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Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor
cells with selective capacities for tumor initiation, self-renewal, metastasis, and
unlimited growth into bulks, which are believed as a major cause of progressive
tumor phenotypes, including recurrence, metastasis, and treatment failure. A
number of signaling pathways are involved in themaintenance of stem cell prop-
erties and survival of CSCs, including well-established intrinsic pathways, such
as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the
vascular microenvironment and tumor-associated immune cells. There is also
intricate crosstalk between these signal cascades and other oncogenic pathways.
Thus, targeting pathway molecules that regulate CSCs provides a new option
for the treatment of therapy-resistant or -refractory tumors. These treatments
include small molecule inhibitors, monoclonal antibodies that target key signal-
ing in CSCs, as well as CSC-directed immunotherapies that harness the immune
systems to target CSCs. This review aims to provide an overview of the regulat-
ing networks and their immune interactions involved in CSC development. We
also address the update on the development of CSC-directed therapeutics, with
a special focus on those with application approval or under clinical evaluation.
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1 INTRODUCTION

The concept of stem cells dates back to the 18th century
when scientists tried to elucidate how lower organisms
developed tissues and organs.1 These stem cells pro-
duce daughter cells that later undergo different biological
processes, either continuous self-renewal division, or dif-
ferentiation into specialized cells with a limited lifespan.
Normal tissue stem cells provide a life-long source of cells
for self-renewal of tissues, which leads us to speculate that
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whether stem cells are capable of deriving a malignant cell
population, and this lies the foundation of cancer stem
cells (CSCs) theory. CSCs are defined as a subpopulation of
malignant tumor cells with selective capacities for tumor
initiation, self-renewal, metastasis, and unlimited growth
into bulks.2
Despite decades of research on cancer treatment, it has

been proved extremely challenging to achieve complete
remission (CR) in cancer patients. Tumor relapse may be
explained by the fact that antitumor therapeutics mainly
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target proliferative cancer cells but remain ineffective in
quiescent CSCs. The role of CSC in tumor initiation was
first identified in acute myeloid leukemia (AML). Since
its isolation from a number of solid tumors and hema-
tological malignancies, the CSC is believed to form the
clonogenic core of these tumors.3 Growing evidence now
suggests that CSCs are responsible formultiple progressive
tumor phenotypes, including recurrence, metastasis, and
treatment failure.4,5 The intrinsic treatment resistance of
tumors has partially attributed to the presence of the CSC
subpopulation,6,7 and may also be induced by extrinsic
factors, such as treatments and environments.8,9
Major signaling pathways are involved in the mainte-

nance of stem cell properties and survival of CSCs, such
as the Notch, Wnt, and Hedgehog (HH) pathways.10 There
is also intricate interplay network between these signal
cascades and other oncogenic pathways.11–13 Thus, target-
ing pathway molecules that regulate CSCs provides a new
option for the treatment of therapy-resistant or -refractory
tumors. This review aims to provide an overview of the reg-
ulating networks and their immune interactions involved
in CSC development. We also summarized the update on
the development of CSC-directed therapeutics, with a spe-
cial focus on those with application approval or under
clinical evaluation.

2 CHARACTERISTICS AND
IDENTIFICATIONMARKERS OF CSCs

2.1 Characteristics of CSCs

Over the past decades, a wide breadth of literature inves-
tigated the biological characteristics of CSCs, with the
hope to develop CSC-targeted strategies that eradicate
treatment-insensitive or -refractory tumor cells. The potent
self-renewal ability is probably the best-characterized
property of CSCs and a direct cause of tumor initiation.14
CSCs divide into daughter cells in a symmetrical splitting
manner and ultimately lead to excessive tumor growth.15
Experimental data revealed the tumorigenic function of
CSCs by forming new tumors with CSCs isolated from
primary tumor tissues in immunodeficient mice.16
Another characteristic of CSCs is their differentiation

ability. For instance, leukemia stem cells (LSCs), charac-
terized by CD34-positive expression and deficient CD38
expression, were able to differentiate into multiple cell
types in SCID mice.17 In addition, CSCs isolated from
human brains share similar surface markers CD133 and
Nestin, with normal neuronal stem cells, and are thus
believed to have differentiation capabilities.18 In normal
tissues, the balance between self-renewal and differen-
tiation of stem cells controls the cell fate, the aberrant

regulation of which lead to tumorigenesis.19 Interestingly,
the trans-differentiation of CSCs into other multilineage
cells may also contribute to tumor formation.20 One
such example is the trans-differentiation of CSCs into
vascular endothelial cells, leading to oncogenesis and
tumor angiogenesis of glioblastoma,21 renal,22 and liver
cancer.23
Tumor heterogeneity is one of the key reasons for ther-

apeutic resistance.24 The theory of tumor heterogeneity
concept dates back to the 1970s when tumors are believed
to consist of multiple distinct tumor cell subpopulations.25
CSCs are believed to contribute to tumor heterogeneity.
This cell subpopulation gives rise to cancer cells with
diverse differentiation levels, which then go through spo-
radic mutations and environmental changes for clone
selection.26 The aberrant differentiation programs of CSCs
resemble the hierarchical compositions of normal stem
cells, which ultimately lead to a hierarchical set of tumor
cells.
CSCs have also been identified with surviving and

expanding capacity after cytotoxic anticancer treatment,
which were recently found to enrich in remaining
tumor bulks following chemotherapy treatments.27,28 For
instance, after chemotherapy treatment, preleukemic
DNMT3Amut hematopoietic stem cells (HSCs) are able
to generate a hematopoietic hierarchy that facilitates their
survival and expansion.29 Likewise, the transformation of
differentiated tumor cells to glioma stem cells (GSCs) was
often observed in temozolomide (TMZ)-treated glioma.30
The underlying mechanisms for the chemoresistance
caused byCSCs include epithelial-mesenchymal transition
(EMT), dormancy, and tumor environment, which we will
discuss in the review.31–33

2.2 Identification markers of CSCs

The unique gene expression profile of the CSC makes
it different from bulk tumor cells, which can be used
as CSC-specific identification markers. Commonly used
methodologies that evaluate CSC stemness include the
detection of stemness genes, surface proteins, such as
CD44 and CD133, intracellular markers, such as alde-
hyde dehydrogenase (ALDH), and at a more macroscopic
level, phenotypic assays, such as tumorsphere formation
tests.34–37 Table 1 shows the key markers of CSCs in
solid tumors and hematological malignancies. A number
of stemness genes have been reported to modulate cell
stemness in embryos and adults, including the transcrip-
tion factors POU class 5 homeobox 1 (POU5F1, OCT4),
Nanog homeobox (NANOG), Sex-determining region Y-
box 2 (SOX2), Kruppel-like factor 4 (KLF4), and MYC
proto-oncogene.38,39
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TABLE 1 Key markers of cancer stem cells in solid tumors and hematological malignancies

CSC surface marker Cancer types
CD4 Head and neck squamous cell carcinoma
CD9 Glioblastoma
CD10 Acute myeloid leukemia, head and neck squamous cell carcinoma
CD13 Liver, pancreatic cancer
CD15 Glioblastoma
CD19 Acute myeloid leukemia
CD20 Acute myeloid leukemia, melanoma
CD24 Breast, gastric, liver, colorectal, ovarian cancer
CD25 Chronic myeloid leukemia
CD26 Chronic myeloid leukemia
CD29 (ß1 integrin) Breast cancer
CD33 Chronic/acute myeloid leukemia
CD34 Acute myeloid leukemia
CD36 Chronic myeloid leukemia, glioblastoma
CD44 (and its variants) Breast, lung, gastric, liver, colorectal, prostate, bladder, esophageal, ovarian, pancreatic, cervical

cancer, glioblastoma
CD47 Liver cancer
CD49f Breast, gastric, colorectal, cervical cancer, glioblastoma
CD54 Gastric cancer
CD61 Breast cancer
CD70 Breast cancer
CD71 Acute myeloid leukemia
CD87 Lung cancer
CD90 Breast, lung, gastric, liver, esophageal, pancreatic cancer, glioblastoma
CD98 Head and neck squamous cell carcinoma
CD117 Chronic myeloid leukemia, prostate, ovarian, lung cancer
CD123 Chronic/acute myeloid leukemia
CD133 Breast, lung, gastric, liver, colorectal, prostate, ovarian, pancreatic, cervical cancer, melanoma,

glioblastoma, head and neck squamous cell carcinoma
CD166 Lung, colorectal, ovarian cancer
CD206 Colorectal, liver cancer
CD271 Melanoma, head and neck squamous cell carcinoma
Ov6 Pancreatic cancer
CXCR4 Breast, gastric, prostate, renal, lung cancer
EpCAM Breast, lung, gastric, liver, colorectal, prostate, pancreatic cancer
LGR5 Breast, gastric, colorectal cancer
ProC-R Breast cancer
IL1RAP Chronic myeloid leukemia
LINGO2 Gastric cancer
CLL-1 Acute myeloid leukemia
TIM3 Acute myeloid leukemia
L1CAM Glioblastoma
EGFR Glioblastoma
ABCG2 Lung, cervical cancer
CK17 Cervical cancer
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As for the surface markers that are differentially
expressed onCSCs,40,41some of themarkers are not unique
to CSCs and may also be present on normal stem cells.42,43
The first reported CSC surface markers were CD34 and
CD38 proteins which are used to identify HSCs and LSCs
in acute myelogenous leukemia.44 ABCG2 is a pheno-
typic marker for CSCs45 in ovarian,46 hepatic,47 breast,48
lung cancer,48 and AML.49 ABCG2 is believed to associate
with therapeutic resistance caused by CSC and is highly
expressed in side population (SP) cells (defined as the
cell fraction that excludes Hoechst DNA binding dye).50
The fluorescence-activated cell sorting (FACS)-based SP
sorting method is commonly used for CSCs isolation.
CD133 (Prominin 1), coded by the gene PROM1, was ini-

tially considered a surface marker for colorectal CSCs,51,52
and was later confirmed of its expression on CSCs of mul-
tiple origins. However, as recent evidence suggested that
CD133- cell subsets were capable of inducing tumorige-
nesis, CD133 positivity may not necessarily indicate CSC
stemness.53 In addition, CD133+ cells were also found to
promote tumor metastasis.54 Results from a single-cell
proteomic profiling analysis revealed a higher level of
CD133 compared with other stemness markers, such as
NANOG and ALDH1A1, in lung cancer cells with EMT
phenotypes.55 Given that epithelial-mesenchymal plastic-
ity of CSCs is a potential trigger for tumormetastasis,56 the
coexpression of CD133 and other stemnessmarkersmay be
used to identify cells with stemness characteristics.
CD44, also known as P-glycoprotein 1, is a transmem-

brane glycoprotein and cell surface adhesion receptor for
hyaluronic acid (HA) and osteopontin (OPN).57 Accu-
mulating evidence has suggested that stemness mark-
ers, including SOX2, NANOG, and OCT4, are highly
expressed in CD44+ cell fraction.58 Though the down-
stream targets of CD44 remain incompletely defined,
known cancer-associated signaling pathways include Rho
GTPases, Ras-MAPK, and phosphatidylinositol-3-kinase
(PI3K)/AKT cascades.59 The alternative splicing of the
CD44 gene leads to multiple variants, and among all the
variants, CD44v is expressed in epithelial cells and critical
for maintaining stemness.60 Although HA is a ligand for
all forms of CD44, OPN only interacts with CD44v rather
than CD44s.61 The crosstalk between HA and CD44 reg-
ulates a number of biological processes leading to tumor
cell stemness, invasion, and metastasis. For instance, HA
binds to CD44 and triggers the NANOG-STAT3 pathway
activation, leading to the self-renewal of ovarian cancer
cells.62 On the other hand, OPN, enriched in gliomas, has
also been found to promote tumor cell stemness via the
OPN-CD44 axis.63 This evidence suggests that the down-
stream activities of CD44 might depend on the selection
of variants by the ligands. Thus, CD44 should not be sim-
ply addressed as amarker for CSCs, the functions of which

rely on its preference of variants and ligands present in the
microenvironment.
However, the surface markers of CSCs may vary accord-

ing to tumor types and the cell of tumor origin, demon-
strating highheterogeneity between tumors or even among
cells within the same tumor.35,64 Examples include breast
CSCs, which frequently display different surface marker
patterns, such as CD44+, CD24−, and ALDH+,65,66 and
melanoma stem cells that can either be CD271− or
CD271+.67 Such heterogeneity of CSC surface markers has
also been reported in glioblastoma,68 prostate cancer,69 and
lung cancer.70 Moreover, the expression of CSCbiomarkers
is not constant and may change depending on the external
environment. Higher CD133 expression was observed on
stem cell-like pancreatic cancer cells under hypoxia71 and
the enzymatic dissociation alters the retention of surface
CD133 on glioma cells.72
To overcome the challenge caused by constantly chang-

ing surface markers for CSCs, researchers then used
nonmembrane biomarkers for CSC identification, and
the ALDH represents one of its kind. The expression of
ALDH is often found in normal stem cells. Highly active
ALDH1 can be used to identify CSCs in breast, bladder,
lung cancer, embryonal rhabdomyosarcoma, and head and
neck squamous cell carcinoma.73 ALDH1 expression is
also related to the therapeutic resistance of cancer cells
to chemotherapies.74 However, subpopulations of breast
cancer CSCs appeared to be ALDH-negative.75
EMT allows a polarized epithelial cell to escape from

its interaction with the basement membrane and trans-
form into mesenchymal cell phenotypes.76 Thus, cancer
cells that undergo EMT are more prone to invasion and
metastasis.77 A subpopulation of breast cancer CSCs
showed both EMT and CSC markers CD44, ABCG2, and
ALDH1A1/3, which might serve as identification markers
for metastasis-initiating cells.78 In addition, another CSC
subpopulations, which are ITGA6-positive but deficient in
ABCG2 and ALDH1A1/3, are referred to as non-CSC cells
with metastatic abilities but no oncogenic activities.78 Pre-
vious studies reported a fraction of ITGA6+ cells exhibiting
epithelial characteristics involved in metastasis.79 In colon
cancer, ITGA6+ cells are included in the CD44+/CD133+
cell population, representing the metastatic non-CSCs.80

3 SIGNALING PATHWAYS
REGULATING CSCs

The homeostasis of normal stem cells is modulated by
an intricate signaling network, the aberrant activation
or repression of which promotes oncogenic transfor-
mation. These aberrations lead to the self-renewal and
differentiation properties of CSCs, conferring stemness
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F IGURE 1 Overview of major signaling pathways that regulate CSCs. Among an array of signaling pathways aberrantly activated in
cancer Wnt, JAK/STAT, PI3k/Akt/mTOR, Notch, NF-κB, Hedgehog, and TGF-β/Smad pathways are crucial for the self-renewal, cell growth,
metastasis of CSCs, and angiogenesis. (Figures built with biorender.com)

to the cancers. Like their normal counterparts, CSCs
also rely on these signaling pathways for survival and
stemness maintenance. In this review, we classified
these molecular pathways as extrinsic or intrinsic signals
(Figure 1).

3.1 Intrinsic signaling pathway in CSCs

3.1.1 Wnt signaling

The Wnt pathway is highly conserved and has long been
identified as a key regulator of embryonic development
and tissue homeostasis.81,82 The abnormal activation of
Wnt signaling elements, including adenomatous polypo-
sis coli (APC), Axin, β-catenin, and Wnt1, is frequently
found in a wide range of malignancies, which is related to
cancer initiation and progression.83–87 The canonical Wnt
pathway is β-catenin dependent and the noncanonicalWnt
pathway does not rely on β-catenin.
In the context of CSC regulation, the canonical Wnt

signaling appears rather important in maintaining stem
cell-like traits of tumor cells.88 Canonical Wnt signaling
is critical for maintaining lung CSC properties, poten-
tially by regulating the expression of CSCmarker OCT-4.89
Other CSCmarkers stimulated by theWnt/β-catenin path-
way include CD24, Prom1, CD44, and ALDH1, thereby
enhancing tumor stemness.90 These CSC markers were
also upregulated inWnt+ glioblastoma cells, indicating the

involvement of Wnt/β-catenin signaling in maintaining
the stemness of glioblastomas.91 The nuclear transloca-
tion of β-catenin also promoted the dedifferentiation of
colorectal cancer (CRC) cells, which is a novel index for
stemness.92,93 Conversely, ablation of the β-catenin gene
resulted in the loss of CSC populations and complete
tumor regression of squamous cell carcinoma.94
In CRC, both microsatellite instable and microsatellite

stable cells demonstrate activatedWnt cascades, especially
at the intestinal crypts.95 This Wnt signal activation is
mainly attributed to the functional loss of a negative regu-
lator, APC.95 Anothermechanism forWnt signal activation
is the function loss of RNF43 caused by gene mutations,
which delays the removal of Wnt receptors in the intesti-
nal crypt.96 Though 5-fluorouracil (5-FU), the first-line
treatment for CRC, is able to inhibit tumor growth, a
recent study revealed that 5-FU might induce CSC acti-
vation via the WNT/β-catenin signaling pathway and thus
cause chemoresistance in CRC patients.97 Consistent with
this finding, Wnt/β-catenin pathway activation induced
by m6A modification-Sec62-β-catenin promotes stemness
and chemoresistance of CRC.98
The activated Wnt/β-catenin pathway is enriched in

more than half of breast cancers and indicates a poor
prognosis.99 The expression of the activated β-catenin pro-
tein is also upregulated in breast CSCs. The inhibition of
β-catenin signaling significantly prevented tumor forma-
tion and metastasis in HER2-overexpressing breast cancer
cells.100
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Other cancer types of c regulated by WNT signaling
include renal cancer, where the proliferation and self-
renewal of CSCs were significantly impaired by WNT
inhibition,101 lung adenocarcinoma, and were activated
by Wnt/β-catenin and Notch signaling. Hypoxia-inducible
factor-1ɑ (HIF-1ɑ)-regulatedmiR-1275maintains stem cell-
like phenotypes and promotes the progression of LUAD
simultaneously.102 These results collectively suggest the
essential role of β-catenin in sustaining CSC phenotypes.

3.1.2 Notch signaling

Notch signaling is a genetically conserved pathway
involved in the embryonic development of the central ner-
vous system, heart, andmultiple other organs.103,104 Notch
signal is also important to the initiation and progression of
cancer. In mammalian cells, four Notch transmembrane
receptors (Notch 1–4) and five membrane-bound cell
surface ligands (JAG 1 and 2, DLL 1, 3, and 4) have been
reported.105 Following the ligand-receptor interaction, the
active fragment of Notch receptors, the Notch intracel-
lular domain (NICD), is released via proteolysis. Upon
activation, the NICD-CSL complex was formed following
the nuclear translocation of NICD, which then recruits
MAML and p300 coactivators, activating the downstream
genes of Notch signals Hes-1, c-Myc, HER2, NF-κB,
cyclin-D1, and p21.106
Hyperactivation of Notch signaling is significantly cor-

related with the maintenance of CSC characteristics in
various cancer types, including breast,107,108 colon,109
pancreatic,110 hepatic,111 cervical,112 and ovarian cancer.113
This theory was first established in medulloblastomas,
where the tumor-initiating ability of the CD133+ CSC
population largely relied on Notch signal activation.114
Likewise, the inhibition of Notch2 activation dramati-
cally reduced the number of CSCs, whereas the better-
differentiated cells remained unaffected.115
In hepatocellular carcinoma (HCC), higher expression

of TACE/ADAM17 and Notch1 was found to predict a
worse prognosis.111 Besides, inducible nitric oxide synthase
enhances the TACE/ADAM17-mediated Notch1 signaling,
leading to the enrichment of CD24+CD133+ liver CSCs.111
In breast and pancreatic cancer, there was an increase
in the expression levels of JAG1, JAG2, Notch1, Notch3,
and Hes1, a downstream gene of Notch signaling.116,117
The hypoxic microenvironment in breast cancer upreg-
ulated the expression of HIF-2α, which then stimulated
Notch signaling molecules NICD and promoted stem cell
phenotypes, thereby facilitating chemoresistance of breast
cancer cells.107 The hypoxic environment also upregulated
Notch1 signaling in glioblastoma and increased its stem
cell marker CD133 on the cell surface.118 Moreover, the

heterogeneous metabolic signature of glioblastoma stem
cells was also modulated by Notch signaling.119 Similar
findings were obtained from the analyses of CSC popu-
lations in pancreatic cancer120 and myeloid leukemias,121
which displayed Notch-mediated chemoresistance. Thus,
Notch signaling plays a critical role in promoting therapy-
resistant CSC populations across malignancies. Owing to
the significant impact of Notch signaling in CSCs leading
to tumor initiation and therapy-resistance, targetingNotch
pathwaymoleculesmay be a promising strategy in thewide
spectrum of cancers.

3.1.3 JAK/STAT signaling

The JAK/STAT signaling pathway comprises various types
of ligands, including interleukins, interferons, and hor-
mones, and their corresponding receptors.122 Upon the
binding of ligands to receptors, JAK proteins (JAK1-
3 and TYK2) are activated via phosphorylation, which
then phosphorylates the cytoplasmic domain of receptors,
recruiting the STAT family proteins.123 The dimerization
and translocation of STATs lead to transcription regulation
of downstream target genes.
Similar to Notch and Wnt signaling, JAK/STAT

axis is also evolutionarily conserved and facilitates
hematopoiesis, neurogenesis, and self-renewal of normal
embryonic stem cells. CSCs from hematological malig-
nancies, such as AML, demonstrated aberrant activation
of JAK/STAT signaling.124 The tumor-formation ability
of AML CSCs was potently inhibited in immunodeficient
mice following JAK1/2 inhibitor treatment,125 reinforcing
the promoting effect of JAK/STAT signaling on CSC
stemness across a wide panel of cancers.126
The role of the JAK/STAT pathway in CSC regulation

is best characterized by its tumor-initiating effect in
glioblastoma.127 In a glioblastoma model, the transform-
ing growth factor (TGF)-β-activated JAK/STAT pathway
induced the self-renewal capacity and prevented the dif-
ferentiation of glioma-initiating cells derived from patient
tumors, thereby facilitating tumor formation.127 Besides,
inhibition of STAT3 in CSCs reduced the tumorsphere
formation and increased the expression of the neuronal
differentiation genes.128 Similar results were observed in
breast CSCs, where STAT3 inhibitors decreased tumor
growth and the abundance of CSCs.129 Recently, JAK-
STAT signaling was reported to modulate stemness and
chemoresistance of myxoid liposarcoma.130 Likewise,
JAK2/STAT3/CCND2 signals also control the radioresis-
tance of CRC by regulating its stem cell persistence.131
The role of STAT3 in determining cell fate is well

established.132 JAK proteins activate STAT3 via phospho-
rylation at Tyr705 residues. The downstream target genes
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of STAT3 nuclear translocation include cyclin D1, c-Myc,
and Bcl-2. STAT3 holds profound importance in govern-
ing embryonic and adult stem cells inmice and humans.133
Apart from its modulation of self-renewal of both embry-
onic and CSCs as an element of JAK signaling, STAT3
interacts with Notch ligands DLL1 (Delta-like 1) to facil-
itate neocortical development in infancy.134 STAT3 also
interacts with NF-κB and HIF-1α to enrich CD133+ cell
populations.135 The activated form of STAT3 (p-STAT3-
Tyr705) was enriched inALDH+ andCD44+/CD24+ CSCs,
the inhibition of which subsequently reduced stem cell
phenotypes of this CSC population.136

3.1.4 HH signaling

The HH signaling pathway was identified by the Nobel
prize winner team in 1980.137 The HH pathway is crit-
ical to the development of multiple organs during
embryogenesis.138 Interestingly, HH signaling remains
inactive in all postnatal tissues except central nervous
system (CNS), skin, hair, and teeth.139 The HH pathway
is composed of three secreted ligand isoforms–Sonic
hedgehog (Shh), Desert hedgehog, and Indian hedge-
hog, with their corresponding receptors being–Patched,
Smoothened (SMO), and three Gli transcription factors
(Glis1–3).140
The aberrant activation of HH signaling has been

reported to support the proliferation and stemness main-
tenance of CSC in various cancer types, such as multiple
myeloma, glioma, HCC, and chronic myeloid leukemia
(CML).141–143 HH pathway activation is heterogeneous
in multiple myeloma CSCs, with overexpression of the
SMO gene and high Gli1 transcriptional activity.144 The
SMO gene encodes Smoothened protein, the chemical
inhibition of which reduced stemness and proliferation
of multiple myeloma CSCs.144 In CML, the activation of
HH signaling is with early disease progression.145 The
restoration of SMO expression in SMO-deficient CML
animal models promoted tumor growth and led to a
four-fold increase in CSC proportions.146 Likewise, the
overexpression of the HH signaling genes Gli1, SHH,
and PATCHED1 was also present in glioma CSCs.147
HH signaling supports glioma tumor growth in ani-
mal models by inducing SMO-expressing gliomasphere
formation.147 A recent study showed that GLI1 inhibition
reduced mammosphere formation of breast cancer cells.
Interestingly, GLI1 inhibition resulted in a decrease in
expression of YAP1, a Hippo pathway effector, suggest-
ing a regulation activity of HH signaling on the Hippo
pathway.148
The development of treatment resistance to cancer

requires the functional support of CSC-related HH sig-

naling. GLI-1 regulates oncogenesis and therapeutic resis-
tance of colon rectal cancer,149 with significantly higher
GLI-1 expression observed in 5-FU resistant CRC cells
than in nonresistant cells.150–152 The expression of stem
cell markers of CRC cells was significantly decreased by
GLI-1 inhibition, and the cell response to 5-FU, Irinotecan,
and Oxaliplatin was also resumed.153 In gastric adenocar-
cinoma, the forkhead box C1 (FOXC1) gene mediates the
CSC phenotypes and tumor response to chemotherapy by
regulating HH signaling.154

3.1.5 TGF β/SMAD signaling

TGF-βis a bifunctional regulator in cancer that represents
a differentiation signal that potentially inhibits tumor
initiation at an early stage.155–157 In contrast to tumor
initiation, TGF-β promotes the CSC-like phenotypes of
cancer cells by inducing EMT.158 TGF-β binds to TGF-β
type I receptor kinase (ALK5) and triggers the Smad-
dependent canonical TGF-β pathway.159 TGF-β–ALK5
activates Smad2/3 via phosphorylation which then forms
a complex with Smad4 and regulates gene transcription
following nucleus translocation.160 The crosstalk between
TGF-β and the bioactive lipid mediator sphingosine-1-
phosphate, a regulator of CSC expansion, is essential
for cancer migration and the proliferation of breast
CSCs.161–163
The TGF-β-SMAD signaling is implicated in the reg-

ulation of CSC-like properties of CD44+ gastric cancer
cells,164 HCC cells,165 and cervical cancer cells.166 In addi-
tion, CD44+ breast cancer cells, which are referred to
as breast cancer CSCs, are frequently accompanied by
activated TGF-β signaling.167 TGF-β induced the expres-
sion of EMT-associated genes Snail and Twist in breast
cancer CSCs.168 A recent study identified the role of
TGF-β-SMAD signaling in maintaining CSCs in the bone
microenvironment.169
TGF-β is able to switch non-CSCs into CSC states

via activating ZEB1 and Snail.170–172 The response of
CSCs to chemotherapy is associated with TGF-β/Smad
pathway activation, the suppression of which sensitizes
CSCs to chemotherapy.173 According to a previous study,
TGF-β-induced chemoresistance is a downstream reac-
tion of the Hh signaling, suggesting the interaction of
TGF-β with Hh signaling.174 In addition, TGF-β also
demonstrated crosstalk with Notch signaling, with the
synergistic promoting effect of TGF-β and Notch1 on CSC
proliferation.175
The hypoxic microenvironment is a positive regulator of

TGF-β activities in CSC stemness and chemoresistance.176
HIF-1αinduces the expression and activation of TGF-
βand COX-2, thereby promoting CSC enrichment.177 The
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positive feedback loop between Snail and TGF-β is also
regulated by hypoxia, which together promotes EMT and
recruits CSCs.178

3.1.6 NF-κB signaling

There are five members in the NF-κB protein family:
p65 (RelA), RelB, c-Rel, NF-κB1 (p105/p50), and NF-κB2
(p100/p52).179,180 NF-κB family proteins are present in the
cytoplasm of both differentiated cells and stem cells.181 At
the inactive state, NF-κB are bound to inhibitory IκB pro-
teins, which prevents its nuclear localization.182 Upon acti-
vation by various stimuli, such as lipopolysaccharide, the
IkB kinase (IKK) complex (IKKα, IKKβ, and IKKγ) phos-
phorylates IκB proteins, resulting in their degradation.183
NF-κB then translocates into the nucleus and activates the
transcription of target genes involved inmultiple biological
processes.
Abnormal activation of NF-κB signaling is implicated

in the progression of various cancers. The role of the
NF-κB pathway in regulating CSCs was first identified in
AML, where the primitive AML cells aberrantly express-
ing NF-κB were referred to as potential leukemic stem
cells.184 NF-κB pathway participates in the viability and
self-renewal of AML stem-like cells.185 Since then, growing
evidence has shown elevated or constitutive NF-κB activity
in other cancer types. For instance, increased expression
of total p65 and downregulation of IκBα expression were
found in prostate CSCs.186 In addition, the CD44+ frac-
tion of ovarian cancer cells displayed higher expression of
major stemness genes and NF-κB signal genes, including
RelA, RelB, and IKKα.187 The loss of the APC gene repre-
sents a canonical alteration during tumorigenesis, which
promotes the activation of NF-κB signaling, allowing the
expansion of Lgr5+ CSCs.188
NF-κB activation mediates the tumorigenesis of

glioma.189 Both adherent and spheroid glioma CSCs
exhibited constitutive activation of the STAT3/NF-
κB signaling.190 Gliomasphere-forming cells showed
increased phosphorylation of p65 and sustained oncogenic
activation of NF-κB signaling.191 In Her2-driven breast
cancer models, the inactivation of NF-κB pathways by
IκBα-SR decreased the tumorigenesis of luminal epithelial
tumors.192 A genome-wide expression analysis suggested
that IκBαSR impaired stem cell expansion in breast cancer
and CSC markers in transgenic tumors.193 IKKα activity
is required for Her2-induced oncogenesis, providing self-
renewal signals that maintain mammary tumor-initiating
cells.194 The underlying mechanism may be the phos-
phorylation of p27 by IKKα leading to its nuclear export
in Her2 breast cancer cells.195 The expression of Dll1,

a Notch ligand, promotes the tumor-initiating abilities
of breast cancer cells. It has been recently reported that
NF-κB activation is a downstream target of Dll1, which
collectively contributes to a chemoresistant phenotype of
breast cancer CSCs.196

3.1.7 PI3K/AKT/mammalian target of
rapamycin signaling

PI3K is an intracellular phosphatidylinositol kinase com-
posed of a regulatory subunit p85 and a catalytic subunit
p110.197,198 AKT is a downstream effector of PI3K and
has three isoforms: AKT1, AKT2, and AKT3.199 As a key
member of the PI3K-associated kinase protein family,
mammalian target of rapamycin (mTOR) functions as a
nutritional signal sensor and a regulating factor for cell
proliferation.200 There are two protein complexes formed
by mTOR. The mTORC1 is composed of mTOR, rap-
tor, mLST8, and two negative regulators, PRAS40 and
DEPTOR,199,201 which controls cell growth in response
to metabolism and nutrition signals.202,203 The mTORC2
(mTOR complex 2) consists of mTOR, Rictor, mSin1,
and mLST8. It is well established that mTORC2 acti-
vates Akt via phosphorylation at serine residue 473 and
modulates stem-like properties,204 whereas mTORC1 and
its downstream cascades directly correlate with stem-like
properties.205
The activation of the PI3K/Akt/mTOR pathway is

important to cancer cell growth and its therapeutic
resistance.206 The PI3K/Akt/mTOR pathway can be acti-
vated through multiple mechanisms, such as the insulin-
like growth factor (IGF)/IGFR, ErbB, and fibroblast
growth factor (FGF)/FGFR signaling.206 PTEN is known
for its negative regulation on PI3K/AKT cascades. Data
from several cancer models showed that PTEN depletion
resulted in CSC expansion and increased tumor growth
in mice.207,208 Importantly, PI3K/AKT/mTOR is critical
to maintaining the CSC population in various cancers,
including nasopharyngeal carcinoma,209 glioma,210 pan-
creatic cancer,211 lung cancer,212 prostate,213 and breast
cancer.214
In breast cancer, PI3K/Akt/mTOR pathway is required

for the colony-formation capacity of tumor cells and the
maintenance of stem-like properties.214 One underlying
mechanism may be the HIF-2α-induced CD44 alteration
that promotes CSC activation in triple-negative breast can-
cer (TNBC) via PI3K/AKT/mTOR pathway.215 The tran-
scriptional suppression of negative regulators of mTOR
is intrinsic in luminal-like breast cancer cells, leading
to the development of CSC-like properties.216 Likewise,
the inhibition of mTOR in CRC cells suppressed cell
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stemness represented by decreased ALDH1 activity.37,217
PI3K/AKT/mTOR signaling pathway also enhances the
angiogenesis of CRC and recruitment of tumor-associated
macrophages (TAMs).218
The chemoresistance of hepatoma is also related to

the Akt/mTOR signaling by promoting the expansion of
hepatic tumor-initiating cells.219 The inhibition of the
PI3K/Akt/mTOR pathway overcame the chemoresistance
of ovarian cancer by decreasing CSCmarker expression.220
The radioresistance of prostate cancer is significantly
associated with PI3K/Akt/mTOR signaling activation via
maintaining CSC phenotypes.221 Moreover, prostate can-
cer CSCs present a feedback inhibition on AKT signal-
ing through HIF1α, which impairs CSC metabolism and
growth.222
It was previously suggested that CD133 expression

was upregulated by mTOR signaling in gastrointestinal
cancer.223 Similar results were obtained from hepatic can-
cer cells, where mTOR promotes the conversion of CD133-
to CD133+ cells.224 Moreover, aberrant activation of the
PI3K/Akt/mTOR pathway facilitates the stemness main-
tenance of NSCLC (non small cell lung cancer) cells
by upregulating chemokine (C-X-C motif) receptor 4
(CXCR4) and the subsequent CXCR4-stimulated STAT3
signaling.225
On the other hand, in gliomas, Akt but not mTOR reg-

ulates ATP binding cassette transporters (ABCG2) activity,
which is referred to as stemness hallmark.226 Besides, PI3K
inhibition restored the sensitivity to nilotinib of CML stem
cells, whereas mTOR inhibition demonstrated no effect on
CML.227

3.1.8 Peroxisome-proliferator-activated
receptor signaling

The peroxisome-proliferator-activated receptor (PPAR)
pathway is activated following the binding of theGprotein-
coupled receptor with its ligand, stimulating a cascade of
signal transducers, such as adenylyl cyclase, cyclic adeno-
sine monophosphate, and protein kinase A, which then
induces the translocation of PPAR, a nuclear receptor
protein that regulates the target gene expression.228–230
PPARα, PPARδ, and PPARγ are the three subtypes of PPAR
with respective functions. In the context of a tumor, PPARs
are involved in the modulation of cell proliferation, apop-
tosis, and survival of multiple cancers, including prostate
cancer, breast cancer, glioblastoma, neuroblastoma, pan-
creatic cancer, hepatic cancer, leukemia, bladder cancer,
and thyroid tumors, with either promoting or inhibitory
effects on cancer development.231 PPARs have also been
reported to regulate the EMT process and stem cell-like
properties of CSCs.232

CPT1A (Carnitine palmitoyl transferase I) and CPT2
(Carnitine palmitoyl transferase II) are two known tar-
get genes of PPARα, which increase fatty acid oxidation
(FAO) required for the cell metabolism in radioresistant
breast cancer cells and radiation-derived breast CSCs.233
SCD1 (stearoyl-CoA desaturase 1) is another functional
downstream molecule of PPARα, and the activation of
the PPARα-SCD1 axis is important to the maintenance
of CSCs of HCC.234 PPARα, on the other hand, is con-
sidered a downstream molecule of lipid droplet-derived
signaling, which was highly abundant in pancreatic and
colorectal CSCs than non-CSCs. The inhibition of PPARα
decreases stemness characteristics of pancreatic and col-
orectal CSCs.235 Likewise, PPARδ is involved in the main-
tenance of HSCs by regulating the FAO pathway. The
inhibition of PPAR-δ or mitochondrial FAO reduced the
stemness of HSCs, whereas PPAR-δ agonists enhanced
HSC maintenance.236
On the contrary, PPARγ is considered a tumor sup-

pressor that reduces the CD49high/CD24+ mesenchymal
stem cells (MSCs) and inhibits tumor angiogenesis of
breast cancer.237 The existence of quiescent LSCs may
contribute to treatment failure in CML patients. PPARγ
agonist glitazones decrease the expression of STAT5 and
its downstream targets HIF2α and CITED2, two key genes
maintaining the quiescence and stemness of CMLLSCs.238
PPARγ activation decreases the stem cell-like character-
istics of bladder CSCs and accelerates the differentiation
of adipocytes.239 PPARγ also induces the differentiation
in osteosarcoma stem cells and melanoma cells by sup-
pressing the transcriptional activity of YAP.240,241 Notably,
PTEN is a target gene of PPARγ activation, which in turn
blocks the PI3K/Akt/mTOR pathway and prevents the
self-renewal, tumorigenicity, and metastasis of cervical,
hepatic, and glioblastoma CSCs.242,243

3.2 Extrinsic signaling pathways that
regulate CSCs

The “seed and soil” theory was first brought up in the
19th century, which describes the metastasis of tumor
cells to sites with a favorable microenvironment.244 In this
theory, the “seed” refers to the metastatic tumor cells, and
“fertile soil” refers to the sites with a microenvironment
that favors tumor colonization and growth. In accordance
with the “seed and soil” theory, it is widely accepted
that CSCs dwell in such “soil,” a specific tumor microen-
vironment (TME) composed of stroma, immune cells,
microvessels, and external regulating signals.245 This sys-
tem provides CSCs with a conductive environment via the
action of paracrine factors or direct contact with immune
cells.8,246
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3.2.1 Vascular microenvironments that
regulate CSCs

The theory of tumor vascular microenvironment dates
back to the 1940s when glioblastoma cells were found
to grow into the blood vessels-enriched sites.247 The
multilineage differentiation capacity of CSCs may allow
them to take part in tumor angiogenesis or forming the
vascular mimicry (VM) in the TME. Recent research
has shed light on the relationship between CSCs and
the vascular microenvironment. A typical example is
glioblastoma CSC, where the expression of surface marker
Nestin is positively related to microvessel density.248 The
vascular endothelium of glioblastoma has similar genomic
alterations to CSCs.21 Neural stem cells cocultured with
epithelial cells demonstrated increased self-renewal and
impaired differentiation ability via paracrine signaling,
including the Notch pathway and the chemokine axis
CXCL12/CXCR4.249–251
Recently, the CSC surface marker CD44 was reported

to promote the VM generation in oral squamous cell
carcinoma.252 The CD44/c-Met signaling has also been
identified as the key regulator for VM in Ewing sar-
coma and breast cancers.253 The presence of VM is also
associated with ALDH1 expression in breast cancer.254,255
ALDH+ TNBC cells isolated from FACS initiated VM
on matrigel.256 The increased expression level of VM-
related genes, such as MMP-2 and MMP-9, was observed
in CD133+ breast cancer cells.257
The regulation of CSC phenotype by edothelial cells

(ECs) can be based on the secretion of soluble factors
by ECs.248 In acute leukemia, bone marrow stromal cells
derived from CD133+/CD34+ stem cells secrete IGF-1,
leading to the formation of capillary-like structures.258 Shh
is a soluble factor secreted by ECs, which enhances CSC
properties and stimulates the Hh signaling.259–261 Hh sig-
naling facilitates the acquisition of CSC self-renewal in
thyroid cancer, via regulating Snail expression.260 Interest-
ingly, CD133+ GSCs were identified in areas surrounding
Shh-expressing ECs. The depletion of Shh in ECs pre-
vents of promoting effect of ECs on CSC-like phenotype
maintenance.259
In addition to HH signaling, Notch signal cascades

also take an active part in the EC-mediated regulation of
CSCs.262–265 In CRCs, the promotion of CSC phenotypes by
ECs is dependent on Notch signaling and independent of
Shh or Wnt signaling. The knockout of Jagged-1, a Notch
signaling element, in EC impairs its angiocrine effect.263
The nitric oxide derived from ECs is able to trigger Notch
signaling, leading to increased stemness of GSCs and
glioma initiation in mice.264 Furthermore, in SHH-driven
medulloblastomas, the EC-induced promotion of CSC

characteristics additionally requires PI3K/AKT/mTOR
signals.266

3.2.2 Hypoxic microenvironments that
regulate CSCs

Hypoxia is a common hallmark of TME in solid
tumors.267,268 In solid tumors, the rapidly proliferat-
ing tumor cells require a high level of oxygen to meet the
expanding demands, resulting in relative hypoxia.269,270
In this sense, an extreme hypoxic environment appears
as the natural selection for tumor cells, where aggressive
CSCs are more likely to survive and proliferate.271,272 It
is thus not surprising that CSCs are more resistant to
conventional cancer therapies.273
Hypoxia leads to the acquisition of CSC phenotypes in

breast tumors, which is primarily mediated by HIFs.274
HIFs (HIF-1, HIF-2, and HIF-3) are key sensors of intra-
cellular oxygen alterations and modulate the transcrip-
tion of multiple genes at low oxygen levels.275–277 The
Notch signaling is a key regulating pathway for hypoxia
response, which can be activated by HIF-1α and HIF-2α
for the maintenance of CSC stemness.278,279 For instance,
the HIF-2α-mediated Notch pathway activation promotes
the phenotypic transformation of breast cancer cells into
breast CSCs and cell resistance to paclitaxel treatment.107
Likewise, hypoxia-induced AKT activation contributes to
gemcitabine-induced stemness of pancreatic cancer cells
by enhancing downstream Notch1 activity.280 Another
downstreamelement of PI3K/AKT signaling,mTOR, regu-
lates HIF-1α activity via phosphorylation of p70 S6Kinase
(S6K).281 However, the inactive state of mTOR also facil-
itates the maintenance of CSC characteristics, which
explains the suboptimal efficacy of mTOR inhibitors in
clinical evaluation.222 The agonist of PTEN, a negative reg-
ulator of the PI3K/AKT pathway, provides a new clue to
inhibit HIF-1α activities and thus reduce CSC stemness.282
Fibroblasts are major components of tumor stroma,

which are able to produce various extracellular matrix
proteins and growth factors, such as TGF-β.283 Hypoxia
induces the upregulation in TGF-β3 expression by promot-
ing the binding of HIF-1 to the TGF-β3 gene promoter.284
It has also been reported that hypoxia increased TGF-β1
expression in MSCs.285 The hypoxia-induced secretion of
TGF-β1 by MSCs in turn enhances tumor progression,286
potentially by promoting the stabilization of HIFs.8 Thus,
the concomitant inhibition of HIF-1α and TGF-β delays
tumor initiation and blocks the activity of CSCs.287
Fibroblasts-directed CSC reprogramming includes the

stimulation of COX-2 and nuclear factor of κB (NF-κB).8
On one hand, hypoxia-mediated downregulation of dual
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F IGURE 2 The crosstalk between cancer stem cells (CSCs) and immune cells in the CSC niche via soluble mediators or juxtacrine
signals, which regulate CSC stemness. (Figures built with biorender.com)

specificity phosphatase 2 (DUSP2) upregulates COX-2,
leading to increased cancer stemness.288 On the other
hand, HIF-1α induces COX-2 expression, which in turn
upregulates HIF-2α expression and enhances treatment
resistance of cancer cells.289

3.2.3 Immune cells that regulate CSCs

As immune evasion and CSCs both substantially con-
tribute to tumor progression, it is widely accepted that
there is potential crosstalk between CSCs and immune
cells in the TME. A significantly high stemness sig-
nature was identified in 21 solid malignancies with a
poor immunogenic response.290 It is thus of paramount
importance to elucidate the CSC-immune cell interac-
tions in cancer, which will facilitate the identification
of immunotherapies to eliminate tumor-promoting CSCs.
Figure 2 presents the crosstalk between CSCs and immune
cells in the CSC niche, which regulates CSC stemness.

Tumor-associated macrophage
The critical role of CSCs in monocyte recruitment to
tumor sites has been well established as various protu-
morigenic macrophage factors were increased in super-
natant collected from CSC sphere culture, including IL-13,
TGF-β, and WNT-induced signaling protein 1.291–293 Incu-
bation of macrophages with such sphere culture leads to
macrophage polarization toward an immunosuppressive
phenotype.294–296
On the other hand, TAMs in turn influence CSC pheno-

types by secreting soluble mediators, such as IL-6, TGF-β,
and WNT ligands, or through juxtacrine signaling.297,298
The direct interactions of CSCs with TAMs activates NF-
κB in CSCs, which stimulates the secretion of cytokines
to sustain the stem cell state of breast CSCs.299 In the
pleiotrophin (PTN)-PTPRZ1 paracrine signaling, which
supports glioma progression, PTN released by TAMs binds
to its receptor PTPRZ1 on GSCs, suggesting the signif-
icance of TAMs as important components of the CSC
niche.300
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IL-6 produced by TAMs promotes the expansion of hep-
atic CSCs, and the inhibition of IL-6 with tocilizumab
prevents TAM-stimulated generation of CD44+ cells.301 In
breast cancer, TAM-produced IL-6 induces and maintains
the CSC characteristics through STAT3.302 In addition,
STAT3 is a transcription factor that could also modulate
CSC maintenance in an IL-6-independent manner. For
instance, the self-renewal and tumorigenicity of bladder
CSCs are regulated by the KMT1A-GATA3-STAT3 circuit,
which is independent of IL-6.303 The STAT3 blockade
decreased the expression of PD-L1 on CD44+ cells in
squamous cell carcinoma of the head and neck, a well-
characterized cell population with CSC characteristics,
resuming T-cell-mediated immunity.304 These results fur-
ther justify the development of IL-6- or STAT3-targeting
strategies in cancer treatment.

Natural killer cell
Though CSCs were previously believed as less immuno-
genic than non-CSCs due to decreasedMHC class-I (MHC
I) expression,305,306 growing evidence now suggests that
CSCs are preferentially susceptible to natural killer (NK)
cell activities.307,308 This vulnerability may be attributed
to the activated natural cytotoxicity receptors, particularly
NKp30 and NKp44. Though glioblastoma CSCs express
deficient MHC I molecules, various ligands that activate
NK cell receptors were found on these CSCs, such as
PVR and Nectin-2.308 Interestingly, CSCs were resistant to
NK cells freshly isolated from tumor specimen, but were
sensitive to the activities of both allogeneic and autologous
IL-2 or IL-15-activated NK cells.308 In melanoma, both
CD133- and CD133+ subpopulations are susceptible to
the cytotoxicity of IL-2-activated allogeneic NK cells.309
Likewise, the increased sensitivity of breast CSCs to IL-2
or IL-15-activated NK cells, which is potentially mediated
by the upregulation of NKG2D ligands ULBP1, ULBP2,
and MICA on CD44+CD24− breast CSCs.310 Similar
results were observed in ovarian cancer311 and CCR7+
melanoma.312
Notably, an increased frequency of CSCs is often

observed following cytotoxic treatments for primary
cancers.313,314 A study reported a novel mechanism for the
immune escape of breast CSCs from NK cell attack, due to
decreased expression of ligands that stimulate NKG2D.315
The upregulation of the NKG2D stress ligands MICA/B
on surviving CSCs following cytotoxic treatments, such as
radiotherapy, sensitizes CSCs to NK cell killing. NK cells
were recruited to the tumor-adjacent areas but lost their
cytotoxic efficacy in breast tumors due to the altered ligand
expression ligands on radioresistant breast CSCs.316 This
evidence further provides a rationale for combining theNK
cell-stimulating factors with conventional therapies.

Cancer-associated fibroblasts and MSCs
The oncogenic effect of cancer-associated fibroblasts
(CAFs) is mostly based on their secretion of a number
of paracrine factors, including proinflammatory cytokines,
chemokines, prostaglandins, growth factors, and pro-
teases, which collectively promote tumor growth, angio-
genesis, and invasion.317–319 CAFs are also believed to
create an immunosuppressive TME by potentiating regu-
latory T cells,320 or induce M2‑polarized macrophages.321
Moreover, CAFs-derived exosomes lead to treatment resis-
tance of cancer.322,323
Notably, one of the key mechanisms for the CAFs-

mediated tumor promotion is based on their regulation of
CSC stemness.324 The paracrine factors produced by spe-
cific CAF subpopulations accelerate the transformation
of cancer cells into CSCs and help maintain the stem-
ness properties of existing CSCs.325 Under the cell stimuli,
such as chemotherapy, CAFs acquire a senescence-like
secretory phenotype, and their secretion of prostem-
ness chemokines is further increased, resulting in CSC-
associated chemoresistance.326
Both resident and recruited MSCs within TME can

acquire CAF-like phenotypes, suggesting that CAFs can be
derived from MSC transformation.327 In pancreatic duc-
tal adenocarcinoma (PDAC) and gastric cancer models,
bone marrow-derived MSCs are recruited to TME in a
TGF-β and CXCL-12-dependent manner and differentiate
into CAFs.328 This transformation may be attributed to
tumor-secreted factors, such as the TGF-β, which activate
MSCs into CAFs, further enhancing the cell heterogenicity
of the CSC microenvironment.329 MSCs are stromal cells
with multipotent differentiation abilities and can migrate
to tumor sites and promote tumor EMT via the secretion
of various factors.330 For example, in gastric cancer, MSCs
secret VEGF, macrophage inflammatory protein-2, TGF-
β1, and the proinflammatory cytokines interleukin IL-6
and IL-8, which collectively facilitate tumor growth and
angiogenesis.331

4 THERAPIES TARGETING
SIGNALING PATHWAYS OF CSC-s

Given that CSCs are a major contributing factor to pro-
gressive phenotypes of cancer, targeting CSCs in the
tumor now appears as a promising strategy against can-
cer. Numerous efforts have been undertaken these years to
identify such therapies, such as kinase inhibitors and anti-
bodies that block CSC-associated signaling pathway ele-
ments, and some of these approaches have already entered
the clinical phase.332,333 The ongoing and completed clin-
ical trials on therapies targeting signaling pathways of
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CSCs are presented in Table 2. Immunotherapies targeting
CSCs include MHC-restricted killing, such as checkpoint
inhibitors, and MHC-unrestricted killing, such as the
chimeric antigen receptor (CAR) T-cell approach.334,335

4.1 Targeting Notch signaling

Tumors with NOTCH1 mutations represent a distinct
tumor phenotype with increased activation in Notch1 sig-
naling. NOTCH1-mutant tumors are often associated with
metastasis, poor prognosis, and potential responsiveness to
brontictuzumab.336

4.1.1 Gamma-secretase inhibitors

A number of Notch-pathway inhibitors have been devel-
oped with different action mechanisms, some of which
are currently under clinical evaluation. Gamma-secretase
inhibitors (GSIs) have long been identified as a large
family of Notch-targeted small molecule inhibitors, by
blocking the proteolytic cleavage of Notch receptors. GSI
PF-03084014 inhibited tumor growth in a mouse xenograft
model of T-cell acute lymphoblastic leukemia.337,338 GSI
MRK-003 works synergistically with trastuzumab in
HER2-positive breast cancer mouse model.339 Likewise
in NSCLC models, BMS-906024 has demonstrated potent
antitumor efficacy in combination with chemotherapies,
such as cisplatin, paclitaxel, docetaxel, and target thera-
pies, such as crizotinib.340,341
The ability of GSIs to block Notch signaling and sub-

sequently reduce CSC burden in preclinical studies has
spurred clinical assessment of GSIs in clinical trials.
A well-studied GSI RO4929097 substantially reduced
the expression level of stem cell markers on primary
melanoma cells and inhibited tumor formation in
melanoma xenograft transplants.342 In a phase II trial,
RO4929097 was well tolerated in patients previously
treated with PDA, with 25% of patients achieving stable
disease.343 In a phase I trial, four of 24 melanoma patients
were reported with clinical benefits from RO4929097
treatments, with one patient achieving a complete
response.344 This encouraged the following phase II trial
of RO4929097 in patients with metastatic melanoma with
monotherapy.345 Besides, the combinational treatment
of GSIs with other cancer treatments further improved
clinical outcomes. One such example is the combina-
tion of RO4929097 with bevacizumab in patients with
malignant gliomas.346 These clinical results suggest that
GSIs can effectively cross the blood-brain barrier and
reach therapeutic concentrations at tumor sites. However,
RO4929097 monotherapy displayed minimal inhibition

of neurosphere formation in recurrent glioblastoma
samples.347 Similarly, in metastatic CRCs, the antitumor
activity of GSIs, including RO4929097,344 LY900009,348
MK-0752,349 and BMS-986115350 as monotherapies, is
suboptimal.351 A recent phase Ib/II trial evaluated the
treatment combination of RO4929097 with vismod-
egib, an HH inhibitor, in advanced sarcoma, providing
a rationale for the synergy of GSIs in this patient
population.352
PF-03084014 andMK-0752 are two GSIs frequently used

in clinical studies, both of which have been used to treat
advanced-stage solid tumors but failed to reach evident
clinical efficacy in patients with lung cancer, breast can-
cer, or pancreatic cancer as monotherapies.353 As such,
these failures further encouraged combinatorial regimens
of GSIs with other anticancer therapies, as evidenced by
the fact that PF-03084014 enhanced the antitumor effect
of DOX in prostate cancer stem-like cells.354 Moreover,
the concomitant use of RO4929097 and cediranib has pro-
longed disease stabilization in 11 out of 20 patients with
advanced solid tumors.355
The most common dose-limiting toxicities (DLTs) of

GSIs occur in the gastrointestinal system, with secre-
tory diarrhea accounting for 30–60% of all reported DLTs
in cancer patients and grade ≥3 diarrhea accounting
for around 11%. This may be explained by the fact that
inhibition of Notch1 and Notch2 prevents the prolifera-
tion of crypt progenitors leading to goblet-cell metaplasia
of the small-intestinal epithelium.356 The addiction to
glucocorticoids and antiestrogens in the GSI treatment
regimens significantly relieved GSI-induced gastrointesti-
nal toxicities.338,357 Hypophosphatemia is another GSIs-
induced toxicity, which is potentially caused by abnormal
gastrointestinal function and can be relieved by oral
administration of phosphate replacement.358

4.1.2 Pan-Notch small molecule inhibitor

Though Notch1 is the most common activated oncogene
in tumors, the coexpression of Notch1 and Notch4 is
frequently observed in breast cancer. Moreover, accumu-
lating evidence suggests the Notch3-mediated progression
of cancer. These results collectively reveal the require-
ment for pan-Notch inhibition to achieve a broader spec-
trum of antitumor efficacy. A previous study evaluated
the structure–activity relationships in a series of (2-
oxo-1,4-benzodiazepin-3-yl)-succinamides as pan-Notch
inhibitors.359 Among these GSIs, MS-906024 displayed the
broadest spectrum efficacy inmultiple in-vivo tumormod-
els and thus advanced into clinical trials (NCT01292655).360
BMS-906024 sensitizesNSCLC to paclitaxel treatment, and
patients with wild-type KRAS and BRAF tumors may
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TABLE 2 Ongoing and completed clinical trials on therapies targeting signaling pathways of CSCs

Agents
(targets) Condition Cotherapy Phase NCT number
Gamma-secretase inhibitors (GSIs)
RO4929097
(Notch, Aβ40,
secretase)

Metastatic pancreas cancer II NCT01232829
Advanced solid tumors I NCT01145456
Advanced solid tumors Cediranib maleate I NCT01131234
Advanced solid tumors I NCT01096355
Refractory NSCLC II NCT01070927
Metastatic epithelial ovarian cancer,
fallopian tube cancer, or primary
peritoneal cancer

II NCT01175343

Advanced sarcoma I/II NCT01154452
Advanced solid tumors Capecitabine I NCT01158274
Advanced renal cell carcinoma after
VEGF/VEGFR therapy failure

II NCT01141569

Advanced solid tumors I NCT0121862
Advanced solid tumors Temsirolimus I NCT01198184
Malignant glioma Temozolomide and

radiation therapy
I NCT01119599

Metastatic melanoma Cisplatin, vinblastine,
and temozolomide

I/II NCT01196416

Metastatic colorectal cancer II NCT01116687
PF-03084014
(secretase)

Desmoid tumors II NCT01981551
Advanced cancer and leukemia I NCT00878189

MK-0752
(secretase)

Advanced breast cancer Docetaxel I/II NCT00645333
Early-stage breast cancer Tamoxifen/letrozole IV NCT00756717
Pancreatic cancer Gemcitabine

hydrochloride
I NCT01098344

Advanced cancer Ridaforolimus I NCT01295632
Advanced breast cancer I NCT00106145

Pan-Notch small molecule inhibitor
BMS-906024
(γ-Secretase
and Notch)

Advanced solid tumors I NCT01292655
Advanced solid tumors Chemotherapy I NCT01653470
Acute T-cell lymphoblastic leukemia
or T-cell lymphoblastic lymphoma

I NCT01363817

CB-103 (Notch) Luminal advanced breast cancer Nonsteroidal
aromatase inhibitor

II NCT04714619

Advanced solid tumors and
hematological malignancies

I/II NCT03422679

Monoclonal antibodies (mAbs) targeting Notch
MEDI0639
(Dll4)

Advanced solid tumors I NCT01577745

SIBP-03 (HER3) Advanced solid tumors I NCT05203601
OMP-52M51
(Notch1)

Metastatic colorectal cancer I NCT03031691
Advanced solid tumors I NCT01778439
Refractory lymphoid malignancies I NCT01703572
Adenoid cystic carcinoma NA NCT02662608

(Continues)
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TABLE 2 (Continued)

Agents
(targets) Condition Cotherapy Phase NCT number
OMP-59R5
(Notch 2/3)

Stage IV pancreatic cancer Nab-paclitaxel and
gemcitabine

I/II NCT01647828

Advanced solid tumors I NCT01277146
SMO inhibitor
BMS-833923
(SMO)

Chronic myeloid leukemia I/II NCT01218477

LEQ506 (SMO) Advanced solid tumors I NCT01106508
Vismodegib
(SMO)

Prostate cancer I NCT02115828
Metastatic colorectal cancer Chemotherapy II NCT00636610
Ovarian cancer II NCT00739661
Keratocystic odontogenic tumor II NCT02366312
Advanced pancreatic cancer Gemcitabine

hydrochloride
I/II NCT01064622

II NCT01195415, NCT01088815
Advanced Solid Tumors I NCT01546519, NCT03878524,

NCT00878163, NCT00607724,
NCT01209143, NCT00968981,
NCT01537107

II NCT05159245, NCT05238831,
NCT05159245, NCT02091141,
NCT00959647

Basal cell carcinoma I NCT01631331, NCT02639117,
NCT03158389

II NCT01543581, NCT03035188,
NCT00833417, NCT01700049,
NCT02667574, NCT01201915,
NCT02371967, NCT01367665,
NCT01556009, NCT01815840,
NCT04416516

IV NCT03610022, NCT02436408
Head/neck basal cell carcinoma Radiation therapy II NCT01835626
Advanced gastric adenocarcinoma II NCT03052478
Advanced stomach cancer or
gastroesophageal junction cancer

Chemotherapy II NCT00982592

Basal cell skin cancer I/II NCT02690948
Small cell lung carcinoma Cisplatin and etoposide II NCT00887159
Advanced sarcoma I/II NCT01154452
Multiple myeloma I NCT01330173
Recurrent glioblastoma II NCT00980343
Advanced urothelial carcinoma II NCT02788201
Advanced malignancies II NCT02465060
Advanced chondrosarcomas II NCT01267955
Refractory medulloblastoma II NCT01239316, NCT00939484,

NCT01878617
I NCT00822458

Progressive meningiomas II NCT02523014
(Continues)
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TABLE 2 (Continued)

Agents
(targets) Condition Cotherapy Phase NCT number
Sonidegib
(SMO)

Basal cell carcinoma NA NCT01529450
II NCT00961896, NCT03534947,

NCT01327053, NCT04806646,
NCT01350115, NCT00961896

Advanced solid tumors I NCT00880308, NCT01208831,
Paclitaxel I NCT01954355
BKM120 I NCT01576666
Pembrolizumab I NCT04007744

Myeloid leukemia Nilotinib I NCT01456676
Prostate cancer I NCT02111187
Triple-negative (TN) advanced
breast cancer (ABC)

Docetaxel I NCT02027376

Recurrent ovarian cancer Paclitaxel I NCT02195973
Extensive stage small cell lung
cancer (ES-SCLC)

Etoposide and cisplatin I NCT01579929

Pancreatic cancer Gemcitabine and nab
paclitaxel

I/II NCT02358161

Gemcitabine I NCT01487785
Chemotherapy I NCT01485744

Esophageal cancer Everolimus I NCT02138929
Myeloid malignancies Azacitidine I NCT02129101
Recurrent brain tumors I NCT03434262
Multiple myeloma II NCT02086552
Medulloblastoma II NCT01708174, NCT04402073
Hepatocellular carcinoma I NCT02151864
Acute leukemias II NCT01826214
Chronic myelogenous leukemia Nilotinib I NCT01456676

Glasdegib
(SMO)

Acute myeloid leukemia, chronic
myelomonocytic leukemia

Azacitidine I NCT02367456

Acute myeloid leukemia II NCT01546038, NCT01841333,
NCT03226418

Soft tissue sarcoma III NCT03784014
Glioblastoma Temozolomide and

radiotherapy
I/II NCT03529448

Inhibitors of WNT pathway elements
DKN-01 (DKK1) Advanced biliary tract cancer Nivolumab II NCT04057365

Prostate cancer Docetaxel I/II NCT03837353
Multiple myeloma or advanced solid
tumors

I NCT01457417

Epithelial endometrial or epithelial
ovarian cancer

Paclitaxel II NCT03395080

Gastric or gastroesophageal cancer Tislelizumab ±
chemotherapy

II NCT04363801

Paclitaxel or
pembrolizumab

I NCT02013154

Advanced liver cancer I/II NCT03645980
Cancer of hepatic biliary system or
gallbladder

Gemcitabine +
cisplatin

I NCT02375880

Multiple myeloma Lenalidomide/
dexamethasone

I NCT01711671

(Continues)
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TABLE 2 (Continued)

Agents
(targets) Condition Cotherapy Phase NCT number
Vantictumab
(FZD
receptors)

Metastatic breast cancer I NCT01973309
Pancreatic cancer Nab-paclitaxel and

gemcitabine
I NCT02005315

NSCLC Docetaxel I NCT01957007
Cirmtuzumab
(ROR1)

Metastatic castration-resistant
prostate cancer

II NCT05156905

Breast cancer Cirmtuzumab +
paclitaxel

I NCT02776917

B-cell lymphoid malignancies Ibrutinib I/II NCT03088878
Refractory chronic lymphocytic
leukemia

I NCT02222688

II NCT04501939

Clinical trial data sources: clinicaltrials.gov.

have improved response to the BMS-906024 + paclitaxel
combination.340 It was later reported that BMS-906024 sig-
nificantly enhanced the delay in NSCLC tumor spheroid
growth delay caused by etoposide and crizotinib, and the
most prominent delay in spheroid growth was observed
in cells treated with BMS-906024 + chemoradiation triple
combination.341
CB-103 is an oral pan-Notch inhibitor that specifi-

cally targets protein–protein interaction by suppressing the
Notch transcriptional complex.361 Another small molecule
inhibitor, IMR-1, inhibits the recruitment of MAML1 to
the notch transcriptional complex, thereby preventing its
activation.362 This approach has the advantage of act-
ing downstream of aberrant Notch receptor activation by
blocking the assembly of the transcription complex and
thereby inhibiting the expression of Notch target genes.
A phase I/IIa study is under way to investigate the safety
and efficacy of CB-103 in patients with advanced solid
tumors and hematological malignancies (NCT03422679).
In a phase II trial, patients with advanced breast cancer
will receive the combinational treatment of CB-103 with
NSAI therapy (letrozole or anastrozole, continuing prior
therapy) to evaluate the efficacy (NCT04714619).

4.1.3 Monoclonal antibodies targeting
Notch signaling

Brontictuzumab (OMP-52M51) is a humanized mono-
clonal antibody (mAb) that selectively targets Notch1 jux-
tamembrane negative regulatory region and thus inhibits
Notch signaling. In a phase II trial of brontictuzumab,
six of total 36 (17%) patients with refractory solid tumors
demonstrated clinical benefits, with four patients display-
ing prolonged disease stabilization (NCT01778439).363 A

functional assay evaluated the efficacy of brontictuzumab
in a series of glioma stem-like cell models, supporting
brontictuzumab as a promising drug candidate for CNS
tumors.364
Tarextumab (OMP-59R5) is a human IgG2 antibodywith

inhibition on both Notch2 and Notch3 and has shown
encouraging antitumor efficacy in small cell lung can-
cer (SCLC). An overall response rate (ORR) of 84% was
reported in phase I/II trial when patients received the com-
bination of tarextumabwith etoposide and platinum-based
therapies. Meanwhile, tarextumab leads to potent inhibi-
tion in Notch signaling, and tarextumab-induced diarrhea
was dose-limiting above 2.5 mg weekly and 7.5 mg/kg
every third week (NCT01277146). The triple combination
of tarextumab in combination with gemcitabine plus nab-
paclitaxel resulted in increased inhibition of tumor growth
and tumor-initiating cell frequency compared with the
combination of tarextumab with gemcitabine alone.365
However, a randomized phase II trial found that the addi-
tion of tarextumab to nab-paclitaxel and gemcitabine failed
to induce a prolonged overall survival (OS), progression-
free survival (PFS), or ORR in patients with metastatic
PDAC.366 The specific role of Notch signaling in PDAC
remains unclear with evidence supporting both its onco-
genic and tumor-suppressive roles.366 Further research
using individual Notch inhibitors and agonists may facil-
itate the clinical evaluation of Notch-targeting agents in
pancreatic cancer.

4.2 Targeting HH signaling

The pharmacological inhibition targeting the HH path-
way in cancer is an active research field, some of which
have received regulatory approvals. Major HH pathway
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antagonists investigated so far include SMO inhibitors and
GLI inhibitors.367

4.2.1 SMO inhibitor

Two SMO antagonists, vismodegib and sonidegib, have
been approved by the Food and Drug Administration
(FDA) for the treatment of advanced basal cell carcinoma
(BCC). Vismodegib (GDC-0449) was first granted approval
following success in clinical trials in 2012, where the inde-
pendently assessed response rate was 30% in 33 patients
with metastatic BCC (NCT00833417).368 In the subsequent
phase II trial, a total number of 1215 patientswith advanced
BCC were treated with vismodegib (NCT01367665). The
response rate of patients withmetastatic disease was 36.9%
and that in patients with locally advanced disease was
68.5% 29073584. However, no benefits were obtained from
the additional use of vismodegib in standard treatment
regimens for metastatic CRC,368 PDAC,369 gastric cancer,
and gastroesophageal junction cancer.370 Besides, the com-
binations of erlotinib or chemotherapy with vismodegib
were well tolerated but induced no improved outcome in
metastatic PDAC or PDA, respectively.371 Vismodegib also
failed to deliver clinical benefits compared with placebo
as maintenance therapy for ovarian cancer patients.372
Vismodegib improved PFS in patients with SHH-subtype
medulloblastoma but not in those with non-SHH dis-
ease subtypes.373–376 Recent evidence, however, suggested
that the addition of vismodegib to TMZ did not improve
PFS even in SHH refractory medulloblastoma.377 A recent
phase II trial suggested that the histopathologic subtypes
of BCC had no significant impact on patient response to
vismodegib.378
Sonidegib (LDE225) was approved by FDA in 2015 based

on the promising results from a randomized phase II study,
where sonidegib at 200 and 800 mg daily induced simi-
lar ORR (58% vs. 44%) in patients with locally advanced
BCC.135 In the following analyses, sonidegib demon-
strated long-term efficacy and safety profile (30379 and
42 months380) in patients with advanced BCC. A meta-
analysis showed that ORRs of vismodegib and sonidegib
were comparable in locally advanced BCC (69% vs. 57%
respectively), whereas the complete response rates of the
two drugs were different (31% vs. 3% respectively).381
Likewise, BCC patients resistant to vismodegib similarly
developed resistance with sonidegib.382 In both mouse
models and phase I clinical trial of TNBC, sonidegib
decreased CSC markers expression and sensitizes cancer
cells to docetaxel chemotherapy.383
Another key SMO inhibitor, glasdegib (PF-04449913),

receivedFDAapproval in 2018 as a combination partner for
cytarabine for the treatment of AML. The addiction of glas-

degib to low-dose cytarabine (LDAC) increased themedian
OS of newly diagnosed AML patients from 4.9 to 8.8
months.384 Glasdegib + LDAC continued to induce long-
term survival benefits in patients with AML, especially
with secondary AML (NCT01546038).385 In phase II clin-
ical trial, 46.4% of patients achieved CR after glasdegib +
cytarabine anddaunorubicin treatment (NCT01546038).386
The subsequent phase III trial of glasdegib in combination
with chemotherapy (7+ 3 schedules) to treat AMLpatients
is currently under way (NCT03416179).384

4.2.2 Inhibitors of GLI transcriptional
activity

GLI-mediated transcription constitutes the final step of the
HH pathway and the inhibition of GLI transcription fac-
tors is thus a promising strategy that reduces tumor cell
proliferation.387 Inhibitors of GLI-mediated transcription,
such as GANT58 and GANT61, were first designed to over-
come tumor resistance to SMO inhibitors. A wide breadth
of literature has described the antitumor activity of these
agents in various cancers, includingNSCLC, breast cancer,
prostate cancer, and rhabdomyosarcoma.388–392 However,
neither of these two agents have advanced into clinical
trials.
Arsenic trioxide (ATO), an FDA-approved drug widely

accepted in treating acute promyelocytic leukemia, is also
a potent inhibitor of GLI1 and GLI2 and inhibits cancer
growth by blocking GLI transcription.392 With its inhi-
bition of GLI transcription activities, ATO inhibits the
viability and maintenance of CSCs derived from SCLC393
and pancreatic cancer.394 ATO also prevents osteosarcoma
growth via DNA damage accumulation.395 In a phase
II study, the concomitant use of ATO and itraconazole
was tested in BCC patients who were resistant to SMO
inhibitors. Significant alterations in mRNA levels of GLI1
were observed.396 Given that none of the participants
had tumor shrinkage though they experienced SD for 3
months, continuous dosing was later recommended to
achieve a better clinical response.396 Currently, multiple
clinical trials of ATO, alone or in synergy with standard
therapies in cancer patients, are under way.

4.3 Targeting Wnt signaling

The Wnt pathway inhibitor family is mainly comprised
of agents targeting Wnt pathway molecules, Porcupine
inhibitors that diminish the ability to secrete Wnt lig-
ands, and inhibitors of downstream β-catenin-TCF-LEF-
dependent transcription. Many of these agents have been
extensively studied and are currently under clinical evalu-
ation.



MANNI and MIN 19 of 34

4.3.1 Inhibitors of Wnt pathway elements

DKN-01 is an IgG4 mAb targeting Dkk1 that suppresses
canonical Wnt signaling via negative feedback.397 Some
studies addressed the direct antitumor effects of DKK1
inhibition,398 whereas some recently reported its indirect
antitumor effects via stimulation of immune responses
in cancers, including ovarian cancer399 and prostate
cancer.400 The murine version of DKN-01 overcomes
the DKK1-mediated immune suppression and improves
the efficacy of PD-1 blockade.401 Similarly, inhibiting
Wnt/β-catenin signaling by DKN-01 enhances the anti-
tumor immune infiltration into tumors and improves
the response of ovarian tumors to immune checkpoint
inhibitors.399
Multiple clinical trials of DKN-01 are now carried

out across a wide range of cancer types. In a phase I
trial, the combination of DKN-01 with paclitaxel is well
tolerated in patients with DKK1-positive esophageal or
gastroesophageal junction tumors (NCT02013154).402 In a
following phase II trial, the combination of DKN-01 with
pembrolizumab was well tolerated in patients with a gas-
troesophageal junction or gastric cancer, and especially
effective in anti-PD-1/PD-L1-naïve patients with DKK1-
high tumors.403 A biomarker analysis revealed that DKN-
01 in combination with chemotherapies potentially led
to reduced angiogenesis and inflammation markers in
patients with biliary tract cancer (NCT02375880).404
Vantictumab is a fully human mAb that inhibits Wnt

pathway signaling by targeting FZD1, 2, 5, 7, and 8 recep-
tors. Vantictumab decreases the enrichment of CSCs in
various tumor types, either alone or in synergy with
a chemotherapeutic.405 A phase I study evaluated the
combination of vantictumab with nab-paclitaxel and gem-
citabine inmetastatic PDApatients.However, this trialwas
ultimately terminated due to bone-related cytotoxicity.406
Another phase I study assessed the efficacy and safety of
the combination of vantictumab with paclitaxel metastatic
breast cancer and the further use of this combination was
restricted by the frequently occurred fractures.407
Cirmtuzumab is a humanized mAb that inhibits the

activity of ROR1, an oncoembryonic orphan receptor
for Wnt5a in CSCs.408 The antitumor activities of cirm-
tuzumab are mostly documented in chronic lymphocytic
leukemia (CLL), where it inhibits the activation of both
NF-κB and STAT3 in patients.409 Results from a phase I
trial showed that cirmtuzumab is effective in suppress-
ing tumor cell ROR1 signaling in CLL (NCT02222688).410
Targeting ROR1 with cirmtuzumab may also improve the
response of breast cancer patients to chemotherapies.411
Cirmtuzumab could work synergistically with the Bruton
tyrosine kinase inhibitor ibrutinib to treat patients with
CLL or other ROR1+ B-cell malignancies.412 Currently, a

phase Ib/II study is under way to evaluate this combina-
tion in patients with CLL, small lymphocytic lymphoma,
or mantle cell lymphoma (NCT03088878).

5 CSC-DIRECTED
IMMUNOTHERAPIES

As promising CSC-directed immunotherapy, CSC-based
dendritic cell (DC) vaccines facilitate tumor cell recogni-
tion and eradication by potentiating antigen-specific T-cell
responses against CSCs.413 The CSC-specific T cells can
also be produced by CSC priming. CSC lysate-pulsed DCs
stimulate CD8+ T cells, and the generated CSC-specific
T cells induce antitumor immunity by directly targeting
CSCs in tumors.414,415 Table 3 summarizes the ongoing and
completed clinical trials on CSC-directed immunothera-
pies. Bispecific antibodies (BiAbs) targeting CSC-specific
antigens represent another candidate for CSC-directed
immunotherapies. For instance, a BiAb composed of
CD133 mAb monomer and a single chain of humanized
muromonab-CD3 targets CD133-expressing tumor cells by
arming activated T cells.416
One of themost studied CSC-directed immunotherapies

that enter clinical trials is the CAR T-cell transfer, based
on the identification of CSC surface antigens by CAR T
cells.417 Though a wide range of CSC-related antigens are
used to designCART-cell therapies,417 CSC-targeting CAR
T cells to date have been approved by FDA. The largest
concern about CAR T-cell treatment could be its safety
profile, cytokine release syndrome, and soluble tumor
syndrome.417 The application of well-characterized CSC
markers in CAR T-cell design is a promising approach
to eliminate CSCs in many cancers, which, however, still
requires further investigations to advance CAR T cells into
the clinic.
A typical example of CAR T therapies is the CAR T

cocktail immunotherapy composed of successive infusions
of CART cells targeting epidermal growth factor recep-
tor (EGFR) and CD133, which specifically target CSCs in
cholangiocarcinoma (NCT01869166 and NCT02541370).418
CART-133 cell therapy patients demonstrate promis-
ing antitumor activity. In HCC patients, CAR-133 cell
therapy demonstrated promising efficacy with man-
ageable toxicity.419 This study also revealed potential
biomarkers that predicted patient response to CART-
133 cells (NCT02541370). GBM CSCs are characterized
as EGFRVIII+/CD133+ cells with self-renewal as well as
cancer initiation abilities.420 In the first clinical trial of
EGFRVIII-specific CAR T-cell infusions, patients with
EGFRVIII+ recurrent GBM did not obtain noticeable
tumor regression according to MRI.421 Meanwhile, an
additional study suggested that the CAR T-EGFRVIII cell
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TABLE 3 Ongoing and completed clinical trials on CSC-directed immunotherapies

Immunotherapy Condition Phase NCT number
Dendritic cell (DC) vaccines
Cancer stem cells vaccine Ovarian cancer I/II NCT02178670
Tumor lysate-pulsed DC vaccine High-risk solid tumor II NCT00405327
Minor histocompatibility antigens (MiHA)-loaded
PD-L-silenced DC vaccination

Hematological malignancies I/II NCT02528682

Total tumor RNA (TTRNA)-loaded-DCs Recurrent medulloblastoma and
primitive neuroectodermal tumor

II NCT01326104

CD34+-derived DCs Breast neoplasms I NCT00197522
Dendritic cell vaccine with mRNA from tumor
stem cells

Glioblastoma I/II NCT00846456

Dendritic cell fusion vaccine Multiple myeloma II NCT01067287
Autologous DCs with glioma stem-like cells
associated antigens

Glioblastoma II NCT01567202

Bispecific antibodies
Anti-CD3 × anti-CD20 bispecific antibody-armed
activated T cells

Multiple myeloma and plasma cell
neoplasm

I NCT00938626

Elranatamab (B-cell maturation antigen [BCMA]
CD3-targeted bispecific antibody)

Multiple myeloma III NCT05317416

Anti-CD3 × anti-CD20 bispecific antibody
(CD20Bi)-activated T cells (ATC)

Non-Hodgkin lymphoma I NCT00244946

Clinical trial data sources: clinicaltrials.gov.

therapy failed to induce clinical benefits in patients with
recurrent GBM.422 Ongoing and completed clinical tri-
als on CSC-directed CAR T-cell therapy are presented in
Table 4.
TheCSC characteristics are associatedwith an increased

level of CD44,168 which requires the transformation of
CD44v to CD44s isoform.423,424 It was reported that 50%
of pancreatic cancer tissues were CD44v6-positive, which
indicated a poorer survival in this group of patients.425 Cur-
rently, two phase I/II clinical trials are ongoing to assess
the safety and efficacy of CD44v6 CAR-T-cell therapy in
patients with breast cancer and other CD44v6-positive
tumors. (NCT04430595 and NCT04427449) Recently, a
highly specific CAR against CD44v6 was established aim-
ing to eliminate CD44v6-expressing HNSCC cells.426

6 CONCLUSION AND FUTURE
PERSPECTIVES

In conclusion, CSCs are a subpopulation of malignant
tumor cells with selective capacities for tumor initiation,
self-renewal, metastasis, and unlimited growth into bulks.
There is intricate signaling network within CSCs that
regulates stemness and biological functions. Thus, tar-
geting pathway molecules that regulate CSCs provides
a new option for the treatment of therapy-resistant or
-refractory tumors. Meanwhile, extracellular regulating

factors, including angiogenic microenvironment, hypoxic
microenvironment, TAM, fibroblasts, and a series of protu-
mor paracrine factors, collectively provide a fertile soil that
favors CSC growth. Numerous efforts have been under-
taken these years to identify such therapies, such as kinase
inhibitors and antibodies that blockCSC-associated signal-
ing pathway elements, and some of these approaches have
already entered the clinical phase. Furthermore, vaccines,
antibodies, and CAR T cells have also expanded the range
of CSC-target therapies.
Obstacles remain regarding the design of CSC-targeted

therapies. Though our understanding of CSCs surface
biomarkers has been largely improved in recent years, the
surface markers of CSCs may vary according to tumor
types and the cell of tumor origin, demonstrating high het-
erogeneity between tumors or even among cells within
one tumor. This heterogeneity has highlighted the chal-
lenges in identifying and isolating CSC subpopulations
from tumors. Thus, functional assays are recommended
to more specifically identify CSCs, including sphere for-
mation capacity in vitro and tumor-initiation of after
transplantation in vivo.
Accumulating evidence now suggests that quiescent

CSCs contribute to the refraction of cancers to chemother-
apies. Thus, therapeutic approaches that merely inhibit
CSC stemness might not be sufficient to suppress
postchemotherapy recurrence. The TME plays a critical
role in CSC regulation, which not only maintains CSC
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TABLE 4 Ongoing and completed clinical trials on CSC-directed chimeric antigen receptor (CAR) T-cell therapy

Chimeric antigen receptor (CAR) T cell Condition Phase NCT number
CAR T-cell therapy Hematologic neoplasms NA NCT04691284
PSCA-targeted CAR T cells (BPX-601) Advanced solid tumors I/II NCT02744287
Anti-CD19 CAR T cells B-cell non-Hodgkin lymphoma I/II NCT01318317

B-cell malignancies I/II NCT01475058,
NCT01087294,
NCT02659943

Relapsed malignant lymphoma I NCT05239676
CD19CAR/virus-specific T cells CD19+ malignancies I NCT00840853

CD19+ acute lymphoblastic leukemia or
non-Hodgkin lymphoma

I NCT03768310

Ciltacabtagene autoleucel (BCMA-directed
CAR T)

Multiple myeloma III NCT04923893,
NCT05257083

B-cell lymphoma II NCT04531046
Anti-CD19 allo-CAR T cells Relapsed B-cell malignancies I NCT04516551
Genetically modified T cells (CMV-specific
CD19-CAR T cells)

B-cell non-Hodgkin lymphoma I NCT05432635

CD19+CD22 CAR-T B acute lymphoblastic leukemia I NCT04626726
CD19CAR-CD28-CD3zeta-EGFRt-expressing
TCM-enriched T cells

Non-Hodgkin lymphoma I NCT01815749
B-cell non-Hodgkin lymphoma I NCT02051257

CD19CAR-CD28Z T cells B-cell lymphoblastic leukemia I NCT02050347
CAR T directed against CD19+ B cells B-cell non-Hodgkin lymphoma I NCT01840566
Anti-CD133-CAR T cells Advanced malignancies I/II NCT02541370

Malignant gliomas I NCT03423992
Sarcoma-specific CAR T cells Sarcoma I/II NCT03356782
CD44v6-specific CAR T cells CD44v6-positive cancers I/II NCT04427449
4SCAR T cells Breast cancer I/II NCT04430595

Clinical trial data sources: clinicaltrials.gov.

characteristics via various signals but also facilitates the
transition of nonstem cells to stem cell states.427 It is thus
conceivable that targeting TME components may be more
effective in overcoming treatment resistance than directly
inhibiting CSCs stemness. However, the heterogeneity
of immune cells across cell types has made it difficult
to identify the precise CSC-immune cell interactions.
Recently, single-cell RNA sequencing is extensively used
to identify the altering states of CSCs and immune cells, as
well as their interactions under different tumor contexts.
Moreover, BiAbs that act on both intrinsic regulating
factors of CSCs and the CSC-immune cell crosstalk are
recommended.31
Finally, in addition to TAMs that have long been identi-

fied for their activities in CSCmaintenance, recent reports
highlight the significance of NK cells in suppressing can-
cer cell stemness.290 CSCs are mostly sensitive to NK
cell killing, but in some cases, such as GBM, AML, and
breast cancer, CSCs may be resistant to activated NK
cells.428 However, the anti-CSC functions of NK cells are
suppressed by TAMs, MDSCs (myeloid-derived suppres-

sor cells), and T-reg cells.429 Future research is required
to address the crosstalk between these immune cells in
the TME, thereby facilitating the development of more
effective CSC-targeted immunotherapies.
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