
INTRODUCTION 

While humanity’s interest in defeating mortality is ancient, recent 
studies on anti-aging biology have been shaped after the first dis-
covery in 1939 of retarded growth and a longer lifespan in rats with 
restricted caloric intake.1) Since then, caloric restriction (CR) has 
been proven to be the most effective method for lifespan exten-
sion, with consistent reports from independent research groups in 
species including microbes, worms, fish, rodents,2,3) and mon-
keys.4) Similar to CR, another dietary method, methionine restric-
tion, has also consistently shown promising results.5,6) However, 
despite these positive results, researchers have also searched for 
chemicals, so-called caloric restriction mimetics (CRMs) that rep-
licate these results without requiring restrictive diets. 

Research on CRMs to identify anti-aging chemicals has shown 
that chemicals with potential lifespan-extending effects function 
through diverse pathways. Because CR is a good reference point, 
its resulting phenotype could facilitate the search for anti-aging 
agents. In the context of outcomes, CR extends lifespan by amelio-
rating several aging hallmarks such as DNA damage, accumulation 
of reactive oxygen species (ROS), insulin resistance, stress re-
sponse, and the occurrence of cancer.7) The exact mechanisms by 
which CR induces these shifts in aging parameters are not yet 
completely elucidated; however, several mechanisms have been 
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suggested, most of which are conserved across different species. 
One such mechanism is via nutrient receptor pathways. Through 
these nutrient receptors, the lack of nutrients prevents the activity 
of several mechanisms that play a role in growth and biosynthesis 
and instead activates pathways that promote repair, autophagy, and 
maintenance. Indeed, CR inhibits both insulin/insulin-like growth 
factor-I (IGF-I) signaling8) and key regulators in its downstream 
phosphatidylinositol-3 kinase (PI3K) and mechanistic target of 
rapamycin (mTOR) pathways.9) Inhibition of the mTOR pathway 
blocks protein synthesis and other anabolic pathways and simulta-
neously promotes autophagy.10) Therefore, the inhibition of the in-
sulin/IGF-I and mTOR signaling pathways could be useful in the 
search for potential anti-aging agents.  

Another way that lifespan may be improved is through the pre-
vention of oxidative damage. ROS are important causes of aging, 
as free radicals produced through respiratory and metabolic path-
ways accumulate over time and damage chromosomal and mito-
chondrial DNA, which deteriorate mitochondrial function along-
side other cellular mechanisms. This damage causes the eventual 
malfunction of cells, which might lead to cancer, along with other 
age-related conditions.11) CR activates nuclear factor (erythroid- 
derived 2)-like 2 (Nrf2), a regulator of antioxidants and other cy-
toprotective enzymes.12) 

Sirtuins have also been suggested to play a key role in lifespan 

Copyright © 2020 by The Korean Geriatrics Society
This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://crossmark.crossref.org/dialog/?doi=10.4235/agmr.20.0092&domain=pdf&date_stamp=2020-12-31


extension. Sirtuins are a nicotinamide adenine dinucleotide (NA-
D+)-dependent protein class of ADP-ribosyltransferases and 
deacetylases. They are activated by an increased NAD+/ NADH 
ratio, which occurs during starvation or low energy status. Upon 
activation, sirtuins regulate stress response mechanisms such as 
antioxidant expression, anti-inflammatory proteins, autophagy, 
and DNA repair.13) Hence, CR has been proposed to provide ben-
efits mainly through sirtuin activation, especially that of Sir2 
(SIRT1 in mammals), the overexpression of which extended lifes-
pan in yeast.14) 

Another approach to lifespan extension focuses on inducing 
low-level stress that does not damage the organism but rather acti-
vates stress response pathways. This approach predicts that CR 
does not elongate lifespan due to the overall reduction in nutrient 
intake, but rather due to the longer periods of starvation between 
meals. Cells can detect starvation in several ways. During low ener-
gy status, cells try to increase the amount of ATP with a reaction 
that uses two ADPs and releases AMP as a byproduct. This in-
crease in AMP levels activates AMP-activated protein kinase 
(AMPK). AMPK is a master regulator of metabolism and activates 
catabolic pathways while suppressing anabolic pathways to balance 
energy homeostasis. AMPK was reportedly activated during CR.15) 
AMPK activation can ensure cell survival through the stimulation 
of the oxidative stress response and autophagy, making it another 
indicator in anti-aging chemical studies, similar to sirtuins. 

One of methods for identifying CRMs was to examine how they 
affect the activity levels of certain transcription factors. Among 
these factors is FoxO, which can induce antioxidant expression and 
promote autophagy and mitophagy. FoxO activity is regulated by 
PI3K/AKT/mTOR, AMPK, and sirtuins, making it a critical tar-
get during energy level shifts that would occur in certain diets.13) In 
addition, nuclear factor-κB (NF-κB) may also play a critical role in 
the impact of CR on lifespan. Aging is associated with increased 
levels of chronic inflammation and CR has been found to inhibit 
NF-κB and its proinflammatory effect.16) Furthermore, NF-κB ac-
tivity can be regulated by SIRT1.17) 

Finally, all key pathways affected by CR induce the deacetylation 
of certain cellular proteins and activate autophagy. Therefore, ac-
cording to Madeo et al.,18) all CRMs should have the capacity to 
induce autophagy through protein deacetylation using at least one 
of the CR targets. Indeed, many of the widely accepted and poten-
tial CRMs decrease protein acetylation levels and increase autoph-
agy.19) 

The most straightforward method of determining whether a 
chemical can increase lifespan is to expose the subject for long pe-
riods and have the result at the very end, which can be affected by 
other factors. Therefore, the following footprints of certain mecha-

nisms, such as CR, help identify potentially life-extending chemi-
cals. Such indicators include nutrient receptor pathways such as in-
sulin/IGF-I and mTOR signaling, antioxidant and autophagy ac-
tivity, deacetylation levels, or transcription factors such as FoxO, 
Nrf2, and NF-κB as well as levels of certain genes and byproducts 
that are major regulators of potentially lifespan-extending mecha-
nisms, including sirtuins, NAD+, and AMPK. However, a chemical 
can activate one of these pathways and have no eventual effect on 
lifespan or could increase the lifespan without showing an associa-
tion with these pathways, as not every factor related to aging has 
yet been discovered. This review introduces some of the most 
powerful candidates for extending lifespan.  

THE MOST STUDIED POTENTIAL ANTI-AGING 
COMPOUNDS 

Resveratrol 
Among potential CRMs, one of the most studied is resveratrol. 
This non-flavonoid natural phenol is found in many plants, espe-
cially grapes. Studies showed that resveratrol treatment induced a 
transcriptional pattern parallel to that of CR in mice.20) Functional-
ly, resveratrol can induce effects similar to those of CR, including 
AMPK activation and increased SIRT1 levels in humans,21) as well 
as autophagy induction,22) and inhibition of NF-κB-mediated cy-
tokine expression.23) Resveratrol also delays age-associated param-
eters in mice in a way that partially mimicked CR.24) Nevertheless, 
despite its anti-aging characteristics, including a positive effect on 
oxidative stress and even possible cancer-prevention effects,25) res-
veratrol did not show the expected results on increasing lifespan. 
While resveratrol extended the lifespan in some vertebrates26) and 
flies,27) this effect was not observed in most studies, including 
those in yeast28) and mice.20) In addition, while resveratrol reversed 
insulin resistance caused by obesity, diabetes, or a high-fat diet, it 
failed to increase insulin sensitivity in healthy individuals.29) More-
over, the positive results are conditional. As a supplement in older 
mice fed a high-protein diet, resveratrol showed adverse effects, in-
stead increasing inflammation and ROS production.30) Due to its 
promising potential, resveratrol has been the subject of many clini-
cal trials for patients with diabetes, obesity, or problems with cog-
nitive function. The latest results suggested that, despite inducing 
similar gene expression to that for CR and possibly improving mi-
tochondrial number and function, resveratrol might not have sig-
nificant benefits on glucose metabolism in such patients.31,32) 

Sirtuin Activators and NAD+ Boosters 
Sirtuin activation is a signature of CR; thus, any sirtuin activator is 
also a potential CRM candidate. SRT1720 and SRT2104 are both 
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synthetically produced SIRT1 activators that have shown great an-
ti-aging effects. SRT1720 increased insulin sensitivity and im-
proved both health and lifespan alongside reduced age-related risk 
factors in obese and standard diet-fed mice.33,34) SRT2104 also 
showed similar effects, with increased mean and maximal lifespan 
and improved bone mineral density and insulin sensitivity in mice 
fed with standard diet.35) More recently, SRT1720 reduced smok-
ing-induced oxidative stress and mitochondrial dysfunction by ac-
tivating SIRT1 in human alveolar epithelial cells.36) Such chemicals 
require further investigation for use as anti-aging compounds; 
however, due to their sirtuin-activating characteristics, they are be-
ing used in various studies. 

The NAD+/NADH ratio within cells directly regulates sirtuin 
activity; therefore, precursors or intermediates that increase NAD+ 
concentration are an alternative to direct sirtuin activators. CR up-
regulates NADH-dehydrogenases expressed by Nqo1 and Cyb5r3 
genes in rodents. The overexpression of these metabolic genes to 
imitate CR benefits showed reduced chronic inflammation, im-
proved physical performance, and protection against cancer, with a 
mild lifespan increase.37) NAD+ itself is important for mitochondri-
al activity. In mice, its precursor, nicotinamide riboside (NR), de-
layed senescence in neural stem cells and increased lifespan.38) NR 
has also been the subject of clinical trials; its chronic supplementa-
tion increased NAD+ levels and reduce inflammatory cytokine lev-
els in the skeletal muscle of older people.39,40) Other precursors, in-
cluding nicotinamide (NAM) and nicotinamide mononucleotide 
(NMN), reduced oxidative stress, improved insulin sensitivity, and 
suppressed inflammation in obese mice fed a high-fat diet.41,42) 
However, despite having anti-aging effects, these two compounds 
did not extend the overall lifespan. A recent study in Caenorhabdi-
tis elegans and human cell cultures suggested that longevity can be 
increased by nicotinic acid (NA) supplementation only when the 
intracellular NAD+ level is lower than the sirtuin-saturating con-
centration, thereby limiting its benefits to individuals with lower 
intracellular NAD+.43) These conditions might also apply to other 
NAD+-boosting chemicals.  

Polyphenols/antioxidants  
Polyphenols and their subspecies flavonoids are another group of 
chemicals that have attracted attention for their anti-aging capabili-
ties. These compounds are obtained from plants and are known 
mainly for their antioxidant characteristics. Compounds such as 
quercetin, tangeretin, and catechins in tea have been studied for 
their effects, including anti-oxidative stress resistance and anti-in-
flammation. Quercetin was shown to activate the antioxidant Nrf2 
pathway, which is also a target for CR.44) However, the benefits of 
these compounds are not limited to oxidative stress prevention. 

Quercetin 
Quercetin reduced the acetylation of cytoplasmic proteins, which 
promoted autophagy45) and also reduced endothelial oxidative in-
jury via SIRT1 activation.46) Some of the other reported benefits 
have been more controversial. In primary human adipocytes, quer-
cetin inhibited TNF-α–mediated inflammation and insulin resis-
tance as potently as resveratrol;47) however, in a clinical trial, it 
showed no impact on insulin resistance or other cardiovascular 
risk factors.48) Similarly, quercetin increased the lifespan in yeast49) 
and C. elegans50) through a mechanism independent of the FoxO 
transcription factor. However, quercetin also reportedly did not af-
fect the lifespans of flies or mice.51,52) Another study showed that 
quercetin in combination with dasatinib promoted the healthspan 
of mice; in this study, these drugs showed a senolytic effect, which 
can be used as a tissue rejuvenation technique to selectively elimi-
nate senescent cells through the activation of apoptotic path-
ways.53) Similarly, the combination of quercetin and dasatinib was 
administered in a clinical study of patients with cellular senes-
cence-associated lung disease, idiopathic pulmonary fibrosis (IPF) 
showed that this combination decreased the physical dysfunction 
caused by IPF.54) These findings suggest the possible anti-aging ef-
fects of quercetin through mechanisms distinct from those of CR. 

Caffeic acid 
Caffeic acid is a natural phenolic antioxidant. This molecule affects 
many of the pathways in the anti-aging checklist. For example, caf-
feic acid induced deacetylation and autophagy;45) its effect on the 
mitochondrial respiratory chain to ameliorate oxidative injury was 
connected to SIRT3 activity.55) It activated AMPK in multiple can-
cer cell lines, also.56) Some of its derivatives, including caffeic acid 
phenethyl ester (CAPE), have been suggested as anti-cancer agents 
because they induce apoptosis in both human colon cancer and 
cervical carcinoma cells. In a mouse model, this activity was shown 
to occur through PI3K/AKT, AMPK, and mTOR signaling cas-
cades in both in vitro and in vivo experiments.57) Although it is 
known as an antioxidant molecule, elevated ROS and oxidative 
stress induced by CAPE triggered apoptosis in a human cervical 
carcinoma cell line.58) In addition to its anti-carcinogen effects, 
CAPE inhibited neuroinflammation and motor neuron cell death, 
while increasing the survival of a mouse model of amyotrophic lat-
eral sclerosis.59) Both caffeic acid and CAPE have been shown to 
extend the lifespan of C. elegans.60,61) In addition, caffeic acid in-
creased the lifespan of fruit flies with reduced oxidative damage 
and increased stress resistance.62) Interestingly, CAPE seems to 
trigger different pathways in different species, as its activity de-
pends on the DAF-16 (FoxO homolog) and not on SKN-1 (Nrf2 
homolog) in C. elegans, whereas it showed the opposite pattern in 
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a mammalian cell line by activating Nrf2 and not FoxO4 signal-
ing.61) 

Curcumin 
Curcumin is another polyphenol example of a CRM candidate. It 
is the major component of turmeric in Indian curry. Curcumin ac-
tivates AMPK signaling, induces autophagy,63) inhibits the PI3K/
AKT/mTOR signaling pathway,64) and suppresses NF-κB-mediat-
ed inflammation.23) It has also been shown to improve insulin resis-
tance in rats.65) Curcumin extended the lifespan in flies66) but not 
in mice.52) While its biometabolite tetrahydrocurcumin may be 
more effective, resulted in an extended mean lifespan in both mice 
and fruit flies,67,68) curcumin continues to be the subject of hun-
dreds of clinical trials.  

Patients with chronic kidney disease are prone to an early loss of 
muscle and bone mass and are, therefore, regarded as a state of pre-
mature aging. This damage is proposed to be partly caused by high 
oxidative damage. Curcumin in combination with resveratrol alle-
viated this damage and helped to significantly increase the muscle 
and bone mass of patients after 12 weeks of supplementation.69) In 
healthy middle-aged and older people, curcumin improved resis-
tance artery endothelial function by reducing oxidative stress, al-
though it did not affect arterial stiffness.70) 

Other phenols 
Antioxidants are widely accepted as anti-aging compounds, and 
resveratrol, also a natural phenol; quercetin; CAPE; and curcumin 
have all been shown to modulate, increase, or ameliorate the activi-
ty of major antioxidant enzymes such as superoxide dismutase 
(SOD), catalase (CAT), and glutathione peroxidase (GPx).71-74) 
However, these effects are mostly observable under certain condi-
tions and after cells are exposed to a stress factor. In CR, cells ex-
hibit higher activity or gene expression related to antioxidant en-
zymes upon exposure to stress.75,76) However, in the absence of 
stress, i.e., under normal conditions, MnSOD and Cu/Zn-SOD 
activities were significantly lower in rats on a moderate CR diet 
(20%–40%) than in control group rats.77) This might be because 
CR indirectly reduces ROS by slowing pro-aging and growth path-
ways or by activating mitophagy so that antioxidant activity is not 
needed. In addition, it is not completely clear whether antioxidant 
supplementation is always good for health as ROS might also play 
biological roles. For instance, vitamin C, also known as ascorbic 
acid, is a well-known antioxidant that has been shown to increase 
lifespan in yeast.78) However, in pharmacologic concentrations, it 
acted as a pro-oxidant to reduce aggressive tumor growth in mice, 
similar to the results of studies of CAPE in human cervical carcino-
ma.58,79) Therefore, the benefits of these natural phenols and flavo-

noids go beyond their antioxidant activity and involve several dif-
ferent pathways. As another example, flavonoid 4,4-dimethoxy-
chalcone from the Japanese ashitaba plant was shown to increase 
the lifespan of yeast cells by activating autophagy through the inhi-
bition of Gln3, independent of the mTOR pathway.80) 

Other Important Anti-aging Compounds 

Aspirin 
Aspirin, also known as acetylsalicylic acid, is an anti-inflammatory 
drug that is also considered a CR mimetic. Aspirin has been shown 
to extend the lifespans of C. elegans, fruit flies, and mice.81-83) In C. 
elegans, aspirin reduced ROS levels, increased antioxidant gene ex-
pression, and was suggested to function through FoxO transcrip-
tion factor activity.81) In another similar study, aspirin was shown 
to act through the AMPK pathway independent of SIR-2.1.84) In 
murine tumor cells, aspirin inhibited mTOR and promoted auto-
phagy to suppress tumor growth.85) Therefore, overall, studies with 
aspirin are quite promising. In a mouse study, life extension was 
only observed in male mice, suggesting differences in drug metab-
olism between sexes.83) Aspirin is currently used by humans for 
many reasons and has attracted attention, especially after it was 
shown to reduce cardiovascular disease (CVD)-related mortality 
when was used as secondary prevention, i.e., in patients with a pre-
vious a cardiovascular event.86,87) Aspirin was also assessed as a pri-
mary preventative method for heart disease and further for any 
mortality risk. The Aspirin in Reducing Events in the Elderly (AS-
PREE) trial was a study that started collecting data in 2010 and 
scheduled to finish by 2024. This study included over 19,000 older 
adults with no known disorder who consumed a low dosage of 
daily aspirin. Unfortunately, the results were not as expected, since 
it showed not only no difference in CVD-related mortality but also 
increased hemorrhage and all-cause mortality in subjects, causing 
the early termination of data collection.88-90)  

Spermidine 
The activation of autophagy is an important CRM characteristic. 
In this context, spermidine is a well-known compound among au-
tophagy-inducing agents. Spermidine is a polyamine that extended 
the lifespan of several species, including yeast, C. elegans, and mice 
in an autophagy-dependent manner.22,91) In mice, it boosted cardi-
ac autophagy and mitochondrial respiration by inhibiting oxidative 
stress. In addition, observational showed lower blood pressure and 
a lower incidence of cardiovascular disease in people with higher 
dietary consumption of spermidine.91) While spermidine activates 
AMPK and inhibits mTOR,92) its mechanism differs from that of 
resveratrol; thus, these two compounds could synergistically in-
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duce autophagy.22) In clinical studies, spermidine was well-tolerat-
ed and improved memory performance in older adults with cogni-
tive decline, making it a good target for cognitive aging studies.93,94) 

Metformin 
The antiglycation agent metformin is another potential life-ex-
tending chemical. It is normally used for the treatment of diabetes 
and high blood pressure and is also considered a CRM, as it also 
shows multiple CR-like effects. Metformin improved glucose ho-
meostasis, reduced oxidative damage, inhibited mTOR, and acti-
vated AMPK signaling, through which it also upregulated SIRT1 
expression and induced autophagy.95-97) Metformin has been re-
ported to extend lifespan in yeast, C. elegans, and mice.97-99) Its 
life-extending capability in C. elegans was dependent on SKN-1 
(Nrf2) antioxidant activity alongside AMPK signaling.99) While 
most of the metformin clinical studies targeted diabetic patients, 
metformin also reduced levels of aging-associated cytokines in 
both diabetic and non-diabetic older adults100) and had also been 
suggested as an anti-cancer drug, as it inhibited pro-oncogenic 
pathways and tumor growth.96,101,102) 

Rapamycin 
The mechanism by which the mTOR inhibitor rapamycin directly 
binds to mTOR complex 1 is well known and the reason for which 
this antifungal chemical was named as mTOR. mTOR is a funda-
mental regulator of cell growth and proliferation and is evolution-
arily preserved across species.103) Rapamycin extends the lifespan 
of various species, including yeast, fruit flies, and mice.28,104,105) 
While it has also been suggested as a CRM, some of the metabolic 
changes induced by CR were absent in rapamycin-treated mice, in 
addition to having different patterns of gene expression related to 
xenobiotic metabolism in the liver.106) Rapamycin was also shown 
to have a distinct impact on energy metabolism compared to 
CR,107) which was followed by a report that it induces a shift in 
amino acid metabolism.108) 

The life-extending characteristic of rapamycin is promising. 
Rapamycin treatment increased the median lifespan in mice in a 
dose- and sex-dependent manner, where higher doses and female 
sex showed a higher-percentage increase in longevity.106) Rapamy-
cin’s ability to increase lifespan may be related to its growth-sup-
pressing effects. Rapamycin is currently used as an immunosup-
pressant to avoid graft rejection in organ transplantation.109) On 
top of suppressing the immune system, rapamycin may have other 
effects. For instance, rapamycin increased mortality in mice with 
type-2 diabetes,110) while chronic treatment with rapamycin nega-
tively affected glucose tolerance, causing insulin resistance. This ef-
fect was not observed in mice with genetically reduced mTOR ex-

pression, suggesting that rapamycin caused this insulin resistance 
independent of mTORC1 activity.111) 

Due to its precedence as a competent compound, rapamycin an-
alogs such as everolimus and other mTOR inhibitors such as To-
rin1/2 are also being studied for their anti-aging characteris-
tics.112,113) Everolimus has been reported to reverse age-induced 
gene expression in old rat kidneys114) and to improve cognitive 
function in a mouse Alzheimer’s model.115)  

Senolytics  
Aged or senescent cells can release factors into the bloodstream or 
extracellular matrix to trigger younger and healthier cells to enter a 
senescent state. Thus, within an organism, rather than trying to re-
verse aging within every cell, the selective elimination of senescent 
cells has been hypothesized to boost overall youth in the tissue. To 
achieve such results, a variety of methods are currently being de-
veloped. The programmed death of senescent cells has been 
shown to improve the function of several tissues and increase the 
median lifespan in mice.116) Senolytics are a class of chemicals that 
can trigger senescent cell apoptosis. Some examples of senolytic 
chemicals are quercetin and dasatinib, which are kinase inhibitors, 
and 17-DMAG, which is a heat shock protein inhibitor. 17-DMAG 
improved the healthspan of mice with progeroid syndrome117) and, 
the combination of dasatinib and quercetin increased the health 
and median lifespan of both progeroid and naturally aging 
mice.53,118) As mentioned previously, the use of quercetin and da-
satinib significantly improved the physical capability of people 
with cellular senescence-associated lung disease, although pulmo-
nary function itself was unchanged.54) Based on these results, seno-
lytic drugs have attracted attention in current studies on tissue re-
juvenation. 

Ketone Bodies 
Other than CR, many diets and fasting methods benefit metabo-
lism. In most of these, the target is to activate pathways to increase 
autophagy, ketogenesis, stress resistance, and other protective 
mechanisms. Unlike other supplement-based methods, the keto-
genic diet (KD) changes the ratio of the nutrients consumed and 
elevates ketone body levels within the body more naturally. With-
out changing the overall calorie consumption, by minimizing car-
bohydrate intake and replacing it with protein and fat, the KD can 
increase circulating ketone body levels and fatty acid oxidation to 
mimic starvation metabolism. In mice, KD inhibited mTOR sig-
naling and reduced the cancer incidence, which increased the me-
dian lifespan.119) However, the results in glucoregulatory mecha-
nisms are controversial as they have been shown to improve insu-
lin/glucose sensitivity and cause glucose intolerance.119,120) In hu-
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mans, the KD improved weight loss and reduced blood pressure 
compared to a low-fat diet.121) 

CONCLUSION 

The discovery of life-extending chemicals is difficult, as the metab-
olisms causing the aging phenotype within a cell or whole organ-
ism have not been fully elucidated. While many potential life-ex-
tending chemicals have been studied for their ability to induce CR-
like metabolic changes, these are not merely less potent imitators 
or CR, as many can stimulate mechanisms that are not included in 
the regulation of conventional nutrient-related pathways. For in-
stance, quercetin showed senolytic effects, unlike most CRMs, 
while many antioxidants were more potent in activating multiple 
SOD or catalase pathways than CR.122) These differences, even if 
they are not necessarily bad for metabolism, may be overlooked in 
the search for anti-aging chemicals, as most research focuses on the 
known pathways for CR. These overlooked pathways might be the 
main reason for anti-aging effects and not because they mimicked 
any of the major metabolic shifts induced by CR. 

Although some are also considered CRMs, antioxidants, in gen-
eral, are one of the largest groups of chemicals that are considered 
anti-aging. Their benefits, however, are controversial as their ef-
fects are often condition-dependent. In fact, many antioxidants are 
reported to be both anti- and pro-aging. For instance, a C. elegans 
study showed that vitamin C only had life-extending characteris-
tics for certain knockout backgrounds with altered ROS levels and 
showed no clear effects on the wild-type strain. Moreover, antioxi-
dant N-acetylcysteine (NAC) and vitamin C were both shown to 
improve and damage lifespan, depending on the dose level of the 
supplement and innate ROS levels in the strain.123) 

Based on the current capacity of anti-aging chemicals, rather 
than identifying the perfect compound, it might be crucial to in-
stead focus on two or three chemicals that can function better 
when combined. Such combinations may stimulate more path-
ways when they are complementary to each other or reduce side 
effects when more efficiently targeting the same pathways. Some 
of these potential CRM systems, such as resveratrol and spermi-
dine, have been tested as combination treatments and have been 
shown to work synergistically.22) 

Finally, besides identifying the most effective anti-aging chemi-
cals, it might be essential to combine these supplements with com-
patible diets and other lifestyle changes, such as exercise, to achieve 
significant differences. As there is no universal solution for every 
age, gender, or health condition, it is important to study and com-
pare different aspects of these discoveries. 
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