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Key messages

What is already known about this subject?
►► Deep convolutional neural networks (DCNN) has 
been used for automatic prediction in diagnostic 
imaging, such as echocardiography and cardiac 
scintigraphy. It is reported that DCNN can be also 
useful in the medical image synthesis for education-
al purposes.

What does this study add?
►► We first showed that DCNN is useful for developing 
the automatic image prediction model in coronary 
angioscopy (CAS) and the performance might be su-
perior to the support vector machine model. In addi-
tion, we showed the potential of DCNN to generate 
realistic CAS images using generative adversarial 
networks.

How might this impact on clinical practice?
►► Our prediction model can help physicians to inter-
pret CAS images and might be useful for the screen-
ing. Generative modelling can serve as a medical 
image simulation, which might be useful for educa-
tional purposes.

Abstract
Background  Coronary angioscopy (CAS) is a useful 
modality to assess atherosclerotic changes, but 
interpretation of the images requires expert knowledge. 
Deep convolutional neural networks (DCNN) can be used 
for diagnostic prediction and image synthesis.
Methods  107 images from 47 patients, who underwent 
CAS in our hospital between 2014 and 2017, and 864 
images, selected from 142 MEDLINE-indexed articles 
published between 2000 and 2019, were analysed. First, 
we developed a prediction model for the angioscopic 
findings. Next, we made a generative adversarial 
networks (GAN) model to simulate the CAS images. 
Finally, we tried to control the output images according 
to the angioscopic findings with conditional GAN 
architecture.
Results  For both yellow colour (YC) grade and 
neointimal coverage (NC) grade, we could observe 
strong correlations between the true grades and the 
predicted values (YC grade, average r=0.80±0.02, 
p<0.001; NC grade, average r=0.73±0.02, p<0.001). 
The binary classification model for the red thrombus 
yielded 0.71±0.03 F

1-score and the area under the 
receiver operator characteristic curve was 0.91±0.02. 
The standard GAN model could generate realistic CAS 
images (average Inception score=3.57±0.06). GAN-
based data augmentation improved the performance 
of the prediction models. In the conditional GAN model, 
there were significant correlations between given values 
and the expert’s diagnosis in YC grade but not in NC 
grade.
Conclusion  DCNN is useful in both predictive and 
generative modelling that can help develop the diagnostic 
support system for CAS.

Introduction
Coronary angioscopy (CAS) is a unique 
imaging device which enables direct visual-
isation of the vessel lumen and provides 
comprehensive information about athero-
sclerotic changes.1 2 It has been reported that 
CAS has a higher ability to detect neointimal 
vulnerability after stent implantation than 
other modalities.3 However, this procedure 
requires expert knowledge for interpreta-
tion and is therefore not common to general 
cardiologists.

Currently, there is an increasing number of 
studies about the application of artificial intel-
ligence in the field of cardiology.4 5 In partic-
ular, deep convolutional neural networks 
(DCNN) have become popular in medical 
image analysis6 7 and its application is extended 
to the generative tasks such as generative 
adversarial networks (GAN).8 Considering its 
ability of feature abstraction, we think DCNN 
can be used for the automated interpretation 
of CAS images and enhance the outreach of 
this procedure. In this study, we aimed (1) to 
develop a data-driven prediction model for 
CAS findings as a diagnostic support system 
and (2) to synthesise realistic CAS images for 
educational purposes using GAN, that may 
in turn improve the performance of diag-
nostic system. Additionally, we demonstrated 
the outcome of conditional image synthesis 
according to the CAS findings.
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Figure 1  Definitions of CAS findings. (A) Shows the 
representative images for each YC grades. (B) Is for the NC 
grades. All shown images are converted to 96×96 pixels. 
CAS, coronary angioscopy.

Methods
Image acquisition from patients
We retrospectively assessed 107 consecutive lesions after 
stent implantation using CAS for 47 patients who had 
undergone PCI between February 2014 and October 2017 
at Ehime Prefectural Imabari Hospital. Detailed patient 
characteristics are indicated in online supplementary 
table S1. Catheterisation was performed with a radial, 
brachial or femoral approach using ≥6 F guiding cathe-
ters. CAS was performed with the FT-203F (FiberTech, 
Tokyo, Japan) non-obstructive coronary angioscope 
system and the VISIBLE (FiberTech) optical fibre as 
previously reported.9

Evaluation of the angioscopy
Each CAS analysis was performed as agreed by two inde-
pendent cardiologists. Neointimal coverage (NC) grade 
was evaluated using a 4-point grading scale, from 0 (no 
coverage) to 3 (complete coverage). Plaque yellow colour 
(YC) was assessed using a 4-grade system, from 0 (white) 
to 3 (bright yellow). The presence of red thrombus was 
also assessed as previously described.10 Representative 
CAS images for each grade are shown in figure 1.

Additional image collection from MEDLINE-indexed articles
In order to address the class imbalance problem, we 
additionally collected angioscopic images using PubMed 
search. We used the keyword ‘coronary’ and ‘angioscopy’ 
to search articles written in English published between 
April 2000 and April 2019. This initial search yielded 507 
records. After manually excluding the articles which do 
not include any coronary angioscopic image, 142 articles 
met the criteria (see online supplementary table S2). 
In each article, pictures with excessive modifications or 
annotations (eg, lines and arrows) were excluded from 
the analysis. Duplicate images were also excluded. If the 
diagnosis for the image is provided in the literature, we 
adopted it as a true label. Otherwise, image-level diagnosis 

was de novo made by cardiologists as above described. 
Since not all pictures were obtained from the stent 
implanted site, the NC grades were uniformly defined 
as three when stent struts were not observed. In order 
to get the perspective on the collected images, principal 
component analysis (PCA) was used for the data visualis-
ation (see online supplementary figure S3).

Image data preprocessing
All collected images were converted to the Joint Photo-
graphic Experts Group format with 24-bit colour data and 
resized to 96×96 pixel size with the image processing tool 
of Python interpreter (Pillow; Alex Clark and Contribu-
tors). In reference to the previous report,11 we employed 
geometric data augmentation; rotation with four different 
angles. For the appropriate cross-validation, training and 
test datasets were properly separated, so as not to share 
the same image source.

Structure of the prediction models
We designed a simple 4-layer DCNN model which can be 
universally used for the assessment of YC grade, NC grade 
and red thrombus. Mean squared error as used as a loss 
function for the regression tasks (predicting the grade 
scores). For the binary classification, we set sigmoid func-
tion as the final activation function and used binary cross 
entropy as a loss function. Adaptive moment estimation 
as used in the all prediction models as an optimisation 
algorithm.

For the sake of comparison, we assessed the perfor-
mance of other machine learning algorithms; support 
vector machine (SVM) implementation in scikit-learn (a 
python library) was used for both regression task and clas-
sification task. Before the model training, the dimension-
ality of the image data was reduced to 100 components 
by PCA. We used default parameters of the scikit-learn 
for simplicity.

Structure of the GAN models
We designed a standard deep convolutional GAN and a 
conditional GAN model, according to the original arti-
cles.12 13 Figure 2 shows the schematic representation of 
the conditional GAN model in this study. All CAS findings 
were used as the conditioning information to train the 
model. For the standardisation, YC and NC grades were 
divided by three to be ranged between 0 and 1. The condi-
tioning vector was concatenated with a Gaussian noise 
and passed to the generator network. For the discrimi-
nator network, conditions were combined with the image 
data as input and also passed to the fully connected layer.

Evaluation method for the performance of GAN models
For the standard GAN model, Inception scores were 
calculated for a randomly selected 1000 images from the 
original data and for the 1000 generated images, respec-
tively. We employed a blinded visual scoring system for the 
evaluation of the conditional GAN model. Two experts 
were asked to grade the generated pictures without any 
information about the given conditions. Per each grade, 
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Figure 2  Schematic representation of the conditional GAN model. CAS findings are converted to condition vector and passed 
to both generator and discriminator networks. CAS, coronary angioscopy; GAN, generative adversarial network; NC, neointimal 
coverage; YC, yellow colour; RGB, Red-green-blue color values.

12 images were generated by the conditional GAN. These 
blinded scores were compared with the given conditions 
and the correlation coefficient was calculated.

Method for the GAN-based data augmentation
In order to test the capability of GAN-based image 
synthesis as a data augmentation method, we split 
the dataset differently from the previous experiment. 
Namely, images from our hospital were used as a fixed 
validation dataset (n=107) and the prediction model was 
trained on the online-collected images (n=864) or on 
the augmented dataset where the original images were 
combined with the same number of synthesised images 
(n=1728). To see the pure effect of this augmentation 
method, no geometrical transformation was conducted 
for this experiment. The standard GAN was trained only 
on the online-collected images to prevent the possible 
overfitting phenomenon. Model training was repeated 
five times with different random seeds and the mean 
performance indices were calculated.

Statistical analysis
Data are presented as mean±SE. Fivefold cross-validation 
was used to evaluate prediction models. For the assessment 
of regression models, we employed Pearson’s correlation 
coefficient (r value) and mean absolute error (MAE) as 
indicators of the model performance. R values higher 
than 0.7 were considered to show strong positive linear 
relationships. For the binary classification task, we used 
precision, recall, specificity, negative predictive value and 
F1-scores as indicators. Receiver operator characteristics 
(ROC) curve and the area under the curve (AUC) were 
also analysed. P values less than 0.05 were regarded as 
statistically significant. All analyses were performed using 
SciPy module in the python library.

Results
Characteristics of the articles in the PubMed search
A total 864 different angioscopic images were obtained 
from 142 articles (see online supplementary table S2). 
Among these 142 articles, 82 (57.7%) were original arti-
cles and 44 (30.9%) were case reports. Twelve review arti-
cles, two letters a rapid communication and an editorial 
article were also included. Among them, 89 (62.7%) arti-
cles provide images of stented lesions, and the rest were 
about de novo lesions. On average, seven pictures were 
available from an original article and 4.4 pictures from a 
case report. Circulation Journal (29 articles, 20.4%), JACC 
Cardiovascular Intervention (16 articles, 11.3%) and Inter-
national Journal of Cardiology (nine articles, 6.3%) were 
the top three most frequently found journals through the 
online search.

Distributions of CAS findings
In our hospital data, the most frequently observed finding 
was YC grade 0, NC grade 1 without any thrombus (17.8% 
of the total 107 images). YC grade 3 was not observed 
except in NC grade 3 without thrombus. Red thrombi 
were most frequently observed in YC grade 1, NC grade 
1 area (figure 3A). On the other hand, YC grade 0, NC 
grade 1 is the most frequent finding among the images 
collected through PubMed search (16.2% of the total 864 
images). (figure 3B). On the whole, lower NC grades were 
more frequently found in the published articles’ pictures. 
Distribution in the mixed data is shown in figure 3C.

Diagnostic prediction model for the angioscopic findings with 
DCNN
In both the YC grade and NC grade prediction model, 
we observed strong and significant correlations between 

https://dx.doi.org/10.1136/openhrt-2019-001177
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Figure 3  Heatmaps for the distribution of the angioscopic findings. The percentage of the population with the specific finding 
was shown for the images obtained from our hospital (A), PubMed search (B) and in the merged dataset (C). In each area of the 
matrix, the right-sided cell indicates the population with red thrombus. Cells with higher percentage were highlighted with red 
background colour as a heatmap (colours are assigned independently for each panel).

Figure 4  Representative box-whisker plots from the fivefold cross-validation. The data distribution of the predicted values 
according to the true values were visualised for yellow grade score (A) and neointimal coverage score (B). NC, neointimal 
coverage; YC, yellow colour.

the true grades and the predicted values (YC grade, 
average r=0.80±0.02, p=<0.001, average MAE=0.16±0.01; 
NC grade, average r=0.73±0.02, p<0.001, average 
MAE=0.17±0.01). Representative box-whisker plots 
are shown in figure  4. The binary classification model 
for the red thrombus achieved 0.87±0.04 in precision, 
0.62±0.06 in recall, resulting in 0.71±0.03 F1-score. The 
specificity was 0.96±0.01 and the negative predictive value 
was 0.89±0.01. Average AUC was 0.91±0.02, calculated 
from ROC curves of fivefold cross validation (see online 
supplementary figure S1).

On the other hand, the support vector regression 
models yielded 0.74±0.02 in r value for YC grades and 
0.50±0.03 in r value for NC grades, the latter was signifi-
cantly lower than the performance of DCNN (p=0.0011). 

The support vector classification model showed 0.74±0.02 
in ROC AUC for thrombus detection. Comparison results 
were summarised in table 1.

Synthesised CAS images by the GAN models
The standard GAN model generated a variety of angio-
scopic images (figure  5A) with the average Inception 
score of 3.57±0.06. Images were visually realistic allowing 
us to do the annotation, but the score was significantly 
lower than the original dataset (3.90±0.01, p<0.01).

Incremental effect of GAN-based data augmentation on the 
prediction model
The baseline performance of the regression model and 
the effect of GAN-base data augmentation are shown in 

https://dx.doi.org/10.1136/openhrt-2019-001177
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Table 1  Comparison of the model performance between DCNN and SVM

DCNN SVM with PCA P value

R value in YC grade prediction 0.80±0.02 0.74±0.02 0.0987

R value in NC grade prediction 0.73±0.02 0.50±0.03 0.0011

ROC AUC in red thrombus detection 0.91±0.02 0.74±0.02 0.0005

AUC, area under the curve; DCNN, Deep convolutional neural network; NC, neointimal coverage; PCA, principal component analysis; ROC, 
receiver operator characteristic; SVM, support vector machine; YC, yellow colour.

Figure 5  Representative output images. (A) Shows representative output images of the standard GAN model. (B) Longitudinal 
axis corresponds to the gradual change of neointima coverage grade and the horizontal axis indicates the grade of yellow 
colour. The thrombus conditions were randomly assigned. GAN, generative adversarial network.

table 2. Data augmentation achieved 37.0% increase in 
the correlation coefficient and reduced 14% in the MAE 
for the NC grade prediction. In contrast, this method 
did not significantly affect the performance of YC grade 
prediction.

In the binary classification for the red thrombus, the 
data augmentation increased 57.9% in F1-score and 5.2% 
in AUC, owing mainly to the substantial increase of the 
sensitivity as shown in table 3.

Performance of the conditional GAN model
Using the conditional GAN architecture, we could control 
the output images by giving the conditions as shown in 
figure 5B. There were significant and strong correlations 
between given conditions and experts’ score in YC grades 
(r=0.84, p<0.001) and the interobserver agreement for 
the grading was r=0.67 (p<0.001). However, we did not 
reach agreement on the NC grades in synthesised images 
(r=−0.31, p=0.011), and there was only a weak correlation 
between the given conditions and average score (r=0.42, 
p<0.001).

Discussion
CAS is a useful device which allows for the direct visual-
isation of the internal surface of the lumen, providing 
information about the characteristics of the plaque and 
thrombus. Previously, we presented evidence that some 
CAS findings correspond to pathological change14 and 

provide an explanation for the other imaging modal-
ities such as optical coherence tomography.2 Angios-
copy is also a useful tool to follow up on stent implanted 
lesions.15 However, due to the limited medical resources, 
CAS usage is mostly limited for research purposes. There-
fore, we believe diagnostic support systems or simulation 
systems could be beneficial for general cardiologists.

Along with the recent advancement in machine learning 
algorithms, there are an increasing number of reports 
concerning the application of artificial neural networks 
in diagnostic imaging.16 In particular, deep generative 
modelling has emerged as an effective approach to simu-
late the complex data structure of medical images.17–20 We 
recently reported that the deep convolutional encoder–
decoder model can be used to reconstruct the apical 
two-chamber view in an echocardiogram.21 Considering 
the DCNN's ability to expand the potential of diagnostic 
modalities, we thought that such technologies can be also 
applicable to broaden the usage of CAS. In this study, we 
demonstrated the utility of DCNN for the interpretation 
of CAS views through both prediction tasks and genera-
tive modelling.

To begin with, we evaluated the performance of diag-
nostic prediction models. As previously discussed, one 
of the principal problems of deep learning in the health 
science field is the paucity of large training datasets.22 
In order to address this issue, we used the MEDLINE 
database to collect angioscopic images. Because the 
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Table 2  Effect of GAN-based data augmentation on the regression tasks

YC grade NC grade

r-value MAE r value MAE

Original data (n=864) 0.66±0.03 0.19±0.01 0.46±0.02 0.28±0.01

Augmented data (n=1728) 0.67±0.00 0.18±0.00 0.63±0.01 0.24±0.00

Fold change 1.02 0.95 1.37 0.86

P value 0.768 0.479 0.001 0.027

GAN, generative adversarial network; MAE, mean absolute error; NC, neointimal coverage; YC, yellow colour.

Table 3  Effect of GAN-based data augmentation on the binary classification task

Precision Recall F1-score ROC AUC

Original data (n=864) 0.81±0.09 0.26±0.04 0.38±0.04 0.77±0.01

Augmented data (n=1728) 0.86±0.04 0.46±0.04 0.60±0.05 0.81±0.00

Fold change 1.06 1.77 1.58 1.05

P value 0.614 0.008 0.006 0.002

AUC, area under the curve; GAN, generative adversarial network; ROC, receiver operator characteristic.

distribution patterns of the CAS findings were different 
between the hospital data and literature data, the model’s 
generalisation capacity was expected to increase when the 
datasets were combined. As a result, the trained models 
could achieve acceptable performance in YC grade and 
NC grade prediction. Especially, DCNN model showed 
significantly higher predictive performance in NC grade 
compared with SVM model with dimensionality reduction. 
However, the sensitivity in the red thrombus detection 
model remained relatively low. This might be ascribed to 
the low incidence of red thrombus in the entire dataset23 
and could be resolved by increasing the sample number 
or appropriate data augmentation methods.

We next developed a generative model with GAN algo-
rithm to synthesise realistic CAS images. Medical image 
simulation should be one of the most intuitive applica-
tions of generative modelling.24 Recently, Tom and Sheet 
proposed a novel approach to simulate the intravascular 
ultrasound images with a stacked GAN-based frame-
work.25 The authors believe that a simulation model can 
serve as an aid for doctors to learn rare diseases. Actu-
ally, it has been reported that simulation-based training 
improves cardiology fellows’ skills in cardiac catheterisa-
tion.26 Since realistic visualisation is an essential compo-
nent of practical simulation,27 our approach to generate 
CAS images with GAN should be a promising option for 
the medical simulation method.

The medical image synthesis is not limited to educa-
tional purposes, but also implicated in the improvement 
of automatic diagnosis systems. To this date, it has been 
reported that medical image synthesis by GAN is as effec-
tive as a data augmentation method in a classification 
task.28 Gupta et al reported that GAN-based data augmen-
tation could address the class imbalance in the training 
data and achieved better performance in the bone lesion 
classification in X-rays.29 Similarly, we could see significant 

improvement in the performance of the regression model 
for NC grade and the classification model for the red 
thrombus by GAN-based image augmentation. Although 
the validation data size was quite small, our data adds 
evidence that support the efficacy of this method.

In this study, we also showed the potential of conditional 
GAN to control the output images according to the CAS 
findings. With this model, we could change the YC and 
NC grades of the output image at the same time, by giving 
the multidimensional condition. Although we were not 
able to control NC grades at this point, this method holds 
a potential to reduce the burden of annotation tasks for 
the synthesised images. Aside from that, conditional GAN 
could be used to further develop a non-invasive virtual 
CAS system.30 As Nishimoto et al reported in 2017, there 
are some clinical factors which can determine the CAS 
findings.10 Therefore, if we can select appropriate vari-
ables to predict the pathological state from the individual 
patient data, it might be possible to generate patient-
specific virtual CAS images.

Limitations
This combined dataset may not be reflective of the 
contemporary cohort of coronary artery disease patients, 
as the therapeutics for coronary interventions have expe-
rienced a drastic change over the last couple of decades. 
In addition, considerable publication bias is inevitable 
due to our image collection method. Therefore, it is 
highly possible that our synthesised images do not reflect 
the real-world distribution of pathological findings. In 
fact, we observed higher incidence of red thrombus in 
the synthesised images than in our hospital data. On the 
other hand, this publication bias should not have nega-
tive influence on the image recognition task, because the 
collected images were better curated and include more 
representative findings than our raw data, which can lead 
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to the increased the versatility of our prediction model. 
The second limitation is the inherent subjective nature 
of angioscopy itself. Although our 4-point grading scale 
is widely accepted, there should be a certain degree of 
intraobserver and interobserver variability.31 Quantitative 
colorimetry is known to be an objective method to assess 
the plaque colour,32 but it was not effective for the YC 
grade prediction in our data (see online supplementary 
figure S2). Therefore, our future work should directly 
focus on the accordance with pathological findings, such 
as fibrous cap thickness. Finally, the metrics for the gener-
ative model in terms of image quality are not complete. 
Since all the authors were well versed in angioscopy, 
Visual Turing test33 was not applicable this time and we 
only used Inception score. However, the result of GAN-
based data augmentation may indirectly indicate the 
quality of synthesised images.

Conclusion
DCNNs are useful in diagnostic prediction for the CAS 
findings which outperformed the SVM models. In addi-
tion, image generation by DCNNs can improve the 
performance of prediction models. DCNN could be the 
most promising method to develop an automated diag-
nostic support system for CAS.
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