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T-lymphocytes play crucial roles for maintaining immune homeostasis by fighting against
various pathogenic microorganisms and establishing self-antigen tolerance. They will go
through several stages and checkpoints in the thymus from progenitors to mature T cells,
from CD4-CD8- double negative (DN) cells to CD4+CD8+ double positive (DP) cells, finally
become CD4+ or CD8+ single positive (SP) cells. The mature SP cells then emigrate out of
the thymus and further differentiate into distinct subsets under different environment
signals to perform specific functions. Each step is regulated by various transcriptional
regulators downstream of T cell receptors (TCRs) that have been extensively studied both
in vivo and vitro via multiple mouse models and advanced techniques, such as single cell
RNA sequencing (scRNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-
seq). This review will summarize the transcriptional regulators participating in the early
stage of T cell development reported in the past decade, trying to figure out cascade
networks in each process and provide possible research directions in the future.

Keywords: transcriptional regulators, T-lymphocytes, double negative (DN) cells, double positive (DP) cells, single
positive (SP) cells, T cell receptor (TCR)
INTRODUCTION

T cells widely participate in the innate and adaptive immune responses throughout the lifetime. T
cell development is tightly regulated by numerous factors including transcriptional and epigenetic
regulators. The proper development and differentiation of thymocytes is the foundation for the
function of the immune system.

There is no doubt that the thymus is the fundamental place of thymocytes development that is
highly organized, where thymocytes go through several stages and checkpoints before maturation
and under-control of a network of multiple players (1, 2). Thymocyte development is driven by TCR
activation and can be disrupted by defects in signaling components involved in the TCR signaling
pathways (3, 4).

The early thymic precursor (ETPs) that come from bone marrow will go through different
thymocyte developmental stages including CD4-CD8- double negative (DN), CD4+CD8+ double
positive (DP) and CD4+CD8- or CD4-CD8+ single positive (SP). Then, mature SP cells will migrate to
the periphery. Particularly, the DN population can be divided into four stages according to the
expression of CD25 and CD44, starting from DN1 (CD44+CD25-), followed by DN2 (CD44+CD25+),
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DN3 (CD44-CD25+) and DN4 (CD44-CD25-) (5). In addition, the
DN1 cells are known as ETPs. There are several check points
during T cell development. b-selection is the first major checkpoint
occurs at the DN3 stage. At this stage, a properly rearranged TCRb
chain will be produced that mediated by recombinant activating
genes 1 and 2 (RAG1 and RAG2). Cells with successful b-selection
downregulate the expression of CD25 and become DN4 cells,
which then progress to the DP cells through the immature CD8
single positive (ISP) stage. In contrast, unsuccessful b-selection of
DN3 cells will undergo apoptosis.

At the DP stage, TCRa gene rearrangements initiate and
mature ab-TCR will be produced. Subsequently, thymocytes
must pass through both positive and negative selections to
become mature T cells. Thymocytes with functional TCRs
interact with the major histocompatibility complex (MHC) on
cortical epithelial cells (cTECs) presenting foreign antigens will
survive (6). Thus, positive selection is vital for MHC restrictions.
During negative selection, thymocytes respond to self-antigens
presented by mTECs (medullary epithelial cells) will be
eliminated. Finally, the selected thymocytes differentiate into
mature SP cells, emigrate out of thymus to periphery, and then
differentiate into distinct functional subsets such as regulatory T
cells (Treg), helper T cells (Th) and cytotoxic T cells. Less than
5% DP thymocytes will survive during all the checkpoints.

Each developmental step requires the participants of
transcriptional regulators that have been elucidated through
advanced genomic techniques to identify the binding sites (7–9).
The transcription factors bind to regulatory elements of target genes,
such as promoters, enhancers or silencers, to regulate the gene
expression. In this review, we will briefly summarize the critical
transcriptional factors and related epigenetic regulators during the
T-lymphocyte development reported in the past decade and provide
a comprehensive understanding of the thymocytes regulation.
DN STAGES

Notch signaling is one of the most important pathways to initiate
the transcriptional program of the progenitor cells (10). Firstly,
Notch signaling induces T cell-specific transcription factor TCF-1
(T cell factor 1, encoded by Tcf7 gene) expression at the ETP stage.
Then lead to the activation of two major target genes, Gata3 and
Bcl11b (B-cell lymphoma/leukemia 11B) (11). Three waves of
chromatin remodeling were observed at the ETP, DN2b and SP
stage respectively. TCF-1 is enriched at recognition sites and
regulatory regions that become accessible during the ETP and
DN2b wave and persist until maturation in both humans andmice
(12, 13). TCF-1 deficiency at distinct phases redirects bifurcation
among divergent cell fates and subdivide the DN cells to different
clusters via scRNA-seq. In addition, TCF-1 directly binds and
mediates chromatin accessibility contributing to tumorigenesis
(14). Moreover, TCF-1 is also found to directly interact with actin-
nucleating factor WASp by ChIP-seq to promote T cell
development (15). Most recently, Notch1 target genes HES1 and
HES4 have been reported to be upregulated in a Notch-dependent
manner promoting early T-cell development (16). Collectively,
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these studies emphasize the essential role of TCF-1 and Notch
signaling in regulating T cell development.

Gata3 and Bcl11b are the major targets of TCF-1. Gata3 is a
member of the Gata transcription factor family, plays multiple
roles in the transcriptional network of thymocyte development.
Gata3 deficiency will affect T-cell survival, growth, commitment
and progression into mature cells. Gata3 has been proved to be
additionally required at the earliest stage of thymopoiesis for the
development of ETP population and DN2 to DN4 stages, since the
mRNA levels of Gata3 are gradually increased between the ETP
and DN3 stages and slightly diminish again in DN4 cells (7, 17). In
mouse DN4 cells, Gata3 is bound by F-box protein Fbw7 and
augmented in Fbw7-deficient thymocytes (18), while it is
negatively regulated by E-box binding protein HEB via Notch1
(19). Furthermore, Gata3 positively regulates Bcl11b at the
transition stage of T cell commitment. Over 10 years ago, the
important roles of Bcl11b in the differentiation and survival of DN
cells have been revealed (20–22). It is stimulated not only by Notch
signaling but also by MAP kinase-and Gsk3-dependent signaling.
The kinetic modifications of Bcl11b in DN cells are somewhat
different from the patterns observed in DP cells, suggesting the
essential function of Bcl11b in DN to DP transition (23). In
addition, the expression of Bcl11b is impaired in CD147 deficient
mice which results in failed T cell identity determination (24).
More interestingly, the intraepithelial lymphocytes are decreased
when Bcl11b is deficient (25). Cooperating with Bcl protein,
transcription factor NFATc1 also plays a critical role in DN
thymocytes survival and differentiation (26). It is activated by
IL-7-Jak3 signals during the DN1 to DN3 stages (27, 28).

The function of each RUNT-related transcription factors (Runx)
family member is still poorly understood based on current studies.
Nevertheless, it is well known that Runx family members, including
Runx1, Runx2 and Runx3 are another crucial transcription factors
facilitating early T cell development. The activity of Runx1 has been
highlighted in the relationship with other key transcription factors
such as Bcl11b and Pu.1, which regulate the dynamic changes of
transcriptional signatures before and after T cell commitment
respectively. In addition, enforced expression of Runx2 affects b-
selection resulting in an expansion of DN cells (29). The intronic
silencer (S4) of Cd4 gene cooperates with RUNX which is involved
in T-helper inducing POZ-Kruppel factor (ThPOK) pathway (30).
Herein, Runx family members are involved in various stages such as
b-selection of double-negative thymocytes (22). The hypomorphic
mutation of Runx component core-binding factor b (Cbfb) results
in a consecutive differentiation block within the DN population, as
evidenced by a decrease of ETP followed by an inefficient ETP-to-
DN2 transition as well as DN2-to-DN3 transition (22, 31).
DN-TO-DP TRANSITION

T cells that have formed a functional pre-TCR complex, consisting
of CD3, TCRb, and pre-TCRa, can develop into DP cells. As a
consequence, pre-TCR signaling is required for thymocyte
development from DN to DP cells, following by dozens of
transcriptional responses to pre-TCR signaling (32, 33).
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Moreover, pre-TCR signaling leads to increased expression of the
transcriptional repressor Bcl6 which is required for differentiation to
DP cells (34). Another member of the Bcl family is the antiapoptotic
molecule Bcl2, whose down regulation induces enhanced apoptosis
during the transition from the DN3 to the DN4 stage and contribute
to DN4 cell number reduction. While the proliferation of ISP
thymocytes is compensated, the number of ISP cells is normal
eventually (35, 36). The successful assembly of pre-TCR promotes
rapid self-renewal of DN3b cells and sequentially differentiate into
cycling DN4, CD8 ISP and early DP (eDP) blast cells, then stop
proliferating to become quiescent late DP (lDP) cells (37). TCR has
multiple gene segments as alpha, beta, gamma and delta (Tcra, Tcrb,
Tcrg and Tcrd). Murine Tcra and Tcrd are organized into a single
genetic locus (Tcra/Tcrd locus) that undergoes V(D)J
recombination in DN thymocytes to assemble the Tcrd gene and
in DP thymocytes to assemble Tcra gene, to generate diverse TCR
repertoires (38, 39). In addition, the formation of a functional VDJ
join signals is required for robust proliferation of DN thymocytes
and their differentiation into DP cells, whereas Tcrb recombination
is suppressed by allelic exclusion (40).

Subsequently, pre-TCR complexes activate Notch1, whose
activation is essential for generating the huge pool of DP
thymocytes as physiological Notch1 signals are highest
expressed in DN3 cells and decreased in DP cells. Thus,
Notch1 signaling is crucial and transiently upregulated in DN-
to-DP transition. There are two types of Notch1 related
transcriptional regulators which are activators and repressors.
Notch1 can be activated by Delta-like Notch ligands such as DL4,
which is critically regulated by Lunatic Fringe (Lfng) (41, 42).
Another activator is Zmiz1, which is a stage-specific cofactor of
Notch1. Withdrawal of Zmiz1 at the later pre-T cell stage impairs
the DN-to-DP transition by inhibiting proliferation.
Furthermore, the Zmiz1-deficient DN-to-DP defect can be
rescued by enforced activation of Notch1 or its target gene
(43). However, DN4 and DP cells will be oncogenic when
Notch1 is activated inappropriately (44). The repressors of
Notch1 are vital for homeostasis. It is confirmed that Notch1
signaling can be attenuated by Bcl6 (34), NKAP (45) and Early
growth response 2 (Egr-2) (46) in ISP thymocytes. Forced
expression of these repressors may result in a severe reduction
of DP cells in the thymus. Furthermore, downstream
transcriptional factors of Notch1 also influence DN-to-DP
transition. Induced TCF-1 form complex with b-catenin that
will lead to transcriptional activation of cell-fate specific target
genes in the transition and DP thymocytes survival via canonical
Wnt pathway. On the contrary, TCF-1 interacts with co-
repressors such as Groucho/Transducin-like enhancer (GRG/
TLE) and turns off-target gene expression in the absence of Wnt
signals. In the absence of TCF-1, ISP thymocyte development is
blocked which contributes to DP thymocytes reduction (47).

As we mentioned in the previous section, Runx1 binds to the
CD4 silencer and represses transcription factors in immature DN
thymocytes followed by CD8 expression to promote DN-to-DP
transition, then down regulate in DP stage (48). The growth rate of
DN4 cells and the transition of DN4 to the DP stage are impaired by
overexpressed Runx1, resulting in the substantial reduction of DP
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thymocytes (49). Coincidentally, a sequence-specific transcription
factor Ets1 specifically associates with Runx1 in DN and TCF-1 in
DP cells by binding distal nucleosome-occupied and depleted
regions respectively (50). Another critical transcription factors
family is Ikaros which transiently increased from DN to DP
developmental stage (51). Nevertheless, Ikaros maybe not a
conventional activator or repressor according to defined sets of
genes (52). As a tumor suppressor, Ikaros directly repress most
Notch target genes through genome-wide analyses, such as ChIP-
seq (53). Furthermore, a newly reported transcriptional regulator,
Zinc finger protein Yin Yang 1 (YY1), is functional in DN
thymocytes survival and apoptosis by suppressing the expression
of p53, which can eliminate thymocytes that fail to pass b-selection.
Early ablation of YY1 caused severely impaired development to DP
cells due to increased apoptosis of DN thymocytes that prevented
the expansion of post-b-selection thymocytes (54). Nevertheless, the
comprehensive mechanism of YY1 in thymocyte development
remains unclear though it is essential for iNKT cell development
by ChIP-seq analysis (55).
DP-TO-SP TRANSITION

DP Survival
Appropriate TCR signaling is crucial for the survival of DP
thymocytes and determines positive or negative selection (56).
Without proper selective signaling, DP cells will be eliminated by
apoptosis within 3~4 days during this pre-selection period.

RORgt is one of the most important survival transcription
factors in pre-selective DP cells that activates the gene encoding
the antiapoptotic protein Bcl-xL. It is well-known that the gc
cytokine receptor subunit provides critical signals for T cell
survival and differentiation. Recently, it is found that RORgt is
abundant in immature DP thymocytes and act through Bcl-xL to
reduce the surface expression of gc. More importantly, Ligons et
al. demonstrate that loss of RORgt in mouse DP thymocytes is
associated with increased gc surface abundance and this
phenomenon can be restored by forced expression of Bcl-xL in
RORgt-deficient thymocytes (57). Moreover, RORgt can be
upregulated by TCF-1. Both TCF-1 and RORgt-knockout DP
thymocytes undergo similarly accelerated apoptosis, while only
in the presence of RORgt, the activation of TCF-1 by stabilized b-
catenin can enhance DP thymocyte survival. Specifically, RORgt
overexpression could rescue TCF-1 deficient DP thymocytes
from apoptosis but overexpressed TCF-1 in RORgt-/- DP
thymocytes doesn’t show any rescue, which indicate that
RORgt acts downstream of TCF-1. In addition, TCF-1 directly
interacts with the promoter region of RORgt and induces its
activity (58, 59). According to the most recent studies, TCF-1
may cooperate with transcription factors Zeb family member
Zeb1 to participate in the cell cycle and TCR signaling by
transcriptomic analysis (60).

Both Bim (Bcl2l11) and Nur77 are TCR-induced proteins
with pro-apoptotic function. Bim is important for clonal deletion
whereas Nur77 is often dispensable but able to influence late DP
thymocytes apoptosis (61, 62).
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Interestingly, nuclear speckle-related protein 70 (NSrp70) is
selectively expressed on developing thymocytes and highest at
DP stage. NSrp70 could regulate cell cycle and survival of
thymocytes by governing the alternative processing of various
RNA splicing factors, such as oncogenic serine/arginine-rich
splicing factor SRSF1 (63). This finding may provide a new
angle to dig up larger scale of transcription network in
DP survival.

Positive Selection
The DP thymocytes will undergo positive selection in the
cortex of the thymus by recognizing antigen-MHC complex
presented by cTECs and transducing intra-thymic TCR
signals, then become CD4+ or CD8+ expressing SP cells.
Calcium flux signaling is required for positive selection of T
cells. Our results demonstrate a newly discovered adaptor
named Tespa1 (Thymocyte-expressed, positive selection-
associated 1) is essential for positive selection by modulating
the interaction with a Ca2+ release channel - inositol 1,4,5-
trisphosphate receptor (IP3R) which express on ER
membranes (64–66).

The positive selection is also induced by forkhead box (Fox)
family. In a way, the pioneer transcription factors Foxa1 and
Foxa2 (forkhead box protein A) regulate alternative RNA
splicing during thymocyte positive selection. Another Fox
protein Foxo1 may induce the selection and maturation of DP
thymocytes that can be accelerated in the deficiency of
transcription repressor Gfi1(Growth factor independent 1).
Thus, the Gfi1-Foxo1 axis shapes the proper generation of SP
cells (67, 68). Additionally, Egr-2 also regulates the survival of
stage-specific thymocytes and enhanced the maturation of DP
cells into SP cells in thymus (46, 69).

Lastly, the achievement of positive selection is inseparable
from epigenet ic regulat ion which cross-work with
transcriptional signals. HDAC7 (Histone deacetylase 7) has
been reported exporting from the cell nucleus during positive
selection in mouse thymocytes and modifying genes to mediate
the coupling between TCR engagement and downstream events
that determine cell survival including MAPK activity (70).

Negative Selection
Negative selection is critical to delete highly self-reactive
thymocytes to prevent autoimmunity. The thymocytes who
pass the negative selection will become mature T cells with low
self-reactivity and export to periphery immune organs.

The proceed of negative selection depends on functional
mTECs, whose development is powerfully promoted by
transcription factors Foxn1 (forkhead box family N1)
and Aire (autoimmune regulator), which control the
differentiation and maturation repectively (71). Conditional
Foxn1 knockout results in defective negative selection
contribute to less clonal deletion of autoreactive thymocytes
(72), which possibly attribute to abnormal mTECs. Therefore,
the Foxn1-TEC axis has been considered to repair negative
selection and rejuvenation of thymic involution which is critical
for counteracting inflammaging (73). Foxn1 is also the
downstream target of Wnts which are a large family to secret
Frontiers in Immunology | www.frontiersin.org 4
glycoproteins and participate in cell fate determination,
migration, proliferation, polarity and death in TECs. Existing
evidences show Wnt4 and Wnt5b regulate Foxn1 expression in
TECs through TCF-4 and LEF-1 by both autocrine and
paracrine manners (74).

On the other hand, the function of mTECs is highly
dependent on their characteristic features such as ectopic
expression of tissue-restricted antigens (TRAs) and their
master regulator Aire, whose expression is restricted to a
mature subset of mTECs. Aire induces tissue-specific antigens
to ensure negative selection by directly binding the promoter of
the target gene within the medulla (75, 76). The transcriptional
function of Aire in the process of mTECs adhesion is
reconfirmed by CRISPR/Cas9 technology (77). Subsequently, it
is shown that Aire targets 5’-URR (5’-untranslated regulatory
region) of immune checkpoint HLA-G lead to increased
intracellular HLA-G protein expression in TECs (78).
Surprisingly, Aire can bind to sequence-independent epigenetic
tags, such as unmethylated histone 3, and be recruited to a locus.
After demethylation and Aire binding, Aire either directly
enhances transcription or recruits other transcriptional
activators (75).

In addition to the promoters, the transcriptional repressors of
negative selection are indispensable. NCoR1 is a nuclear receptor
co-repressor to connect repressive chromatin-modifying
enzymes to gene-specific transcription factors. NCoR1 restrains
negative selection by repressing pro-apoptotic factor Bim
expression, which is expressed elevated in the absence of
NCoR1. NCoR1-null thymocytes show excessive negative
selection and reduced mature SP thymocytes (79–81). NCoR1
interacts with a predominant member of the HDAC family
named HDAC3 which is a major and specific molecular switch
that is crucial for mTECs differentiation and highly specific to
histone deacetylases (82). Capicua (CIC) (83) and
Sphingomyelin microdomains (SM) (84) also work as
repressive factors together to ensure the proper negative
selection and prevent autoimmunity.
DISCUSSION

We conclude the map of T-lymphocyte development in the
thymus and related transcriptional regulators that have been
reported in the past decade (Figure 1), hoping to give some
clues or inspiration to the future research. These selected
regulators may have redundant or opposite functions in the
thymocyte’s maintenance, proliferation, differentiation and
maturation. Indeed, our understanding of the early stage of T
lymphocytes development is still limited yet, the modulators we
reviewed here are still poorly understood. Surprisingly, in
recent years, more and more advanced techniques including
various sequencing are invented or improved in order to
elucidate the function of transcription factors involved in T
cell development. However, the regulatory network among
them and the precise mechanism stil l need further
investigation both in vivo and vitro using ingenious animal
models and molecular biological approaches.
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