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Abstract

Autism Spectrum Disorder is a highly heterogeneous condition currently diagnosed using behavioral symptoms. A
better understanding of the phenotypic subtypes of autism is a necessary component of the larger goal of mapping
autism genotype to phenotype. However, as with most clinical records describing human disease, the phenotypic data
available for autism contains varying levels of noise and incompleteness that complicate analysis. Here we analyze
behavioral data from 16,291 subjects using 250 items from three gold standard diagnostic instruments. We apply
a low-rank model to impute missing entries and entire missing instruments with high fidelity, showing that we can
complete clinical records for all subjects. Finally, we analyze the low-rank representation of our subjects to identify
plausible subtypes of autism, setting the stage for genome-to-phenome prediction experiments. These procedures can
be adapted and used with other similarly structured clinical records to enable a more complete mapping between
genome and phenome.

Introduction

Autism spectrum disorder (ASD) is one of the most common developmental pediatric conditions impacting 1 in 68
children'. Twin studies have been used to demonstrate a strong genetic component with concordance between monozy-
gotic twins ranging from 37-95%>7. For this reason, autism has been a major focus of the field of translational ge-
nomics, with now nearly 21,000 fully sequenced whole genomes from various independent collaborative efforts®'!.
These efforts have advanced our understanding of the genetic contribution to the autism phenotype and have helped to
build plausible genetic models for autism'?>~1>, but the specific genetic markers responsible for varying forms of autism
remain unknown. At least two factors contribute to this. First, the sample size may still need to be expanded since
the most likely genetic model involves combinations of common variants rather than single highly penetrant loss of
function rare variants. The second arises from the all too common problem of inadequate phenotyping. In this study,
we focus on the second issue.

With the attention paid to developing large research cohorts for autism sequencing, there has been a companion focus
on the phenotypic characterization of research subjects. While many behavioral instruments have been developed
for autism, three of the most commonly used are the Autism Diagnostic Interview-Revised (ADI-R)"7, the Autism
Diagnostic Observation Schedule (ADOS)'6, and the Social Responsiveness Scale (SRS)!8. ADI-R and SRS both ask
the primary caregiver to report on a range of behaviors. The ADI-R is a clinically administered questionnaire, while
the SRS takes less time to administer and is used primarily in research. ADOS is a structured exam that measures
behavior during a staged clinical observation. Combined, these tests evaluate 250 behaviors that follow an ordinal
level of severity from unimpaired to highly impaired. For example, one question focuses on eye contact and determines
whether the child never, sometimes, often, or always makes good eye contact within an appropriate social setting.

Although these data provide highly granular information about a subject’s phenotype, missing entries complicate the
application of methods to build discrete phenotypic clusters. Missing entries may arise from two situations. First,
entries may be missing within an instrument (entry-level incompleteness), particularly from ADI-R and ADOS since
only a subset of questions are used to form the diagnosis - unused entries are often sporadically unrecorded. Second,
many subjects may be missing one or more instruments entirely (instrument-level incompleteness), since every instru-
ment has not been administered to every individual, particularly across different studies. Our goal in this study was
to simultaneously rescue entry-level and instrument-level incompleteness in order to build phenotypic clusters and
ultimately map genotype to phenotype.

Generalized low rank models (GLRM)3? provide a framework for handling structured data (i.e. ordinal, boolean)
with missing entries in a graceful way. Similar to principal component analysis (PCA), the goal is to find a low-rank
subspace that models the existing entries as accurately as possible. If A is an m x n matrix of data, then a GLRM is a
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problem of the form

xemmit e AZZ(A [XY]3;) + rx(X) + 7y (Y) (1)
where [(a, u) is our loss function, which operates only on the known entries of A and rx and ry are regularizers on
the matrix factors X and Y respectively. This is an extremely flexible model that generalizes many known algorithms.
If l(u,a) = (u—a)? and rx(X) = ry(Y) = 0 then we have PCA. Setting rx (X) = || X|; and ry(Y) = ||V}
gives us sparse PCA!°. Changing the loss function [(u,a) = log(1 + exp(—au)) gives us logistic PCA?’. Even the
k-means clustering problem can be posed in this framework. By tailoring the loss and regularizers to our problem, we
can impute entry-level and instrument-level missing values while simultaneously discovering a low-rank representa-
tion for our data. This low-rank representation can then be used to cluster individuals by phenotype and to understand
correlations between items both within and across instruments.

There are many other approaches to handling missing data. One of the most common is case-wise deletion, where sub-
jects with missing entries are removed from analysis. Such an approach is not practical for most phenotypic datasets
where almost all individuals are missing at least a few entries. Another simple approach is mean or median imputa-
tion, which replaces missing values with the average or median of each item. However, this distorts item variance and
makes subjects with many missing entries appear very similar which can confound downstream clustering analysis.
The k-nearest neighbor algorithm can be adapted to perform imputation (KNN impute)?!. However, when working
with ordinal data, defining a distance metric to identify nearby neighbors can be challenging. For example, quantifying
the difference between “sometimes” using appropriate eye contact and never” using appropriate eye contact is quite
difficult. Multiple imputation by chained equations (MICE)?? is another effective imputation technique that iteratively
imputes missing values by regressing on other items in the dataset. MICE produces multiple completed datasets, cre-
ating a distribution of imputed values for each missing entry. MICE has been used successfully on behavioral data in
the fields of psychology and epidemiology®*2°. While MICE is an effective imputation technique, unlike GLRM it
does not produce a low-rank representation for the data.

GLRM leverages the correlation structure between items to impute values. It can be trained for large datasets using
an alternating minimization approach. Furthermore, the algorithm is parallelizable across both subjects and items.
In this study, we use the GLRM framework to model our dataset of 250 items across 16,291 subjects. We focus on
three tasks: 1) imputing entry-level missing data, 2) imputing instrument-level missing data, 3) identifying phenotypic
clusters using the low-rank representation produced by the GLRM.

Methods

Datasets

Data were aggregated from six sources: Autism Genetic Resource Exchange (AGRE)?®, Autism Consortium (AC),
National Database for Autism Research (NDAR)?°, Simons Simplex Collection (SSC)*°, Simons Variation in Indi-
viduals Project (SVIP)®' and a dataset of ADI-R responses by neurotypical children collected by Cognoa (COG).

Individuals were included in our analysis if at least one diagnostic instrument had been administered. In total, the
aggregated dataset contains item-level phenotypic data for 16,291 subjects.

Preprocessing

We analyzed data from three diagnostic instruments: ADI-R, ADOS, and SRS. All three instruments consist of a series
of behavioral items, divided into three major categories identified by DSM-IV: communication, social interaction, and
restricted repetitive behavior. The responses to each item lie on an ordinal scale.

ADI-R consists of 93 items: 2 free-response items, 14 age of onset items, and 77 ordinal scale items whose responses
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range from O (typical behavior) to 4 (severely atypical). We discard the free-response and age of onset items in order
to focus on behavior. Of these 77 items, 62 ask for two responses: the current behavior and the lifetime behavior. This
results in a total of 139 ADI-R items.

ADOS is administered as four different modules, with each module being appropriate for a different age range of
children. We manually aggregated items across the four modules, combining items that were identical across multiple
modules. A mapping between module-level items and the aggregated items used for analysis is available in the sup-
plementary materials. The resulting aggregated ADOS instrument includes 46 items. Responses range from O (typical
behavior) to 3 (severely atypical).

SRS consists of 65 items and is administered to the child’s parent, teacher, or primary caregiver. Responses range from
0 (typical behavior) to 3 (severely atypical).

Data were aggregated and validated using a JSON schema. A JSON schema is a way to define the structure of a
dataset in a clear, human-readable way that can also be programatically validated. The schema places constraints
on the allowable responses to each item. Any disallowed entries found in the raw data were either manually resolved
or removed. Many of the items from both instruments include an N/A option. All such entries were marked as missing.

Figure 1 shows the entry-level and instrument-level incompleteness present in our dataset, broken down by instrument.
Note that instrument-level incompleteness is the larger contributor of missing entries in with 74.4% of missing entries
being the result of missing instruments and the other 25.6% the result of entry-level incompleteness.
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Figure 1: The distribution of missing data.
Finally, we note that our dataset is highly imbalanced with respect to clinical diagnosis: 64.3% of our subjects are
diagnosed with autism, 5.2% with PDD-NOS, 2.2% with Asperger, and 11.7% are clinically determined to not have
autism. The remainder have a missing diagnosis.

Model

To impute missing data, we trained a low-rank model using a multi-dimensional ordinal loss. The multi-dimensional
ordinal loss is a generalization of logistic PCA. In logistic PCA, we use the logistic regression loss function rather than
the standard quadratic loss in order to fit a low-rank model to binary data. The rows of X represents the low dimen-
sional representation of each subject and the columns of Y represent a separating hyperplane for each feature. Since
our data are ordinal, not binary, we can extend this loss function by embedding each item in a d — 1 dimensional space

180



where d is the number of possible responses for that item. Now, rather than learning a single separating hyperplane for
the feature, we are learning d — 1 separating hyperplanes, each representing the division between one ordinal response
and the next.

We regularized our model by constraining the rows of X to be non-negative and to sum to 1 and adding a small amount
of ¢5-regularization on Y. This regularization makes our model a form of fuzzy clustering. In fuzzy clustering, sub-
jects are allowed to partially belong to multiple clusters. Here, the rows of Y represent k cluster centroids and the
rows of X indicate partial cluster membership for each subject. Finally, we added an offset term to the model, so that
our separating hyperplanes are not constrained to go through the origin. This is similar to the column centering that is
typically done before running PCA.

We use the GLRM software package? to train the model via alternating minimization. We impute data for all three
instruments simultaneously, using the entire dataset, even subjects who are missing one or more instruments. Items
from one instrument may be used to impute items from the others. This scheme allows us to use the same model both
to impute missing entries within instruments (entry-level incompleteness) and to impute entire missing instruments
(instrument-level incompleteness).

Baselines

We compare the performance of our model to several baseline imputation techniques: median imputation, k-nearest
neighbor imputation with & = 3 and MICE. We use the fancyimpute software package® to fit these models. For
MICE, we use 75 imputations and initialize the procedure using median imputation. We use Bayesian ridge regression
for the MICE predictor function and impute using the posterior predictive distribution.

Assessing Performance

We first consider the imputation accuracy for entry-level imputation - how well the model is able to impute missing
entries within an instrument. To do this, we split our data entry-wise between training (90%) and testing (10%). When
training our model we mask the testing entries, and then we compare the values the model imputes to the true values
for these masked entries in order to evaluate performance. We use 5-fold cross-validation to select the parameter k,
the dimension of the low-rank space.

Next we consider the imputation accuracy for instrument-level imputation - how well the model is able to impute
items when the entire instrument is missing. For this task, we split our data by subject into training (85%) and testing
(15%). Rather than masking data entry-wise as in the first evaluation, we now mask entire instruments for our testing
individuals. One-third of the testing individuals have their ADI-R items masked, one-third have their ADOS items
masked, and the last third have their SRS items masked. For testing, we only select individuals with data for all three
instruments in order to ensure that after masking there will still be data available for training. We again use 5-fold
cross-validation to select the parameter &, the dimension of the low-rank space.

Since we are imputing an ordinal response, measuring accuracy is challenging. We present confusion matrices and use
a linearly weighted Cohen’s kappa to summarize overall performance. Cohen’s kappa measures inter-rater agreement,
taking into account the possibility that agreement may occur purely by chance. We use Cohen’s kappa to compare
imputed values to actual values for each model. A Cohen’s kappa of 1 indicates complete agreement between imputed
and actual values while a Cohen’s kappa of 0 indicates complete disagreement.

The JSON schema used to aggregate the data along with the code for training the GLRM and other baseline models
and evaluating performance is available at https://github.com/walllab/PhenotypeGLRM.
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Results

Imputation Performance

=@~ Train
16 =@ Entry-level test
=@ Instrument-level test

Entry- | Instrument-
Model level level
Median impute 0.302 | 0.323

KNN impute 0.506 | 0.254

MICE 0.532 | 0.351
GLRM (k =4) | 0502 | 0.445
GLRM (k =12) | 0.548 | 0.427

(b) Linearly-weighted Cohen’s kappa imputation
performance on entry-level and instrument-level test
sets.

k

(a) The effect of k on imputation error for entry-level
and instrument-level imputation.

Figure 2: Imputation performance.

We start by selecting k, the size of our low-rank model via 5-fold cross-validation. Figure 2a shows training and
cross-validation error for a range of ks. A smaller low-rank space of £ = 4 is most effective when imputing missing
instruments while a larger low-rank space of k£ = 12 is most effective when imputing missing entries.

Table 2b compares our model to several baseline models: median imputation, KNN impute, and MICE. Models are
compared using linearly weighted Cohen’s kappa. MICE is the highest performing baseline model, so we compare
the confusion matrices between our model and the MICE model in Figure 3. MICE struggles with extreme values,
never imputing a value of 4 and having trouble distinguishing between 0 and 1. The GLRM is able to model the
extremes more effectively. This becomes even more pronounced when imputing missing instruments. MICE imputes
most values as being 1 or 2, while GLRM is able to make correct predictions across the entire ordinal range.

GLRM (k=12) MICE GLRM (k=4) MICE
Imputed Values Imputed Values Imputed Values Imputed Values
2 2

o 1 o 1

Actual Values
Actual Values

(a) Entry-level confusion (b) Instrument-level confusion
Figure 3: Confusion matrices for GLRM and MICE imputation. Entries are colored by fraction of actual values.

Clustering

Due to the regularization we placed on X when building our GLRM, we can interpret our model as a form of fuzzy
clustering. The rows of X represent partial cluster membership for each subject and the rows of Y represent cluster
centroids. We can explore the clusters discovered during the imputation process to see if these clusters correspond to
distinct autism phenotypes. For this analysis, we focus on a GLRM with k& = 4. In cross-validation, this level of k
performed best at instrument-level imputation, and since this is the largest source of incompleteness in our dataset, we
expect this model to capture the structure of our data best. Because our model includes an offset term, a £ = 4 GLRM
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corresponds to three clusters (the fourth dimension of the low-rank space is used to represent the offset).

We can visualize our three clusters as the vertices of a triangle, and plot each of our subjects as a point within this
triangle. Figure 4 shows a density histogram broken down by clinical diagnosis. Nearly all of our control subjects lie
on the vertex corresponding to cluster 1. Asperger subjects are more diffuse and have a clear tendency towards cluster
2. The PDD-NOS region partially overlaps with that of Asperger, but is predominantly in the middle of the triangle.
Finally, while our autism subjects are spread diffusely through the triangle, there are two modes: one tightly centered
on the cluster 3 vertex, and the other with a similar distribution to Asperger. Some of our datasets do not distinguish
between autism, PDD-NOS, and Asperger in the clinical diagnosis. Subjects from these datasets with any of the three
diagnoses will be marked autism. This may explain the cluster of subjects diagnosed with autism that closely mirrors
the Asperger distribution.

Control Autism

Cluster 1 Cluster 1

Cluster 2 Cluster 3

Asperger PDD-MOS

Cluster 1 14 Cluster 1

6
10

Cluster 2 Cluster 3

Figure 4: A histogram showing the partial cluster membership of subjects for each clinical diagnosis. The color of
each tile represents the number of subjects within the tile. All points lie within a triangle whose vertices correspond
to the three clusters.

We can quantitatively explore the relationship between cluster membership and clinical diagnosis by using partial
membership in each cluster as a predictor of clinical diagnosis. For each cluster and each clinical diagnosis, we can
set a threshold ¢ such that subjects with partial cluster membership greater than ¢ are predicted to have the diagnosis
and subjects with partial cluster membership less than ¢ are predicted not to have the diagnosis. We can then evaluate
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the true positive and false positive rate for our prediction, generating an ROC curve by varying ¢. Figure 5 shows
the resulting ROC curves for each cluster and each clinical diagnosis. As expected, cluster 1 partial membership is
predictive of a control diagnosis. Cluster 2 partial membership is mildly predictive of an Asperger diagnosis. Partial
membership in cluster 3 is predictive of an autism diagnosis. The predictive power of cluster 2 partial membership on
an Asperger clinical diagnosis may be being obscured by a lack of granularity in the diagnosis for some subjects, as
mentioned above. Interestingly, we see an AUC below 0.5 when trying to predict PDD-NOS or Asperger status from
cluster 3 partial membership. This indicates that subjects with a diagnosis of Asperger or PDD-NOS tend to have low
partial membership in cluster 3, and that this model may be able to differentiate between autism and Asperger. These
results suggest that the GLRM has found a low-rank space that differentiates between control, Asperger, and autism
phenotypes.

Cluster 1 Cluster 2 Cluster 3
10 - s | 10 = 10 -
0.8 0.8 1 0.8
& ] &
I [ I
w 0.6 1 w 06 w 06
= = =
2 2 2
a a a
2 04 =04 L
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= . = . = .
Autism (auc=0.20) Autism (auc=0.60) | Autism (auc=0.80)
0.2 1 Control (auc=0.89) 0.2 7 Control [auc=0.24) 027 Control (auc=0.17)
PDD-MOS (auc=0.59) / PDD-MOS {auc=0.63) | PDD-MOS (auc=0.36)
0 ¥ Asperger (auc=0.50) 0 - J Asperger (auc=0.79) 0.0 | Asperger (auc=0.26)
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False positive rate False positive rate False positive rate
Figure 5: ROC curves showing the predictive power of partial cluster membership for each cluster when predicting

each clinical diagnosis.
Discussion

GLRM outperformed other imputation methods when imputing both entry-level and instrument-level missing data. It
is likely that this performance improvement is a result of using a multidimensional ordinal loss. This loss allows each
ordinal value for each item to be modeled separately. This is especially useful when the distances between ordinal
values are not uniform. Using our eye contact example, it may be that the difference between using appropriate eye
contact always versus sometimes is much smaller than the difference between using appropriate eye contact sometimes
versus never. In the extreme case, the different ordinal responses for an item may not lie on a spectrum at all but may
correspond to entirely different behaviors.

We found that using a smaller-dimensional space (k = 4) produced better instrument-level imputation while a larger-
dimensional space (k = 12) produced better entry-level imputation. Future work should be done to determine why
this occurs. Based on the instrument-level confusion matrices for both GLRM and MICE, it is clear that both models
are less likely to predict extreme values when entire instruments are missing. This could be because subjects with
missing instruments provide the models with less information, making it harder to model these subjects with confi-
dence, and causing the models to default to median imputation. We can see some evidence of this hypothesis in our
cross-validation curves. Training and entry-level testing error have low variance at each value of &, unlike instrument-
level testing error which varies widely from fold to fold.

GLRM has several limitations when applied to phenotypic data. First, the data may not lie in a low-rank space. The
model assumes that there are a small number of prototypical individuals and that every subject in our dataset is a
weighted combination of these individuals. This may not be the case for all phenotypic datasets. In particular, phe-
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notypic datasets that are not disease specific may contain individuals with a large number of diverse phenotypes, and
a low-rank model may not be appropriate. Another limitation of our approach lies in the non-convexity of our objec-
tive. Alternating minimization will find a local minimum solution to the objective, but does not guarantee a global
minimum, making its performance dependent on the initial guess for X and Y. As with k-means, it is wise to run the
algorithm several times, intitialized with different random guesses and to take the best solution to ensure a quality fit.

Preliminary analysis of the low-rank clusters produced by our model shows that this approach holds promise for
differentiating subtypes of autism. We see that subjects with control, Asperger, and autism clinical diagnoses cluster
into different areas of the low-rank space. The distinction between Asperger, PDD-NOS, and autism was discarded in
DSM-V, however our phenotypic data suggests that there may be a phenotypic subtype of autism with Asperger-like
behavior. It is notable that we see a cluster associated with Asperger, a more behaviorally homogeneous diagnosis, but

not PDD-NOS which is known to be behaviorally heterogeneous>*.

Conclusion

Maximizing the utility of archived medical record data is essential for advancing the search for genetic markers of
diagnostic value. Here we showed that GLRMs can impute missing entries and entire missing instruments with high
fidelity. This imputation in turn enables the construction of a complete matrix of data on which we can run a variety
of analyses.

Furthermore, the GLRM produces a low-rank representation of our data, which itself can be used for subsequent anal-
ysis. By adding the appropriate regularizers to our model, we can interpret this low-rank representation as a fuzzy
clustering, where subjects are allowed partial cluster membership. We explored the clusters produced by our model
and found that partial cluster membership was predictive of control, Asperger, and autism clinical diagnoses. There is
more work to be done validating these phenotypic clusters.

Finally, we created a JSON-schema which programmatically defines the structure of the ADI-R, ADOS, and SRS
instruments. This schema can be used to aggregate autism phenotype data across multiple studies. It can also be used
to identify invalid entries and to correct data-entry errors.

These procedures hold promise for maximizing the value of archived clinical records from the autism population on
whom we also have fully sequenced genomes. They can be adapted and used with other similarly structured clinical
records to boost the value of the phenotype and enable a more complete mapping between genome and phenome.
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