposited by spraying a solution

on a heated surface, upon which the
constituents react to form a chemical compound

[17,56]

Infiltration
A preformed dispersed phase is soaked in a
molten matrix metal, which fills the space
between the dispersed phase inclusions

[17,57]
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Table 1. Cont.

Synthesis Products Synthesis Method Description Refs.

Rapid solidification

Rapid extraction of thermal energy to include
both super heat and latent heat during the

transition from a liquid state at high
temperature to a solid material at

room temperature

[17,58]

High energy ball milling High mechanical forces provide energy for the
activation and occurrence of a chemical reaction [59]

Vapor deposition
(VD)

Chemical VD
The substrate is exposed to volatile precursors
that react and/or decompose on its surface to

produce the desired deposit
[17,48,60,61]

Physical VD
The material goes from a condensed phase to a

vapor phase and then back to a thin film
condensed phase

[17,62]

Colloidal method
Under controlled temperature and pressure,
different ions are mixed in a solution to form

insoluble precipitates
[47,63]

Powder process
Compression, rolling, and extrusion are used to
obtain a compact mass that is further sent to a

sintering furnace
[17,64]

Polymer precursor
A polymeric precursor is mixed with the matrix
material, undergoes pyrolysis in a microwave
oven, thus generating the reinforcing particles

[17,65]

Melt blending
Melting of polymer pellets to form a viscous

liquid followed by the use of high shear force to
disperse the nanofillers

[60,66]

Solution mixing
Dispersion of nanofiller in a polymer solution
by energetic agitation, controlled evaporation

of the solvent, and composite film casting
[17,67]

In situ intercalative polymerization Polymer formation occurs between the
intercalated sheets of clay [17,68,69]

In situ formation and sol-gel

A multi-step process including the embedding
of organic molecules and monomers on sol-gel

matrices followed by the introduction of
organic groups by the formation of chemical
bonds, resulting in situ formation of a sol-gel

matrix within the polymer and/or
simultaneous generation of
inorganic/organic networks

[17,70]

3. Nanomaterial Synthesis via Microfluidic Approaches

Microfluidic technology provides the means to overcome some of the most pressing
drawbacks of conventional synthesis methods due to the small capillary dimension and
the resulting large surface-to-volume ratio. Through these features, rapid and uniform
mass transfer and superior control over the produced nanomaterial characteristics are
enabled in microfluidic syntheses [75]. In comparison to bulk methods, highly stable,
uniform, monodispersed particles with higher encapsulation efficiency can be obtained by
efficiently controlling the geometries of the microfluidic platform and the flow rates of the
involved fluids [81].

As previously mentioned, microfluidic devices’ working principle is based on the
movement of fluids within micro-scaled channels and chambers of special geometry,
integrating sample preparation, reaction, separation, and detection [38,82].
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Concerning synthesis strategies, there are two main types of microreactors depending
on flow pattern manipulation, namely single-phase (continuous-flow microfluidics) and
multi-phase flow (droplet-based microfluidics) (Figure 2) [16,83]. Each of these categories
is further described in more detail.
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3.1. Single-Phase Flow (Continuous-Flow) Systems

When it comes to nanoparticle production within microfluidic devices, single-phase
systems are the most commonly used. This pattern flow is the variant of choice in many
studies due to its simplicity, homogeneity, and versatility in controlling process parameters,
such as flow, reagent amount, reaction time, and temperature [7,11].

Generally, single-phase synthesis is performed under laminar flow (with a Reynolds
number lower than 10). Due to the absence of turbulence, the main mixing mechanism is
molecular interdiffusion [7,11,16]. Therefore, continuous flow microfluidics is an excellent
solution for nanoprecipitation processes, improving controllability, reproducibility, and homo-
geneity of product characteristics [7,84]. Therefore, the homogeneous environment present
in single-phase flow systems is ideal for the synthesis of small nanoparticles with a narrow
particle size distribution, which is especially needed in pharmaceutics formulations [7,83].

Nonetheless, molecular interdiffusion is a slow process, limiting reaction speed [85].
Moreover, single-phase flow reactors have a parabolic velocity profile that causes a nonuni-
form residence time distribution [86]. This velocity profile becomes problematic in the
case of nanomaterials for which crystallization kinetics is sensitive to the residence time
distribution in the early stages of growth, causing the nanoparticles flowing near the walls
to have larger dimensions than those flowing near the center [16]. However, these draw-
backs can be overcome by creating turbulence through bending/folding and stretching the
microchannels, thus enhancing mixing [7,11].

3.2. Multi-Phase Flow (Droplet-Based) Systems

Unlike single-phase microfluidics, multi-phase flow (also known as segmented flow)
systems involve two or more immiscible fluids [11]. Such heterogeneous systems facilitate
passive mixing by enhancing mass transfer, narrowing the deviation of residence time and
minimizing the deposition of reagents/products on channel walls [11,16,84].

As the name implies, droplet-based microfluidics concerns the formation and manip-
ulation of discrete droplets inside microchannels [87]. Droplet production is regulated
through device geometry, channel dimensions, and flow rates of each fluid, allowing
precise monitoring and control over material fabrication processes [88,89].

There are two subcategories of multi-phase flow: gas–liquid (bubbles) and liquid–
liquid segmented flows [16]. Gas–liquid segmented flow microfluidics is of interest due
to the simple separation of gas from liquid, which can be useful for nanoparticle synthe-
sis [11,84]. Another feature specific to gas–liquid flow systems is carrying reactions in
segmented liquid slugs, where segmenting gas is introduced to create recirculation and
to enhance mixing efficacy [11,84]. Bubbles can be created either by using active methods
(e.g., short high-voltage pulses [85], acoustic micro streaming [90,91], and liquid metal
actuators [92]) or in a passive manner (by simply bubbling a gas [93,94]). Through these
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methods, a microfluidic channel’s roughness is exploited towards rapid mixing and homog-
enization of the fluids [91]. Depending on the gas and liquid superficial velocities, annular
flow patterns can also be employed. Such patterns appear when there is a continuous
gas core flow in the channel center and a liquid film on the channel’s inner surface [16].
In liquid–liquid segmented flow systems, segmentation is achieved through surface tension
differences between the immiscible fluid streams [16]. The flow patterns are often presented
as water-in-oil or oil-in-water dispersions, requiring the addition of surfactants to minimize
coalescence of the dispersed droplets [11].

Due to rapid production and analysis, droplets can be employed when developing
reproducible and scalable particles with specific sizes, shapes, and morphologies, which
are difficult to achieve otherwise [88,89]. In addition, droplet microreactors show enhanced
mass and heat transport, accurate manipulation, reliable automation, and greater pro-
duction capacity [7,10]. Hence, there is no surprise that multi-phase flow systems have
become indispensable tools in various science applications [89]. These devices find use in
producing emulsions, microdroplets, microparticles, and nanoparticles with distinct mor-
phologies [7,88]. Moreover, droplets can act as single reaction vessels for cell growth [95].

However, several downsides to multi-phase flow systems must be considered when
designing these applications. One of the disadvantages is the poor stability of droplets.
This can be overcome through the addition of surfactants, but this solution is not suitable
for all situations. Another issue comes from the fact that droplets are never completely
isolated, as almost always, an extent of material exchange between droplets takes place [89].
However, whether these problems affect the desired outcome or not depends on what the
device is used for.

For a better understanding of microfluidic methods, the most common microreactor
flow types are gathered in Figure 3.
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3.3. Advantages over Classic Methods

As more and more synthesis reactions are moving towards microfluidic production,
it is clear that there are several advantages in comparison to classic methods. In this context,
Table 2 comprises these benefits in an organized manner.
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Table 2. Advantages of microfluidic systems synthesis.

Advantages Observations References

high reproducibility
- reduced batch-to-batch variation
- reproducible composition, structure, and physicochemical

properties
[7,11]

narrow size distribution - the polydispersity index can go as low as 0.02 [7,11,38]

tunable particle size - reported sizes from 2 nm to 1200 nm [11,38,99,100]

improved controlled features of
nanoparticles

- improved control over nanoparticle crystal structure
- synthesis of smaller mean particle size [7,8,84]

well-controlled heat transfer

- owing to the large surface-to-volume ratio
- possibility of fast heating and cooling of reaction mixtures
- temperature homogeneity
- requirement of only a small heat capacity

[7,11,16,84,101]

well-controlled mass transfer

- the small dimensions (micrometer scale) enable
homogeneous mixing

- in devices with laminar flows, concentration gradients are
precisely controlled by varying channel length or relative
flow velocities of the input fluid streams

[11,16,84,96,102]

efficient tunable mixing - efficient mixing achievable in less than 60 ms [7,16,38,84,103]

reduced reagent consumption - pico-to-nano liter reagent amounts [7,38,101]

short reaction time - in the order of minutes [84,101,104]

controllable residence time - by controlling the length and geometry of the
microchannels [11,16]

rapid change of experimental conditions - within microseconds [84]

cost-effective

- less raw materials and energy input are required,
reducing synthesis costs

- possibility of automation decreases the need of manpower
and labor associated costs

[7,101,104,105]

high throughput
- higher percent yields compared to conventional reactors,

as the precise control over reaction parameters allows
better selectivity towards the desired synthesis products

[7,14,104]

reduced generation of chemical wastes - less by-product formation due to uniform processing
conditions [101,104,106]

compact systems
- more functionality in less space
- combining several steps (preparation, analysis, synthesis,

functionalization, purification) in a single chip
[84,101]
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Table 2. Cont.

Advantages Observations References

new reaction pathways

- reactions can be carried out more aggressively (e.g.,
performing highly exothermic reactions or using extreme
temperatures can be done without the need of cryogenic
systems required at macroscale)

- microfluidic devices can be used when a proposed
reaction situation is otherwise unattainable (e.g., selective
fluorination and perfluorination of organic compounds,
on-site and on-demand synthesis of positron emission
tomography tracers)

[16,104,107]

safer operational environment

- spill is negligible in case of reactor failure
- minimized explosions and leakages of harmful

compounds
- ease of containing

[14,16,104]

3.4. Limitations and Challenges of Microfluidic Approaches

There is no doubt that microfluidic technology has many advantages compared to
preexisting synthesis and testing methods. However, certain aspects become more pro-
nounced when miniaturizing equipment down to the microscale, e.g., surface roughness,
capillary forces, and chemical interactions between materials [101]. Hence, some specific
challenges and limitations are to be considered.

The enhancement of material properties can cause unexpected experimental com-
plications as the reactor behaves differently from traditional laboratory equipment [101].
The small dimensions impose a limitation on the nanoparticle production rate as the possi-
ble flow-rates do not compare with those from conventional bulk mixing methods [16,38].
In addition, the formation of undesired products due to side reactions is not completely
solved by microreactors. However, secondary chemical reactions are minimized through
the accurate control of reaction conditions, leading to much smaller amounts of by-products
than in macroscale processes [108,109].

Moreover, the small diameters of the channels make them susceptible to clogging [11].
The solute concentration can be increased to solve the production rate issue, but this may
lead to precipitation on channel walls, followed by particle growth inside the chip [38].
A similar effect is caused by the production of insoluble materials during polymerization
reactions when very high molecular weights are obtained [8]. Nanoparticle agglomeration
or formation of aggregates may also be behind channel blockage [14,38]. The effect is
stronger at the wall surface due to the longer residence time induced by the laminar
velocity profile [8]. Microchannel clogging remains a major concern in synthesis processes
as it alters mixing and may result in experimental failure [11,14].

Another challenge consists of choosing the right device substrate, especially because
many materials have poor solvent compatibility and low resistance to high temperature.
In this respect, novel materials should be developed to manufacture reliable and cost-
effective chips [11]. Furthermore, the manufacturing techniques, supply, and demand are
not in favor of microfluidic industrialization, as there is a lack of large-scale production
development [10,16,95]. To increase interest in mass production, purification and extraction
processes should be improved and integrated with nanoparticle synthesis to create fully
automated production [11].

4. Nanomaterials Synthesized through Microfluidic Methods

As nanotechnology is still in its infancy, nanoparticles’ production and application
are expected to continuously improve [16]. In recent years, microfluidic methods were ex-
ploited to synthesize nanoparticles with different sizes, shapes, and surface compositions,
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with small size distribution, high drug encapsulation efficiency, prolonged circulation
time, and heightened tumor accumulation [13,41]. Depending on the reaction conditions
and finite products’ requirements, chips of various materials and geometries can be em-
ployed. Typical substrates include glass, silicon, metals, polymers, and ceramics, but the
diversity and quality of materials are continuously increasing [10,14,104,110,111]. In terms
of channel geometry, two main classes of devices can be distinguished: flow-focusing
and T-junction [112].

To correlate these aspects with the synthesis methods and the obtained products,
several research studies concerning nanomaterials synthesis through microfluidic methods
were summarized in Tables 3–6.

4.1. Inorganic Nanomaterials

Inorganic nanoparticles find use in various fields, ranging from electronics, energy,
and textiles to biotechnology, bio-imaging, and bio-sensing. Most of these applications
are based on materials such as gold, silver, silica, alumina, titanium oxide, and zinc oxide,
but not exclusively [16,41,113].

Noble metal nanoparticles, such as gold, silver, and platinum, are of special interest in
medical applications due to their size and shape properties [84,88]. Various metal nanopar-
ticles of controlled size and structure can be synthesized in droplet-based microfluidic
reactors via the reduction of metal ion precursors in the presence of stabilizing ligands [113].

Gold nanoparticles (Au NPs) were produced via microfluidic methods by several
researchers, inspired by the outstanding properties and potential applications of this
material. Generally, the reduction of a gold precursor takes place in the presence of
different types of ligands and stabilizers. The use of strong reducing agents, such as sodium
borohydride, ensures fast nucleation and small sizes of finite products. The reduction
of gold ions fits in a timeframe of seconds, following fast kinetic crystallization at the
nanoscale [16]. Spheres, spheroids, rods, and other various shapes can be obtained from
spherical Au NP seeds (of less than 4 nm in size) by adjusting the concentrations of
reagents, feed rates of individual aqueous streams, reduction potentials of the metal
complex, and adsorbate binding strength [11,88].

Silver nanoparticles (Ag NPs) are another category of noble metal nanoparticles with
properties much different from the bulk material [101]. Over the past decade, Ag NPs
have been widely used, especially due to their antimicrobial, optical, and electrochemical
properties [114]. The intrinsic features of AgNPs are in strong correlation with particle
size, shape, composition, crystallinity, and structure, among which size and shape are the
most important [103]. For this reason, the possibility for precise control within microfluidic
devices increased the research interest in microreactor synthesis.

Zinc oxide nanoparticles (ZnO NPs) have drawn much attention recently in the field
of nanomedicine, especially for tissue engineering, targeted drug delivery, contrast agents,
and therapeutics against cancer [115]. To obtain high-quality ZnO NPs, their synthesis can
be performed in microfluidic devices as well. The controlled production of ZnO NPs with
well-defined physicochemical properties has already been demonstrated to be effective for
various shapes, such as wires, spheres, rods, spindles, ellipsoids, and sheets [116].

Titanium oxide nanoparticles (TiO2 NPs) of uniform size can also be rapidly and economi-
cally produced in microreactors [117,118]. The synthesized particles have excellent photodegra-
dation efficiency, rendering them suitable for environmental remediation applications [117].

Silica nanoparticles (SiO2 NPs) are also considered valuable in various fields, attract-
ing interest in their microfluidic production [119]. One of the most important configura-
tions for biomedicine purposes is mesoporous silica, a material of intensive research in
recent years [120,121].

Magnetic nanoparticles (MNPs) are an important class of nanomaterials due to their
unique properties, such as chemical stability, magnetic response, biocompatibility, and low
cost [16]. These advantageous features created interest in the microfluidic production of
MNPs to be further used for a wide range of applications in biomedicine-related fields,
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such as biomedical imaging (e.g., contrast-enhancing agents in magnetic resonance imag-
ing), site-specific drug delivery, bio-sensing, diagnosis, biological sample labeling, and sort-
ing [11,84,119,122,123]. Cobalt nanoparticles (Co NPs) are an example of MNPs with
different properties depending on the crystal structure [119]. Other MNPs that have gained
research attention are iron oxide nanoparticles (IONPs) [119]. These materials have promis-
ing properties required in nanomedical applications, making their microfluidic production
a natural step towards enhancing IONPs quality [76].

Quantum dots (QDs) can be produced in microfluidic systems by miniaturizing the
traditional synthesis methods, leading to high-quality, monodisperse particles [124]. Semi-
conductor QDs, in general, and Cadmium Selenite (CdSe) QDs, in particular, have attracted
much interest in scientific research due to their tunable bandgap, narrow emission spec-
trum, high conductivity and mobility, and outstanding chemical and light stability [114].
Moreover, their tunable photoluminescence in the visible spectrum allows CdSe QDs to be
used for biomedical purposes and optical-electronic applications [113].

Besides metallic-based nanoparticles, microfluidics has attracted recent interest
for the synthesis of non-metallic materials, as well. One such example is represented
by sulfur, the ability of which to inhibit bacteria and fungi makes these nanoparticles
suitable for sterilization of food and utensils. The controllable particle size and uniform
morphology attained through microfluidic technology improve sulfur nanoparticles’
bactericidal performance [125].

Table 3. Summary of inorganic nanomaterials synthesized via microfluidic approach.

Synthesis Product Microreactor Type Main
Reagents/Materials

Synthesis
Observations Products Observations Ref.

AuNPs Passive
PDMS-based chip

Chloroauric acid,
borohydride (reducing

agent), tri-sodium
citrate (capping agent)

Room temperature;
reaction time under

5 min

Average size of
nanoparticles: 2 nm [99]

AuNPs
PDMS-based chip

with S-shaped
channels

Gold seeds (prepared
in advance by

reducing HAuCl4 with
NaBH4), silver nitrate,

ascorbic acid

Sufficient mixing,
precise flow rate

control

Gold nano-bipyramids
with controllable

morphology
[126]

AgNPs Continuous flow
SPD made of SUS

Silver nitrate,
L-ascorbic acid,
soluble starch,

poly(4-vinylpyridine)

Room temperature,
intense mixing; a

very thin fluid film
forms on the rapidly

rotating disc

Nanoparticles size is
controlled through

varying rotating speed
[127]

AgNPs Droplet-based
PDMS chip

Silver nitrate, tannic
acid, trisodium citrate Room temperature

Droplet size and
residence time can be

influenced by changes in
flow rates and flow ratio
between continuous and

dispersed phases

[128]

AgNPs
Flow-focusing
droplet-based

PDMS chip

Silver nitrate, silver
seeds (prepared in

advance by a reaction
of silver nitrate and

sodium borohydride),
pure water, trisodium

citrate dihydrate,
liquid paraffin

Temperature: 60 ◦C
(to ensure seed
growth within
microdroplets)

Average size of the
particles can be

increased by increasing
reaction time,
temperature,

and concentration of
silver cations,

and decreased by
increasing seed
concentration

[103]
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Table 3. Cont.

Synthesis Product Microreactor Type Main
Reagents/Materials

Synthesis
Observations Products Observations Ref.

ZnO NPs SUS microreactor
Zinc sulfate and

potassium hydroxyl
solutions

Hydrothermal
synthesis;

temperature:
≈400 ◦C

(maintained by an
electric furnace);

crystals were
collected by filtrating

the slurry solution
and drying at 60 ◦C

Average diameter: 9 nm [129]

ZnO
nanostructures Glass capillaries

Zinc acetate dihydrate,
diethanolamine,

zinc nitrate
hexahydrate,

methenamine,
ammonium hydroxide

solution

Dip-coating process
for the seed layer

deposition,
combined with the

continuous-flow
chemical process

Different morphologies
can be obtained on the

inner wall of the
capillary tubes

[130]

TiO2 NPs

Ceramic
microchannel
reactor with a

glass cover

TTIP dissolved in
1-hexanol, distilled
water, formamide

The reaction takes
place at the stable
interface between
the two insoluble

currents

Particles with a size of
less than 10 nm; anatase

polymorph
[118]

SiO2 nanofibers

Five-run
spiral-shaped

PDMS
microreactor

CTAB, diluted
ammonia, diluted

TEOS
Room temperature

Mesoporous silica
nanofibers;

tunning of fibers aspect
ratio by changing the

flow rates or the
concentrations of
implied reagents

[120]

HSS with
hierarchical

sponge-like Pore
sizes starting from
several nanometers

Two-run
spiral-shaped

PDMS
microreactor

CTAB, diluted
ammonia, TMB,
diluted TEOS

Rapid and efficient
mixing

Well-defined spherical
silica particles having an
average diameter of ca.
1200 nm; hollow core
and sponge-like large
porous shell structure;
pore size ranging from
several nanometers to

over 100 nm can be
observed, depending on

TMB concentration

[100]

Co NPs Polymer-based
chip

Cobalt chloride,
tetrahydrofuran,

lithium triethylborate
(reducing agent),
3-(N,N-dimethyl-

dodecylammonia)-
propanesulfonate

(stabilizer)

Phase-controlled
synthesis

Varying the
experimental conditions

such as flow rates,
growth time and

quenching procedure,
the researchers managed

to obtain mostly
crystal structure

[131]
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Table 3. Cont.

Synthesis Product Microreactor Type Main
Reagents/Materials

Synthesis
Observations Products Observations Ref.

IONPs
Continuous flow

spiral copper wire
microreactor

Iron nitrate
nonahydrate, sodium

hydroxide, N-cetyl
trimethyl ammonium

bromide

Co-precipitation and
reduction reactions;
room temperature

The average particle size
of IONPs decreased

with an increase in the
flow rate of the reactants,

reaching an average
particle size of 6 nm for
a flow rate of 60 mL/h

[132]

CdSe QDs PTFE micromixer
chip

Cadmium oleate,
Se-TOP solution

3–60 min incubation
time; the faster

growth rate in the
microfluidic

synthesis than in the
bulk reaction

Higher absolute
photoluminescence

quantum yields than in
bulk synthesis

[114]

SNPs Two reactors: YMC
and TMC

Sublimed sulfur,
carbon disulfide

(solvent), ethanol
(anti-solvent)

Continuous
anti-solvent

precipitation process;
a suspension is
obtained at the

outlet, requiring
further spray drying
to get SNP powders

Highly stable
monodispersed sulfur

nanoparticles with a size
of 15–50 nm

[125]

4.2. Organic Nanomaterials

Microfluidic methods have also been employed for the synthesis of organic nanopar-
ticles due to their potential use in pharmaceutical formulations [113]. This emerging
technology is promising for improving treatment outcomes by enhancing the bioavailabil-
ity and specificity of the therapeutic agent while reducing its toxicity [7,81].

Liposomes are of special interest, being efficient transport vehicles for in vivo ap-
plications, as hydrophilic drugs can be entrapped in their interior aqueous core while
lipophilic and amphiphilic substances can be incorporated into the lipid bilayers [83,124].
Liposomes are highly efficient drug delivery systems due to their biocompatibility, en-
hanced drug encapsulation, and ease of surface modification [41]. Such systems achieve
selective and sufficiently precise localization of the diseased site while also ensuring a
slow and sustained release [124,133]. Such features are critically required for the treatment
of chronic and acute disorders, including cancer, inflammatory disorders, or infectious
diseases [134,135]. The challenge to produce liposome formulations with a defined or
limitedly variable size [124] was overcome by microfluidic production, demonstrated since
2004 [41]. The most common approach is to synthesize liposomes in droplet-based mi-
crofluidic systems [81], but reproducible control of particle size and size distribution can
be achieved in continuous-flow microfluidic devices as well [83].

Polymer-based nanoparticles (PNPs) synthesis within microfluidic devices is consid-
ered promising as well, as it offers improved control over size, size distribution, morphol-
ogy, and composition of such particles [16,78]. Poly-(lactic-co-glycolic acid) nanoparticles
(PLGA NPs), a polymer approved by the Food and Drug Administration (FDA), can be
fabricated via a flow-focusing method in microchannels. Nanoparticles of this polymer can
also be obtained using the droplet-based method by combining microfluidic droplet genera-
tion with solvent extraction techniques [41]. The synthesis of PLGA- poly-(ethylene glycol)
nanoparticles (PLGA-PEG NPs) has been performed by nanoprecipitation in a hydrody-
namic flow-focusing microchannel. The desired size, polydispersity, and drug loading
can be achieved through the variation in flow rates, polymer composition, and polymer
concentration [84]. A similar nanoprecipitation process was conducted to obtain polycapro-
lactone (PCL) nanoparticles, biodegradable entities with extensive potential for controlled
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drug delivery [136]. Some other polymers, such as heparin, chitosan, and hyaluronic acid,
can be assembled in microfluidic devices for PNPs useful in the delivery and controlled
release of drugs [41].

Table 4. Summary of organic nanomaterials synthesized via microfluidic approach.

Synthesis Product Microreactor Type Main
Reagents/Materials

Synthesis
Observations Products Observations Ref.

Liposomes

Microfluidic vertical
flow-focusing device

made of a
thermoplastic material

Lipid, aqueous buffer Continuous flow
synthesis

Tunable size ranging
from 80 to 200 nm;

nearly monodispersed
vesicles

[137]

Liposomes
SUS-derived V-shape
mixer connected with

Teflon tubing

1,2-distearoyl-sn-
glycero-3-

phosphocholine,
cholesterol,

N-(carbonyl-
methoxypoly-
ethyleneglycol

2000)-1,2-distearoyl-
sn-glycero-3-

phosphoethanolamine,
ethanol, physiological

saline

Tubing passed
through a water

bath at 25 ◦C

The size of liposomes is
controlled by changing
the relative flow rate of
an ethanol solution of

lipids and aqueous
solutions

[138]

Liposomes Ultrasound-enhanced
microfluidic system

Egg
phosphatidylcholine,

cholesterol, PBS

The microfluidic
chip was placed in
the water-bath of a

bath sonicator;
Efficiently

combined the
advantages of

microfluidic and
sonication

technologies

Flow rate ratio affects
the particle size [139]

PLGA NPs

Plus-shape
flow-focusing

microfluidic chip made
of Teflon

PLGA dissolved in
DMSO, PVA dissolved

in distilled water

Nanoprecipitation
(after injecting
PLGA and PVA
solutions to the

microdevice,
DMSO started to
diffuse into the
aqueous phase,

and PLGA
nanoparticles

precipitated out)

Compared to batch
synthesis, the obtained

particles were more
uniform and

harmonious in size,
more stable,

monodisperse,
and spherical

[140]

PEG-PLGA NPs
PI film microreactor

with direct 3D
flow-focusing geometry

PEG-PLGA polymers
in acetonitrile, water

Performed at flash
flow (11 ms of

retention time in a
unit microchannel)

Monodisperse
PEG-PLGA

nanoparticles with
average diameters of

50 nm and 85 nm

[141]
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Table 4. Cont.

Synthesis Product Microreactor Type Main
Reagents/Materials

Synthesis
Observations Products Observations Ref.

PCL NPs

Glass microfluidic
devices (with different
confluence angles and
channel dimensions)

Aqueous phase: PVA,
Tween 80, Milli-Q

water
Organic phase: PCL,

THF

Hydrodynamic
flow-focusing

method; controlled
self-assembly

process;
non-solvent
precipitation

technique

Microchannels with
shorter lengths

produced smaller
nanoparticles due to
the shorter residence

time of the particles in
the mixing channel; a

small confluence angle
of 60◦ is more favorable
for producing smaller

nanoparticles

[136]

HA NPs Glass cross-junction
microchannel

Aqueous phase:
sodium hyaluronate

solution, ADH, EDCl,
deionized water
Organic phase:
Ethanol, IPA,

or acetone

pH of 6.0;
crosslinked HA

NPs were formed
at the interface

between the
organic phase and
water in a laminar

flow inside a
flow-focusing
microchannel

The ability of the
non-solvents to

dehydrate hyaluronic
acid decreases from

ethanol, IPA, to acetone,
while the mean

diameter increases in
the order of ethanol,

IPA, to acetone

[142]

4.3. Active Pharmaceutical Ingredients

The pharmaceutical industry benefits from microfluidic approaches as they allow for
cheaper, more effective, and more accessible production of drug formulations [143,144].
Enhanced control over reaction conditions and the excellent quality of the products are
the main reasons behind several pharmaceutical companies’ decision to implement this
technology as an alternative to hazardous exothermic power-intensive processes [145,146].

Up to date, various active pharmaceutical ingredients have been reportedly produced
within microfluidic systems. Their list includes but is not limited to nitroglycerin [147],
ibuprofen [146], lactose [148], aspirin [148], telmisartan [149], hydrocortisone [150], in-
domethacin [151], danazol [152], cefuroxime axetil [153], piroxicam [154], piracetam [154],
and carbamazepine [154].

Table 5. Summary of active pharmaceutical ingredients synthesized via microfluidic approach.

Synthesis Product Microreactor Type Main
Reagents/Materials Synthesis Observations Products

Observations Ref.

Nitroglycerin Acrylic chip Glycerol, nitric acid,
sulfuric acid (catalyst)

The reaction rate is
controlled by the

diffusion process and
the medium viscosity;

the higher the
concentration of the

reactants, the higher the
probability of particle

collisions

The use of the
microchannel

produces more
nitroglycerin reaction
products compared to
using the batch reactor

system

[147]
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Table 5. Cont.

Synthesis Product Microreactor Type Main
Reagents/Materials Synthesis Observations Products

Observations Ref.

TEL NPs
Silicone tube

mounted over a
glass plate

Aqueous phase:
various polymers

(PVP K-30, PVP K-90,
HPMC, Poloxamer 407,

and Poloxamer 188)
dispersed in water

Organic phase:
telmisartan dissolved

in acetone and
dichloromethane

Continuous microfluidic
nanoprecipitation

process; rapid
nucleation;

diffusion-controlled
mixing

The particle size for
the five investigated

polymers increased in
the order dPoloxamer407
< dPVPK−30 < dHPMC <

dPVPK−90 <
dPoloxamer188;

recrystallized TEL
nanoparticles showed

clear and nearly
uniform shape surface

morphology

[149]

Hc NPs YMC Hc, HPMC, sodium
lauryl sulfate; Room temperature

Hc dispersions in the
range of 80–450 nm;

mean particle size can
be changed by
adjusting the
experimental

parameters and design
of microreactors

[150]

Indomethacin
nanocystals

Droplet-based
PDMS chip

Indomethacin,
amaranth, agarose,

paraffin liquid,
anhydrous ethanol,
propidium iodide

Stable hydrogel droplets
with uniform size were
continuously generated
on a microfluidic chip;

the concentrations of the
drug, the ratios of

solvent and antisolvent
in each stable hydrogel

droplet could be
well-controlled by

regulating the flow rates
of syringe pumps

Crystals of
indomethacin with

different morphologies
were formed in the

hydrogel droplets on
the chip

[151]

Danazol NPs YMC
Danazol, ethanol

(solvent), deionized
water (antisolvent)

Nanoprecipitation;
antisolvent temperature:

4 ◦C
Mean size of 364 nm [152]

CFA NPs YMC

CFA, acetone (solvent),
isopropyl ether

(antisolvent), SDS,
deionized water

Rapid mixing,
immediate precipitation;
the formed suspension

is filtrated, and the
precipitate is dried at
40 ◦C under vacuum

Nanoparticles with
narrow PSD,

size-dependent,
and enhanced

dissolution rate

[153]

Piroxicam

72-well
microfluidic

platform made of
thin layers of

PDMS and X-ray
transparent COC

Piroxicam dissolved in
acetonitrile:methanol
mixture (1:1 volume

ratio)

Drug-seeds were
generated off-chip,

then harvested, placed
in a tissue homogenizer
glass tube, and mixed

with API solution.
The seed-solution was

introduced on-chip and
left for incubation

The seeds confirmed
as form I yielded

well-formed
rectangular prisms

[154]
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Table 5. Cont.

Synthesis Product Microreactor Type Main
Reagents/Materials Synthesis Observations Products

Observations Ref.

Piracetam

72-well
microfluidic

platform made of
thin layers of

PDMS and X-ray
transparent COC

Piracetam dissolved in
methanol

Drug-seeds were
generated off-chip,

then harvested, placed
in a tissue homogenizer
glass tube, and mixed

with API solution.
The seed-solution was

introduced on-chip and
left for incubation

The 1:5 and
1:10 micro-seed

dilution experiments
yielded largely but
poorly formed and

twinned crystals

[154]

Carbamazepine

72-well
microfluidic

platform made of
thin layers of

PDMS and X-ray
transparent COC

Carbamazepine
dissolved in
acetonitrile

Drug-seeds were
generated off-chip,

then harvested, placed
in a tissue homogenizer
glass tube, and mixed

with API solution.
The seed-solution was

introduced on-chip and
left for incubation

The seeding method
directed the

crystallization towards
the predominant

formation of form
III crystals

[154]

4.4. Hybrid and Composite Nanomaterials

Multifunctional entities can be formed by loading inorganic nanomaterials in polymer
particles [16,155], benefiting from their components’ synergic properties. Microfluidic
devices also offer the possibility to produce complex hybrid nanostructures in simple
processes, shorter times, and controlled reaction conditions, which would otherwise be
unattainable [16]. Thus, composites comprising two inorganic materials can be efficiently
synthesized in microfluidic reactors [155] to match the requirements of applications in the
biomedical field, especially as fluorescent biological labels [156].

Another promising combination is the creation of lipid–polymer nanoparticles for
drug delivery [11]. What makes these hybrid nanomaterials so appealing is the possibility
of encapsulating drug molecules in both the polymeric core and the lipid shell through
microfluidic methods [41,78]. Additionally, drug-loaded particles can also be obtained
through microfluidic techniques, resulting in products of reduced size and higher drug-
loading capacity [157].

Other interesting delivery systems that can be synthesized in microfluidic devices are
lipid nanoparticles loaded with nucleic acids. In the context of the COVID-19 pandemic,
the fabrication of monodispersed lipid vesicles became essential for the encapsulation
of messenger RNA (mRNA) required in vaccines’ formulation [158–160]. Particularly,
this is achieved through the mixing of an ethanol phase (containing the hydrophobic
lipids) and an aqueous phase (containing mRNA in a buffer, e.g., acetic acid, at pH 4) in a
droplet-based microreactor [159,161].

Moreover, artificial leukocytes and lipoproteins can be fabricated via assembling
proteins with lipid molecules. Thus, by assembling phospholipids with apolipoproteins
within a microfluidic device, high-density lipoproteins were mimicked [41].
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Table 6. Summary of hybrid and composite nanomaterials synthesized via microfluidic approach.

Synthesis Product Microreactor Type Main Reagents/Materials Synthesis Observations Products Observations Ref.

ZnS-coated CdSe Multi-step continuous
microfluidic system

TOP-Se stock solution (prepared
from Se powder and TOP),

Cd(CH3COO)2, stearic acid,
TOPO, diethylzinc,

bis(trimethylsilyl) sulfide

CdSe solution preparation: Cd(CH3COO)2 was
added to stearic acid and heated at 130 ◦C.

(TOPO) was then added under a nitrogen flow.
After the solution was cooled to below 100 ◦C,
it was mixed with the TOP-Se stock solution

ZnS solution preparation: diethylzinc and
bis(trimethylsilyl) sulfide were dissolved in

TOP, then mixed with melted TOPO;
CdSe preparation: Oil bath at 300 ◦C

Coating step: Oil bath at 220 ◦C

Control the particle size and
layer thickness by simply

adjusting the residence time
[162]

PtSn intermetallic
nanocrystals

Microfluidic reactor with
segmented regions (heating

plate and water bath)

Pt(acac)2, PEG400, SnCl4·5H2O,
EG

A PMMA bottle with pressures by pressure
regulated N2 was used as the collection vial;

products were collected by centrifugation
process, washed with ethanol and water three

times, and dried overnight at 60 ◦C

Pure PtSn intermetallic phase is
demonstrated in products

formed in reactions at more
than 250 ◦C

[163]

Polystyrene-
encapsulated

IONPs

Continuous flow
microfluidic device

For the polymer nano-emulsion:
styrene (monomer),

SDS (surfactant), hexadecane
(Ostwald ripening inhibitor),
potassium peroxydisulfate

(initiator)
For the magnetite nanoparticles:

anhydrous ferric chloride, ferrous
chloride tetrahydrate, ammonium

hydroxide, octane, oleic acid

Microfluidic elongational flow method;
magnetite particles obtained by

co-precipitation were further coated with oleic
acid and dried to obtain a powder;

polymer nano-emulsion is left overnight in an
oven at 70 ◦C becoming a stable colloidal
suspension, by thermal polymerization

Excellent product quality,
homogenous composite
particle size distribution;
encapsulation of a lower

content of iron oxide
nanoparticles but with a
smaller size than those
encapsulated by batch

processes

[164]

Ag NP-loaded chitosan
particles

PMMA chip with a
cross-junction channel

Chitosan, silver nitrate, glucose,
sodium hydroxide

A one-step mechanism involving the reduction
of Ag NPs and solidifying the chitosan
particles in emulsions simultaneously

The size of products can be
controlled to achieve a narrow

size distribution; various
uniform chitosan

microparticles impregnated
with Ag NPs were successfully

obtained

[165]
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Table 6. Cont.

Synthesis Product Microreactor Type Main Reagents/Materials Synthesis Observations Products Observations Ref.

Liposomal-AuNP
hybrids

Automated microfluidic
system

AuNPs, toluene, chloroform,
methanol, HSPC, DSPE-PEG2000,

DPH, PBS

The methanolic mixture containing both the
lipids and the AuNPs was mixed with an

aqueous solution (PBS, pH 7.4); once prepared,
the hybrids were dialyzed for 24 h to remove

traces of methanol and then were concentrated
in a viva-spin column

Homogeneous size distribution,
smaller polydispersity index,

and three times higher loading
capacity than when using the

traditional methodology

[134]

Liposome-hydrogel
hybrid NPs

Microchannels in a silicon
substrate anodically

bonded to a glass
borosilicate cover

1,2-dipalmitoyl-sn-glycero-3-
phosphocholine, cholesterol,

dihexadecyl phosphate,
isopropanol,

1,1′-dioctadecyl-3,3,3′,3′-
tetramethy-lindodicarbocyanine

perchlorate,
poly(N-isopropylacrylamide), PBS

Microfluidic mixing controlled by
hydrodynamic focusing

Narrowly dispersed
populations of lipid-hydrogel

hybrid nanoparticles; size
range appropriate for targeted
delivery and controlled release

applications

[166]

PEG-cHANPs Microfluidic chip with an
X-junction configuration

HA-SH, PEG-VS, pure acetone
(non-solvent)

Hydrodynamic Flow Focusing; one-step
process (nanoprecipitation);

temperature: 4 ◦C

Average size: 140 nm;
Accurate control over final
nanoparticle properties by
simple tuning of focused
stream width and process

parameter adjustment

[167]

PEGylated PLCL

Two microfluidic chips: a
cross-flow chip with an

X-shaped mixing junction
(2D laminar flow-focusing)
and a micromixer featuring

a YMC

3,6-dimethyl-1,4-dioxane-2,5-
dione (lactide), CL, stannous

2-ethylhexanote (catalyst),
different initiators (1-dodecanol,
a MeO-PEG-OH, and a 4-armed

star PEG-OH)

Ring-opening polymerization at 140 ◦C;
continuous flow nanoprecipitation

Nanoparticle formulations
were produced with Z-average
sizes in the range of 30–160 nm;
smaller particles were obtained

with a YMC (30–120 nm),
especially for the PEGylated

polyesters (30–50 nm), whereas
the cross-flow chip

systematically produced larger
particles (80–160 nm)

[168]
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Table 6. Cont.

Synthesis Product Microreactor Type Main Reagents/Materials Synthesis Observations Products Observations Ref.

PLGA NPs coated with
a muco-penetrating

stabilizer (Pluronic F68)
Cross-channel microreactor

Aqueous phase: Pluronic F68,
water

Organic phase: PLGA,
acrylonitrile

Nanoprecipitation; NPs suspension was left
overnight for organic solvent evaporation,

followed by two centrifuge washes and
redispersion with Milli-Q water to remove

excess stabilizer

Particles had a tunable
hydrodynamic diameter

ranging from 40 nm to 160 nm
[169]

HA-functionalized
lanthanide-doped

KGdF4 NPs

Two PMMA chips (one for
each synthesis step)

GdCl3·6H2O, EuCl3·6H2O,
Ce(NO3)3·6H2O, TbCl3·6H2O,

KF·2H2O, DEG, sodium
hyaluronate

Two steps:
(1) synthesis of Ln3+-doped

KGdF4 nanoparticles (room temperature,
ultrafast, continuous process) and

(2) functionalization with HA
(via electrostatic adsorption)

The synthesized nanoparticles
show good uniformity,

high biocompatibility, targeted
cellular uptake,

photoluminescence,
and magnetic resonance

properties

[170]

PLGA NPs loaded with
EFV

Borosilicate glass capillaries
on a glass slide

Aqueous phase (outer fluid):
PLGA, dimethyl sulfoxide, EFV

Organic phase (inner fluid):
Tween® 80 solution

Nanoprecipitation; after production, particles
were washed three times with ultrapure water

and recovered by ultrafiltration

Reduced NP size, comparable
polydispersity, less negative
zeta-potential, higher EFV

association efficiency,
and higher drug-loading than
in the conventional approach

[157]

CoQ10-MITO-Porter
Microfluidic device

incorporating a baffle mixer
(named iLiNP device)

Aqueous phase: PBS
Organic phase: lipids (DOPE, SM,

DMG-PEG 2000, and STR-R8),
CoQ10, and ethanol

Lipids in ethanol and PBS were mixed to form
a suspension, which was further dialyzed for

at least 2 h

Homogeneously distributed,
small-sized

CoQ10-MITO-Porter that
efficiently internalized into

cells and accumulated in
mitochondria

[144]

Amphiphilic HFR
bioconjugates

Solvent-resistant
microfluidic device made of

low molecular weight
perfluoropolyether

UFH dissolved in formamide,
N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride
dissolved in formamide, aminated

RA dissolved in DMF

Ultrafast reaction time; single-step synthesis

Bioconjugates with high drug
coupling ratio; nanoparticles

likely have a core-shell
structure composed of a
hydrophobic inner core

containing aggregated RA
molecules and a hydrophilic

UFH or HF shell;
average size: 130–141 nm

[171]
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Table 6. Cont.

Synthesis Product Microreactor Type Main Reagents/Materials Synthesis Observations Products Observations Ref.

HMCS with
encapsulated PTX

TMC PDMS microfluidic
device

HMCS, PTX mixed with an acidic
solution, basic water Physiological pH (7.4) HMCS nanoparticles with high

concentrations of PTX [172]

Ribavirin-loaded PLGA
NPs

Continuous flow
microfluidic reactor system

Aqueous phase: ultrapure water
containing ribavirin

Organic phase: PLGA dissolved in
acetonitrile, acetone, or DMSO

No precipitate was noticed in the
micro-channels during the flow-focusing

experiments; NPs were recovered by
centrifugation, washed several times with

non-solvent solution, centrifuged,
and freeze-dried

Drug-loaded NPs smaller than
100 nm [173]

Ketoprofen-
encapsulated PMMA

NPs

Three chips: TMC, HPIMM,
and K-M micromixer

Ketoprofen; mannitol; cremophor
ELP; methanol; THF; SDS; methyl
methacrylate; copper (I) bromide;

1,1,4,7,10,10-
hexamethyltriethylenetetramine;

2-ethyl bromoisobutyrate;
ultrapure water

Micromixer-assisted nanoprecipitation;
nanoprecipitation started immediately inside

the mixing chamber when both fluids (polymer
solution including ketoprofen and ultrapure

water) were brought into contact

Size range: 100–210 nm;
the size of the nanoparticles

decreases with the water flow
rate; the TMC produces the

largest nanoparticles while the
K-M micromixer generates the

smallest ones

[174]
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5. Conclusions

Nanomaterials can have many different shapes and chemical compositions, which
means that their properties (such as size, design, solubility, surface modifications, charge,
deformability, etc.) can be tailored to meet specific application requirements. However,
conventional synthesis methods do not offer precise control over reaction parameters,
affecting the desired outcomes. By precise manipulation of nanoliter volumes, microfluidic
devices enable the synthesis of high-quality nanoparticles, drug carrier systems, active
pharmaceutical ingredients, composite nanomaterials, and even cells. As there is a long list
of advantages of microfluidic production over conventional synthesis, it is expected that
this technology would exponentially gain interest in developing new materials, processes,
and functionalities. Moreover, translating microfluidics to large-scale production should
be considered to make this technology more popular and industrially appealing. Hence, re-
search should also be directed towards standardization, automation, and high-throughput.
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Abbreviations

ADH adipic hydrazid
AgNPs silver nanoparticles
API active pharmaceutical ingredient
AuNPs gold nanoparticles
CdSe QDs cadmium selenite quantum dots
CFA cefuroxime axetil
CL ε-caprolactone
COC cyclic olefin copolymer
CoNPs cobalt nanoparticles
CoQ10 coenzyme Q10
CoQ10-MITO-Porter coenzyme Q10 encapsulated in a MITO-Porter liposome
CTAB cetyltrimethylammonium
DEG diethylene glycol
DMF dimethylformamide
DMG-PEG 2000 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000
DMSO dimethylsulfoxide
DOPE 1,2-dioleoyl-sn-glycero-3-phosphoetanolamine
DPH 1,6-diphenyl-1,3,5-hexatriene

DSPE-PEG2000
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino-
(polyethylene glycol)-2000]

EDCl chloride carbodiimide
EFV efavirenz
EG ethylene glycol
HA NPs hyaluronic acid nanoparticles
HA-SH thiolated hyaluronic acid
Hc hydrocortisone
HF unfractionated heparin–folic acid conjugate
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HFR heparin–folic acid–retinoic acid
HMCS hydrophobically modified chitosan
HPIMM High-pressure interdigital multi-lamination micromixer
HPMC hydroxypropylmethylcellulose
HSPC hydrogenated soy phosphatidylcholine
HSS hollow spherical silica
iLiNP invasive lipid nanoparticle production
IONPs iron oxide nanoparticles
IPA isopropyl alcohol
MeO-PEG-OH alpha-methoxy-omega-hydroxy poly(ethylene glycol)
PBS phosphate buffered saline
PCL NPs polycaprolactone nanoparticles
PDMS polydimethylsiloxane
PEG-cHANPs pegylated crosslinked hyaluronic acid nanoparticles
PEG-OH hydroxy poly(ethylene glycol)
PEG-PLGA NPs polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles
PEG-VS polyethylene glycol–vinyl sulfone
PI Polyimide
PLCL poly (d,l-lactic acid-co-caprolactone)
PLGA NPs poly(lactic-co-glycolic acid) nanoparticles
PMMA polymethylmethacrylate
Pt(acac)2 platinum (II) bis(acetylacetonate)
PTFE polytetrafluoroethylene
PTX paclitaxel;
PVA polyvinyl alcohol
PVP polyvinylpyrrolidone
RA retinoic acid
SDS sodium dodecyl sulfate
SM sphingomyelin;
SNP sulfur nanoparticles
SPD spinning disc processor
STR-R8 stearylated R8
SUS stainless steel
TEL telmisartan
TEOS tetraethyl orthosilicate
THF tetrahydrofuran
TiO2 NPs titanium dioxide nanoparticles
TMB 1,3,5-trimethylbenzene
TMC T-type microchannel
TOP trioctylphosphine
TOPO trioctyl phosphine oxide
TTIP titanium tetraisoproxide
UFH unfractionated heparin
YMC Y-type microchannel
ZnO NPs zinc oxide nanoparticles
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