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Abstract: β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosac-
charides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an ac-
ceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently
low-temperature environments. While mesophilic β-galactosidases are broadly studied and em-
ployed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although
they may prove very useful in biotechnological processes at low temperature. This review covers
several issues related to cold-active β-galactosidases, including their classification, structure and
molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on
the production of lactose-free dairy products as well as on the valorization of cheese whey and the
synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.
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1. Introduction

Cold environments represent a large part of the Earth biosphere [1–3]. In particular, po-
lar marine environments, which include seawaters, marine sediments and sea ice, are being
studied in depth as a source of bioactive molecules [4]. Microorganisms populating these
habitats, mainly bacteria, archaea, protists, unicellular algae and fungi, evolved several
physiological and molecular strategies to counteract the multiple stresses to which they are
subjected [1–3,5]. Among these (summarized in Figure 1), the most common are a peculiar
composition of the cell envelope to counteract the decrease of membrane fluidity induced
by low temperatures [1–3], the production of compatible solutes (e.g., osmolytes) [1–3] and
ice-binding proteins to prevent the formation of ice crystals and freezing damage [6,7], and
of cold-active enzymes required to contrast the negative effect of low temperatures on the
rates of metabolic reactions [8–10].

Cold-active enzymes are characterized by high activity at low temperatures and are of-
ten more thermolabile compared to their mesophilic and thermophilic counterparts [8–10].
These two properties make them suitable in processes with heat-labile substrates or prod-
ucts and in those requiring enzyme inactivation, by moderate heating, at the end of the
process. Furthermore, the ability of cold-active enzymes to catalyze reactions at low temper-
ature can help to reduce the environmental impact and energy consumption of the process.
Cold-active enzymes find application in detergency, waste bioremediation, molecular
biology and in the medical, pharmaceutical and food industries [3,4,11–13].

β-galactosidases (EC 3.2.1.23) are glycoside hydrolases (GH) that hydrolyze β-glycosidic
bonds of β-galactosides to give galactose molecules. In addition, some β-galactosidases
catalyze the transfer of sugar moieties from a sugar donor to an acceptor [14,15]. Because
of these activities, β-galactosidases hold great potential in industrial and biotechnological
applications [4,12]. These enzymes are widespread and have been isolated from several
organisms, including animals, plants, fungi, yeasts, bacteria and Archaea from different
environments including the extreme ones [14,15]. According to the CAZy database, which
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classifies GHs based on the similarities of amino acid sequences, β-galactosidases are
grouped in four families GH1, GH2, GH35 and GH42. All these enzymes belong to Clan-A
and share a catalytic domain with a (α/β)8 TIM–barrel fold and a retaining mechanism
of catalysis (Figure 2) [14,15]. Moreover, families GH59, GH147 and GH165 also contain
enzymes with β-galactosidase activity.
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Figure 1. Most common strategies of cold adaptation in bacteria. To survive at low temperatures, bacteria developed several
strategies, including the production of cold-shock proteins, ice-binding proteins, cold-active enzymes and compatible solutes.
Adaptive changes observed in the inner and outer membranes include the production of pigments (e.g., carotenoids), the
upregulation of membrane proteins and transporters and the increase of the biosynthesis of polyunsaturated fatty acids,
peptidoglycan, extracellular polymeric substance (EPS) and lipopolysaccharides (LPS).

In this review, we consider β-galactosidases from organisms living in marine cold
environments, which enclose an enormous, yet still poorly explored, genetic diversity.
Unfortunately, the majority of marine microorganism are unculturable [16,17], which
is reflected in the paucity of structural and functional data on marine cold-active β-
galactosidases. To shed light on the molecular mechanisms of cold adaptation and to
pinpoint the biotechnological exploitation of cold-active β-galactosidases we also discuss
enzymes from non-marine environments (i.e., from soils, glaciers and lakes).



Mar. Drugs 2021, 19, 43 3 of 19Mar. Drugs 2021, 19, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 2. Catalytic mechanism of β-galactosidases. β-galactosidases of families GH1, GH2, GH35 and GH42 use a retaining 
mechanism of catalysis, which leads to the formation of glycosyl-enzyme intermediate. In hydrolysis reactions the accep-
tor (ROH) is a water molecule, whereas in transglycosylation reactions is a sugar (e.g., glucose, galactose and lactose) or 
an alcohol [18]. Examples of transglycosylation products with β-1-6, β-1-4 and β-1-3 galactosidic bonds are shown. The 
galactose moiety is colored in blue and acceptors in red. 
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tween enzyme and substrate) and increased entropy (i.e., changes in enzyme stability and 
flexibility) [8–10,19–21]. However, in some cold-active enzymes the improvement in the 
activity at low temperature is obtained through optimization of the KM [21,22]. 

All this is obtained by sequence and structural changes that increase the protein 
structural flexibility. These adaptations may include a peculiar amino acidic composition 
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ening of intramolecular bond interactions (i.e., hydrogen bonds, aromatic, electrostatic 
and salt bridges), a decrease in the compactness of the hydrophobic core, an increase in 

Figure 2. Catalytic mechanism of β-galactosidases. β-galactosidases of families GH1, GH2, GH35 and GH42 use a retaining
mechanism of catalysis, which leads to the formation of glycosyl-enzyme intermediate. In hydrolysis reactions the acceptor
(ROH) is a water molecule, whereas in transglycosylation reactions is a sugar (e.g., glucose, galactose and lactose) or an
alcohol [18]. Examples of transglycosylation products with β-1-6, β-1-4 and β-1-3 galactosidic bonds are shown. The
galactose moiety is colored in blue and acceptors in red.

2. Mechanisms of Cold Adaptation

Cold-active enzymes are suited to counteract the detrimental effect of low temper-
atures on the rate of chemical reactions. This is an important survival strategy in cold
environments, since it has been estimated that a decrease of 10 ◦C causes a 2–3-fold re-
duction of the reaction rate [19]. Several studies pointed out that cold-active enzymes
can decrease the reaction activation energies compared to mesophilic and thermophilic
homologs, which translates into an increase in their catalytic rate (kcat) at low temperatures
at the expense of their KM. This behaviour relies on reduced enthalpy (i.e., few interactions
between enzyme and substrate) and increased entropy (i.e., changes in enzyme stability
and flexibility) [8–10,19–21]. However, in some cold-active enzymes the improvement in
the activity at low temperature is obtained through optimization of the KM [21,22].

All this is obtained by sequence and structural changes that increase the protein
structural flexibility. These adaptations may include a peculiar amino acidic composition
(i.e., lower content of Pro and Arg residues, and a higher number of Gly residues), a
weakening of intramolecular bond interactions (i.e., hydrogen bonds, aromatic, electrostatic
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and salt bridges), a decrease in the compactness of the hydrophobic core, an increase in the
number of solvent-exposed hydrophobic side chains, longer and more hydrophilic loops
and a reduction of metal binding affinity [3,8–10,20,23–26]. In some cold-active enzymes the
quaternary structure is formed by a lower number of protomers (i.e., lower oligomerization
state) compared to mesophilic and thermophilic homologues [27]. Nevertheless, in other
cases, a higher oligomerization state was found to promote flexibility and activity at low
temperatures [28–31]. Cold activity does not imply the coexistence of all these mechanisms,
but one or some of them selected by evolution [3,8–10,20,23–26].

The comparison among cold-active enzymes and their mesophilic and thermophilic homo-
logues highlights peculiar biochemical and biophysical features in the former [3,8–10,20,23–26].
Parameters useful to describe these features are summarized in Appendix A. Generally,
cold-active enzymes are characterized by higher specific activity at low temperatures
and lower optimal temperature of catalysis (Topt, 20–45 ◦C). However, some cold-active
enzymes have a Topt similar to that of thermophilic homologues [32–34], indicating that
the true hallmark of cold activity is rather the ability to maintain high activity at low
temperature [12]. A distinctive element of cold-active enzymes is that enzymatic inacti-
vation occurs at temperatures lower that the ones causing the loss of protein structure
(Topt < unfolding transition midpoint temperature—Tm−). This suggests that the active
site is more thermolabile than the overall structure [3,8–10,20,23–26,35]. By contrast, in
mesophilic and thermophilic enzymes inactivation coincides with the loss of structure
(Topt = Tm) [8,9]. Moreover, cold-active enzymes show low long-term thermostability com-
pared to mesophilic and thermophilic counterparts. Indeed experiments performed with
homologous α-amylases from psychrophilic, mesophilic and thermophilic organisms show
that the psychrophilic one is completely inactivated after 60 min at 50 ◦C, while mesophilic
and thermophilic enzymes maintain 60% and 90% of their activity after 100 min of incuba-
tion [8]. It is worth noting that the characterization of new enzymes from psychrophilic
organisms has challenged these paradigms, as some enzymes combine activity in the
cold with a stability comparable to that of their mesophilic and thermophilic counterparts
[29,32–34,36–38]. A further side-effect of activity at low temperatures is the decrease in
substrate specificity (higher KM) [3,8–10,20,23–26]. Moreover, the high flexibility and plas-
ticity of the active site of cold-active enzymes can increase substrate promiscuity (i.e., the
ability of one active site to catalyze different reactions) [39–44].

3. Sources of Cold-Active β-Galactosidases

Bioprospecting of marine Polar environments and deep-sea waters led to the identi-
fication of cold-active β-galactosidases from Alteromonas, Alkalilactibacillus, Marinomonas
and Pseudoalteromonas species [29,45–53]. In addition, cold-active β-galactosidases were
also isolated from psychrophilic and psychrotolerant microorganisms from different cold
environments including Antarctic soil [54–63], glaciers [64] and deep lakes [65,66].

The physiological role of β-galactosidases in environments where lactose is missing
or at very low concentrations [49] is still to be defined. Interestingly, the genome of
some psychrophilic bacteria contains the genes encoding for two or more β-galactosidases
belonging to different families. For instance, Arthrobacter sp. ON14 [59], Arthrobacter
sp. B7 [54,61] and Arthrobacter sp. 32Cb [60,62] produce two β-galactosidases of the
GH2 and GH42 families; four β-galactosidases, one GH35 and three GH42, are identified
in the genome of Cryobacterium sp. LW097 [67]. In Carnobacterium piscicola BA and in
Alkalilactibacillus ikkense the β-galactosidase encoding gene is in the same operon of that
coding for α-galactosidase [49,68]. This evidence, together with the presence of other
GHs and with the promiscuity of some β-galactosidases suggests that these enzymes
might be involved in the degradation of polysaccharides containing β-galactosidic bonds
(e.g., galactan, arabinogalactan) present in the environment, such as sugars from bacterial
biofilms and marine algae [49,69].
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4. Classification, Structure and Activity of Cold-Active β-Galactosidases
4.1. GH1 Family

Enzymes belonging to family GH1 display both β-galactosidase and β-glucosidase
activities and employ a retaining mechanism of catalysis [70]. To date, only a few GH1s
from psychrophilic bacteria have been characterized (Table 1). These enzymes show a Topt
in the range from 25 ◦C to 40 ◦C and retain from ~10 to 57% of their highest activity at
low temperatures [50,53,71,72]. In all cold-active GH1s, the β-glucosidase activity is the
prominent one (Table 1), which makes them suitable for exploitation in the hydrolysis of
cellulose and its derivatives. The cold-active GH1 with the highest β-galactosidase activity
is the enzyme isolated from Baltic sea water by metagenomic analysis [50]. Interestingly,
the mesophilic GH1 from the deep-sea bacterium Bacillus sp. D1. BglD1 shows high
β-galactosidase activity and is active in lactose hydrolysis and in the production of galacto-
oligosaccharides (GOS) [73], highlighting the importance of the amazing biodiversity of
marine environments in enzyme discovery.

Table 1. Biochemical features of family GH1 cold-active β-galactosidases. Enzymes from marine microorganisms are
in bold.

Source Topt (◦C) Cold Activity 1

(%)
Residual Activity

(%) Substrate Specificity 2 References

Alteromonas sp.
L82

40 9.4 (4 ◦C) ~10 (3 h at 40 ◦C)

Cellobiose (100%)
Lactobiose (3.6%)
p-NP-β-D-glucopyranoside (100%)
o-NP-β-D-glucopyranoside (120.7%)
p-NP-β-D-cellobioside (8%)
p-NP-β-D-galactopyranoside (9.2%)
o-NP-β-D-galactopyranoside (13%)
p-NP-β-D-xylopyranoside (0.9%)

[53]

Baltic sea
sediment

40–45 10 (5 ◦C) 0 (30 min at 40 ◦C)

p-NP-β-D-glucopyranoside (130%)
p-NP-β-D-fucopyranoside (133%)
p-NP-β-D-galactopyranoside (100%)
o-NP-β-D-galactopyranoside (82%)
p-NP-β-D-cellobioside (59%)
p-NP-β-D-xylopyranoside (4%)

[50]

Exiguobacterium
antarcticum B7

30 25 (5 ◦C) ~20 (72 h at 30 ◦C)

p-NP-β-D-glucopyranoside (100%)
p-NP-β-D-cellobioside (50.9%)
p-NP-β-D-galactopyranoside (2.3%)
p-NP-α-D-glucopyranoside (1.2%)
p-NP-β-D-mannopyranoside (0.5%)

[71]

Micrococcus
antarcticus

25 27 (0 ◦C) ~20 (60 min at 35
◦C)

p-NP-β-D-glucopyranoside (100%)
p-NP-β-D-galactopyranoside (32.2%) [72]

Marinomonas sp.
MWYL1

40 20 (5 ◦C) ~75 (60 min at 40
◦C)

p-NP-β-D-glucopyranoside (100%)
p-NP-β-D-galactopyranoside (26.5%) [74]

1. Relative activity obtained at the temperature indicated in brackets was calculated as the percentage of the activity at Topt.2. Relative
activity reported in the reference is shown in brackets.

The tertiary structure of GH1 enzymes consists of a single (α/β)8 TIM–barrel contain-
ing two Glu catalytic residues that act as acid/base and nucleophile, respectively [31,75]
(Figure 3a). Currently, the crystal structures of two cold-active GH1s from the Antarctic
bacteria Micrococcus antarcticus (BglU) [75] and Exiguobacterium antarcticum B7 (EaBglA) [31]
were solved. Although both enzymes share the (α/β)8 TIM–barrel fold and 44% sequence
identity, they developed two different mechanisms of cold adaptation. The psychrophilic
features of EaBglA are attributed to its peculiar tetrameric arrangement (Figure 4a), which
increases the flexibility of the solvent-exposed regions [31]. On the other hand, sequence
and structural analyses show that the low content of Pro, Arg, and Glu; the residue
H299 within the tunnel connecting the enzyme surface to the catalytic site (Figure 4b);
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and the long-loop L3 are involved in the low temperature activity and thermolability of
BglU [75,76].
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of β-galactosidases of family GH1 (a) (PDB: 5DT5, [31]), GH2 (b) (PDB: 1YQ2, [30]), GH35 group 1 (c) (PDB: 3OG2, [77]),
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orange. Accessory domains are colored in different colors and named with numbers for GH2 and GH35 or letters for GH42
(for numbering and letters see text).
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Figure 4. Cold adaptation mechanisms of β-galactosidases. Available 3D structures of cold-active β-galactosidases reveal
several mechanisms of cold adaptation. In the GH1 family, high flexibility is due to a long-loop L3 and residue H299 in
BglU (a) (PDB code: 3W53, [75]) and to the increase in the number of protomers in the quaternary assembly (increase of
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oligomerization state), as observed in EaBglA (b) (PDB: 5DT5, [31]). Changes in protein quaternary structure were observed
also in the GH2 family. In ArthβDG (c) (PDB:6ETZ, [81]), the decrease of the multimerization state (from tetramer to dimer)
enhances protein flexibility, whereas in C221-β-Gal (d) (PDB: 1YQ2, [30]) the increase of the oligomerization state (from
tetramer to hexamer) promotes the formation of a large central cavity. Finally, in GH42 family, cold activity is accompanied
by a decrease in the number of salt bridges, as observed in Rahnella sp. R3 (e) (PDB: 5E9A, [82]), longer loops, as observed in
H. lacusprofundi (f) (PDB: 6LVW, [83]), and by an increase of the oligomerization state (from trimer to hexamer), as observed
in M-βGal (g) (PDB:6Y2K, [29]) which supports the formation of a large central cavity. Each protomer is marked by a
different color.

4.2. GH2 Family

The largest number of known β-galactosidases, including the well characterized β-
galactosidase from Escherichia coli (Ec-βgal) encoded by lacZ [84], belongs to the GH2 family.
Cold-active GH2 β-galactosidases hydrolyze β (1-4) glycosidic bond in β-D-galactosides
and are characterized by a Topt in the range 10 ◦C–50 ◦C and by low long-term thermosta-
bility (Table 2). The activity of some cold-active GH2s is positively modulated by Mn2+,
Mg2+, Na+ and K+ [46,54–57,59,60,85], whereas GH2s from Arthrobacter sp. SB, Arthrobacter
sp. 32 cB, Paracoccus sp. 32d and Pseudoalteromonas sp. 22b are inhibited by glucose or
galactose, the product of lactose hydrolysis [57,60,63,85].

Table 2. Biochemical features of cold-active β-galactosidase of family GH2. Enzymes from marine microorganisms are
in bold.

Source Topt
(◦C)

Cold Activity 1

(%)
Residual Activity

(%) Substrate Specificity 2 References

Alkalilactibacillus ikkense 30 ~60 (0 ◦C) ~ 20 (5 h at 30 ◦C) p-NP-β-D-galactopyranoside (100%)
p-NP-β-D- fucopyranoside (4%)

[49]

Alteromonas sp. ANT48 50 ~30 (0 ◦C) ~20 (3 h at 60 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-galactopyranoside (14%)

[45]

Alteromonassp.ML117 30–35 ~20 (5 ◦C) 0 (1 h at 30 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-galactopyranoside (31%)

[51]

Alteromonassp. ML52 35 ~20 (5 ◦C) ~10 (1 h at 35 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-galactopyranoside
(12.8%)

[52]

Arthrobacter
psychrolactophilus F2

10 ~90 (0 ◦C) ~20 (2 h at 35 ◦C) o-NP-β-D-galactopyranoside [58]

Arthrobacter sp. ON14 15 ~30 (0 ◦C) ~40 (2 h at 40 ◦C) o-NP-β-D-galactopyranoside [59]
Arthrobacter sp. 20B 25 ~30 (0 ◦C) ~30 (1 h at 45 ◦C) p-NP-β-D-galactopyranoside [56]
Arthrobacter sp. 32cB 28 ~30 (5 ◦C) ~10 (8 h at 35 ◦C) p-NP-β-D-galactopyranoside (100%)

p-NP-β-D-fucopyranoside (4%)
[60]

Arthrobacter sp. B7 40 ~25 (10 ◦C) ~50 (2 h at 40 ◦C) p-NP-β-D-galactopyranoside (100%)
p-NP-β-D-galuronide (4%)

[54]

Arthrobacter sp. C2–2 40 ~15 (5 ◦C) ~0 (1 h at 45 ◦C) o-NP-β-D-galactopyranoside [55]
Arthrobacter sp. SB 18 ~50 (0 ◦C) ~50 (2 h at 40 ◦C) o-NP-β-D-galactopyranoside [57]
Flavobacterium sp. 4214 42 ~10 (15 ◦C) ~35 (2 h at 40 ◦C) o-NP-β-D-galactopyranoside (100%)

p-NP-β-D-fucopyranoside (39%)
[63]

Pseudoalteromonas
haloplanktis TAE 79

45 ~18 (7 ◦C) 0 (1 h at 45 ◦C) o-NP-β-D-galactopyranoside [46]

Pseudoalteromonas sp. 22b 40 ~10 (0 ◦C) ~90 (1 h at 40 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-galuctoronide (1.5%)

[47]

1. Relative activity obtained at the temperature indicated in brackets was calculated as the percentage of the activity at Topt.2. Relative
activity reported in the reference is shown in brackets.

From a structural point of view, all GH2s are organized in a five-domain tertiary
structure (Figure 3b): domain 1 is a sugar-binding domain with jelly-roll fold; domains
2 and 4 are immunoglobulin-like-β-sandwich domains; domain 3, which contains two
Glu catalytic residues, has the (α/β)8 TIM–barrel fold; domain 5, named “β-galactosidase
small chain”, has a typical (α/β) fold [30,81,84,86]. The well-known Ec-βgal has a homo-
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tetrameric quaternary structure [84]. Interestingly, the available 3D structures of all cold-
active GH2s reveal quaternary arrangements different from that of Ec-βgal.

Cold-active GH2s from Paracoccus sp. 32d (Par_DG) and Arthrobacter sp. 32cB
(ArthβDG) are dimers in their native form (Figure 4c). This arrangement defines a large
solvent-exposed area and increases the flexibility of the protein surface compared to the
tetrameric Ec-βgal [81,86]. Par_DG and ArthβDG evolved the same solution for cold
adaptation (decrease of the oligomerization state) but employed two different molecular
mechanisms. Indeed, in ArthβDG dimers are stabilized by hydrogen bonds and hydropho-
bic interactions between amino acidic residues of domains 1 and 5 of adjacent subunits [81],
whereas in Par_DG dimers formation rely on the properties of domain 5 that is more
compact and smaller than that of the mesophilic enzyme [86]. By contrast, the cold-active
GH2 β-galactosidases from Arthrobacter sp. C2-2 (C221-β-Gal) adopts a compact hex-
americ quaternary structure (Figure 4d), which enhances the number of channels and
cavities and allows for the formation of an internal catalytic cavity, accessible through three
channels [30].

4.3. GH35 Family

GH35 β-galactosidases are multi-domain enzymes, which can hydrolyze β (1-4),
(1-3) and (1-6) glycosidic bonds in β-D-galactosides such as disaccharides (e.g., lactose),
oligosaccharides, glycoproteins and glycolipids [87–89]. Currently, only three cold-active
GH35s have been characterized from the psychrophilic bacteria Carnobacterium piscicola
BA, Cryobacterium sp. LW097 and Arthrobacter sp. B7 [90,91]. The enzyme from C. piscicola
BA has a Topt of 40 ◦C, retains 20% of its highest activity at 5 ◦C and it is endowed with
low long-term thermostability [91]. The GH35 from Arthrobacter sp. B7 is a dimer and it
is specific towards β (1-4) and β (1-3) glycosidic bonds. Unfortunately, no information
regarding Topt and activity at low temperatures is available [90]. The best characterized
cold-active enzyme of this family is the β-galactosidase from Cryobacterium sp. LW097
(Bgal436), which shows a Topt of 40 ◦C and retains 40% of its maximum activity at 5 ◦C [67].
Although, Bgal436 hydrolyzes both o-NP-β-D-galactopyranoside and lactose with a KM of
2.1 and 13.1 mM at 5 ◦C, respectively, its preferred substrate is allolactose (β (1-6) glycosidic
bonds) [67].

Based on available 3D structures, GH35s can be divided in three different groups
(Figure 3), all with the same (α/β)8 TIM–barrel fold of the catalytic domain. Enzymes in
group 1 are monomers made-up of a central catalytic domain surrounded by a horseshoe of
five anti-parallel β-sandwich domains (Figure 3c) [77,92,93]. By contrast, enzymes in group
2 are dimers composed by three different domains, where domain 1 is the catalytic one, and
domains 2 and 3 are all-β-domains (Figure 3d) [78,94,95]. Finally, the GH35 from Cellvibrio
japonicus (group 3), folds in a two-domain architecture in which the catalytic domain
is followed by a small C-terminal domain with a mixed α/β structure (Figure 3e) [79].
Although the 3D structures of cold-active GH35s are not available, sequence analysis
indicate that these enzymes belong to group 2. Indeed, they share high sequence identity
(>37%) with the enzymes in group 2 and low sequence identity (<25%) with those belonging
to group 1 and 3.

4.4. GH42 Family

Most GH42 enzymes are isolated from extremophilic microorganisms [48,61,62,64–
66,80,91,96–99]. All cold-adapted GH42s are characterized by heterogeneous long-term
thermal stability and Topt (from 20 ◦C to 60 ◦C —Table 3—). Interestingly, cold-active GH42s
from Arctic and Antarctic Marinomonas sp. display an unusual thermal stability similar to
those of mesophilic counterparts (Table 3) [48]. All enzymes hydrolyze the β (1-4) glycosidic
bond in β-D-galactosides (Table 3). The cold-active GH42s from Carnobacterium maltaro-
maticum and from Planococcus sp. SOS Orange are active also on β-D-fucosides [91,96],
whereas the enzyme identified by metagenomic analysis of topsoil of Daqing oil field, in
the north of China, have the broadest substrate specificity (Table 3) [66]. Currently, only
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the cold-active GH42 from Marinomonas sp. BSi20414 is described to be selective for the
β (1-3) glycosidic bond in β-D-galactosides [48]. Cold-active GH42s from Cryobacterium
sp. LW097 are able to hydrolyze lactose, galactobiose, lactulose and allolactose (β (1-6)
galactosidic bond) [67].

Table 3. Biochemical features of cold-active β-galactosidase of family GH42. Enzymes from marine microorganisms are
in bold.

Source Topt (◦C) Cold Activity 1

(%)
Residual Activity

(%) Substrate Specificity 2 References

Arthrobacter sp. 32cB 50 ~18 (0 ◦C) N.A. p-NP-β-D-galactopyranoside (100%)
p-NP-β-D-glucopyranoside (1.4%)

[62]

Arthrobacter sp. B7 50 ~50 (4 ◦C) ~0 (15 min at 50
◦C)

o-NP-β-D-galactopyranoside
Lactose

[61]

Carnobacterium
maltaromaticum

30 ~10 (0 ◦C) ~10 (30 min at
35◦C)

o-NP-β-D-galactopyranoside (100%)
p-NP-β-D- fucopyranoside (10.1%)

[91]

Cryobacterium sp. LW097
(Bgal322)

25 ~60 (5 ◦C) ~32 (12 h at 35 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-galactopyranoside
(69%)Lactose (5%)
Galactobiose (100%)
Lactulose (11%)
Allolactose (44%)

[67]

Cryobacterium sp. LW097
(Bgal435)

30 ~60 (5 ◦C) ~13 (12 h at 35 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-glucopyranoside
(34%)Lactose (34%)
Galactobiose (6%)
Lactulose (8%)
Allolactose (100%)

[67]

Cryobacterium sp. LW097
(Bgal2567)

35 ~40 (5 ◦C) ~14 (12 h at 35 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-galactopyranoside (126%)
Lactose 44%)
Galactobiose (90%)
Lactulose (97%)
Allolactose (100%)

[67]

Halorubrum lacusprofundi 50 ~10 (<10 ◦C) N.A. o-NP-β-D-galactopyranoside [65]
Marinomonassp.
BSi20414

60 ~10 (10 ◦C) 76 (6 h at 40 ◦C) p-NP-β-D-galactopyranoside [48]

Marinomonassp. ef1 55 23 (5 ◦C) 25 (4 days at 50 ◦C) o-NP-β-D-galactopyranoside [29]
Planococcus sp. L4 20 ~30 (0 ◦C) 20 (1 h at 40 ◦C) o-NP-β-D-galactopyranoside [97]
Planococcus sp. SOS
orange

40 ~10 (0 ◦C) 30 (2 h at 40 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-fucopyranoside (6.1%)

[96]

Rahnella sp. R3 35 27 (4 ◦C) ~90 (2 h at 35 ◦C) o-NP-β-D-galactopyranoside (100%)
Lactose

[64]

Topsoil of Daqing oil
field

40 ~10 (0 ◦C) ~17 (1 h at 40 ◦C) o-NP-β-D-galactopyranoside (100%)
p-NP-β-D-glucoronide (49.5%)
p-NP-β-D-arabinoside (52.8%)
p-NP-β-D-mannoside (61.3%)

[66]

1. Relative activity obtained at the temperature indicated in brackets was calculated as the percentage of the activity at Topt.2. Relative
activity reported in the reference is shown in brackets.

GH42 β-galactosidases are three-domain enzymes (domain A, B and C —Figure 3d—).
Domain A is the catalytic one, contains the two Glu catalytic residues and is organized
in a (α/β)8 TIM–barrel fold, domain B is the so-called trimerization domain, involved in
the stabilization of the quaternary structure and domain C consists of an anti-parallel β
sandwich with unknown function [80,82,98–100]. Most GH42 enzymes have a trimeric
quaternary structure (Figure 4e,f) except for the cold-active GH42 from Marinomonas sp.
ef1 (M-βGal) which has a hexameric arrangement (dimer of trimmers —Figure 4g—) [29].
Structural analysis reveals three different mechanisms of cold adaptation in the enzymes of
this family [29,82,83]. Activity at low temperature of the trimeric Rahnella sp. R3 enzyme
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might rely on a lower number of salt bridges and on higher flexibility than the mesophilic
and thermophilic homologues [82]. The GH42 from H. lacusprofundi is a trimer that couples
adaptation to high salt as well as to cold environments. Indeed, it presents an acidic surface,
typical of halophilic enzymes, and two long and flexible loops localized in domain B and C
(Figure 4f) [83]. The hexameric arrangement of M-βGal, together with the absence of a zinc
binding site, create an internal catalytic cavity accessible from five gates (two at the apices
and three at the equatorial region of the hexamer) [29]. The internal catalytic cavity might
modulate the substrate accessibility and affinity with a mechanism similar to that proposed
for C221-β-Gal, highlighting a new strategy of cold adaptation. The peculiar quaternary
structure might account for the cold activity and the robustness of M-βGal.

5. Industrial Applications of Cold-Active β-Galactosidases

The hydrolytic and transglycosylation activities of β-galactosidases make these en-
zymes promising from an industrial point of view [14,101,102]. The main advantages
of using cold-active β-galactosidases are envisaged in the preservation of heat-labile
compounds [4,12]. In this review, we describe the state-of art in the use cold-active β-
galactosidases in lactose hydrolysis and in the production of GOS.

5.1. Hydrolysis of Lactose in Milk

The hydrolysis of lactose in milk can be carried out by either chemical or enzymatic
treatment. β-galactosidases are widely used in the production of lactose-free dairy products,
because by-products are avoided and the chemical-physical characteristics of milk are not
altered [14,101–103]. These products are dedicated to lactose-intolerant people, who have
a deficiency of β-galactosidases in their digestive system [104]. Moreover, β-galactosidases
are used in ice cream and in condensed milk production to avoid lactose crystallization and
to enhance the sweetness and creaminess of these products [101,102]. Lactose-free milk
is produced adding soluble β-galactosidases either during milk storage (batch process)
or after UHT treatment (aseptic process) [103]. Generally, these processes are carried
out by using mesophilic enzymes such as the Kluyveromyces lactis and Aspergillus oryzae
β-galactosidases, which are active at refrigeration temperature [105]. The biochemical
features of cold-active enzymes, in particular their high activity at low temperatures and
thermolability, make them suitable for the batch process, carried out under slow shaking
for 24 h, at 4–8 ◦C, before pasteurization and packaging [103]. Several cold-active β-
galactosidases have been tested for their performances in the hydrolysis of milk lactose
(Table 4). Unfortunately, the lack of standardization makes it difficult to compare results
obtained in different laboratories. GH2 Pseudoalteromonas sp. 22b and Pseudoalteromonas
sp. 79b β-galactosidases were immobilized on chitosan and sepharose, respectively, to
improve their activity and stability during lactose hydrolysis reactions. Immobilization
was found to increase the stability of both enzymes, as well as the catalytic performances
of the Pseudoalteromonas sp. 22b enzyme [85,106].

5.2. Hydrolysis of Lactose in Cheese Whey

Cheese whey (CW) is one of the main by-products of the cheese-making processes [109].
CW is the liquid phase obtained after casein coagulation and curd separation and it con-
tains lactose, proteins, lipids and mineral salt [109]. CW proteins are valuable and find
several applications in food and feed industries [110]. By contrast, lactose is the most
polluting component because of its high value of biochemical oxygen demand. Since its
release in the environment is forbidden, CW is used by the food and feed sectors and as a
source of lactose for the production of high value compounds by microbial fermentation
or by chemical modifications [109,111,112]. In this context, β-galactosidases are used in
the pre-treatment of CW to obtain glucose and galactose, which are more suited than
lactose as substrates for microbial growth [109,111,112]. The hydrolysis of CW lactose in
the presence of mesophilic and thermophilic β-galactosidases (i.e., Kluyveromyces fragilis,
Aspergillus oryzae and Sulfolobus solfataricus) is carried out at 35–55 ◦C [113–115]. The marine



Mar. Drugs 2021, 19, 43 11 of 19

cold-active GH2 from Pseudoalteromonas haloplanktis was employed for the hydrolysis of
lactose in CW permeate (i.e., CW without proteins) to produce D-tagatose, which is a
natural low-calorie sweetener [116]. In this process, lactose hydrolysis was performed at
23 ◦C, a temperature that does not require cooling or heating of the tank.

Unfortunately, this is to date the only report about the use of a cold-active enzyme.
Nevertheless, the information derived from studies about the hydrolysis of milk lactose
(e.g., reaction conditions, temperature of hydrolysis etc.) can be applied to design a
sustainable process for lactose hydrolysis in CW permeate.

Table 4. Cold active β-galactosidases in the hydrolysis of milk. Enzymes from marine microorganisms are in bold.

Source T (◦C) Time (h) Amount of
Enzyme

Hydrolysis
Yield (%) References

Alteromonassp. ML52 4 24 44.5 U 90 [52]
Arthrobacter
psychrolactophilus F2 10 24 10 U/mL 80 [58]

Arthrobacter sp. ON14 4 8 5.08 U/mL 100 [59]
Arthrobacter sp. 32cB 10 24 2 U/mL 90 [60]
Arthrobacter sp. SB 2.5 7.5 N.A. 80 [57]
Aspergillus oryzae (EYL) 2 24 0.1% (w/v) 85.23 [105]
Cryobacterium sp. LW097 (Bgal322) 4 48 5 U/mL 8.4 [67]
Cryobacterium sp. LW097 (Bgal435) 4 48 5 U/mL 5.1 [67]
Cryobacterium sp. LW097 (Bgal436) 4 48 5 U/mL N.A. [67]
Cryobacterium sp. LW097 (Bgal2567) 4 48 5 U/mL 7.8 [67]
Halomonas sp. S62 7 24 0.15 U/10 µL 60 [107]
Kluyveromyces fragilis (LYL) 2 24 0.1% (w/v) 82.96 [105]
Kluyveromyces lactis (DYL) 2 24 0.1% (w/v) 99.08 [105]
Kluyveromyces lactis (VYL) 2 24 0.8% (w/v) 98.59 [105]
Paracoccus sp. 32d 10 11 1 U/mL 91 [63]
Planococcus sp. L4 5 1 2.5 ug 36 [97]
Pseudoalteromonas
haloplanktis TAE 79 4 50 min 1.3 U 33 [46]

Pseudoalteromonas sp. 79b 10 8 1U 40 [106]
Pseudoalteromonas sp. 22b 4 48 30 U 65 [85]
Topsoil of Daqing oil field 4 1 1 U 4.2 [66]
Lactococcus lactis 4 9 0.14 U 98 [108]

Immobilized

Pseudoalteromonas sp. 22b 4 24 30 U per g of
lactose 93 [85]

Pseudoalteromonas sp. 79b 10 8 1U 40 [106]

5.3. Synthesis of Oligosaccharides

GOS are prebiotics that stimulate the growth of beneficial gut bacteria (e.g., Lactobacilli
or Bifidobacteria) and prevent the colonization of pathogenic bacteria in the gastrointestinal
tract. Moreover, GOS are used in the cosmetic and in food industries as additives and
sweeteners, respectively [14,101,102]. The use and potential of β-galactosidases for the syn-
thesis of GOS and glycan conjugates has been recently reviewed by Lu and coauthors [14].
Although high temperatures increase lactose solubility in GOS production [117–120], a few
papers reported the use of cold-active β-galactosidases in the synthesis of GOS [45,60,121],
notably the enzymes from the marine bacteria Alteromonas sp. ANT48 and Marinomonas
sp. BSi20414 (MaBGA) [45,121]. Despite GOS usually containing β-1,4 and β-1,6 link-
ages [14,101,102], the transglycosylation reaction carried out in the presence of MaBGA
produces a trisaccharide with uncommon β-1,3 linkages [121].

The cold-active GH2 from the marine Pseudoalteromonas sp. 22b is active in the
glycosylation of short chain alcohols (C3–C6) to yield alkyl glycosides, which can be
used in the cosmetic industry and/or as building block in the synthesis of pharmaceutical
products. These reactions were carried out at 30 ◦C for 24 h [122]. For comparison, one
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could consider that the synthesis of butylgalactoside by A. oryzae β-galactosidase was
performed at 50 ◦C [123].

Moreover, the cold-active GH2 from Arthrobacter sp. 32bc synthesizes, by transg-
lycosylation at 30 ◦C, hetero-oligosaccharides such as lactulose, galactosyl-xylose and
galactosyl-arabinose [60]. Lactulose (4-O-β-D-galactopyranosyl-β-D-fructofuranose) is
used in food as a prebiotic and in medicine in the treatment of hepatic encephalopathy and
constipation. The enzymatic synthesis of lactulose is more advantageous than the chemical
one, because the latter requires harsh conditions (alkaline pH —10.5–11 and high tempera-
tures —70–100 ◦C), which degrade lactose producing different by-products [60]. Among
mesophilic enzymes, the best yield of lactulose is obtained by the use of the A. oryzae
β-galactosidase at 40 ◦C [124].

6. Conclusions

Cold adaption mechanisms. The number of enzymes identified from psychrophilic and
psychrotollerant organisms is constantly growing. The biochemical data available on β-
galactosidases led us to reconsider the hallmarks of cold activity. Several authors proposed
low Topt values as the main distinctive feature of cold adaptation. However, the comparison
of cold-active β-galactosidases suggested that this parameter is the most heterogeneous,
spanning from 10 ◦C to 60 ◦C. Long-term thermal stability, usually lower compared to that
of mesophilic counterparts, is very variable as well (Tables 1–3). One cannot completely
exclude that this heterogeneity might be due to an incomplete evolutionary adaptation to
the cold [10]. On the other hand, the ability of these enzymes to maintain their activity
in the cold is clearly the true label of cold activity. Based on this evidence also the β-
galactosidases from the mesophilic Kluyveromyces lactis and Aspergillus oryzae [105] and from
the thermophilic Pyrococcus furiosus, which retains 8% of its maximum activity at 0 ◦C [125],
are to be considered cold-active enzymes. To shed light on cold adaptation mechanisms, a
useful, still yet unexplored, parameter is the Tm value. Indeed, the comparison between
the Topt and the Tm values gives information on the thermolability of the active site and the
catalytic intermediates [3,8–10,20,23–26,35]. Unfortunately, due to the paucity of Tm data,
such kind of comparison is not possible for cold-active β-galactosidases, suggesting that a
more systematic approach is required in the study of cold active enzymes.

Even more complex is the search for structural elements responsible of cold adaptation.
Despite the paucity of available 3D structure of cold-active β-galactosidases, at least four
different mechanisms of cold adaptation can be observed (Figure 4). Besides the canonical
adaptive structural changes (longer loops, less salt bridges etc.) some of these mechanisms
result in modifications of the protein topology and of the quaternary structure. In detail,
Par_DG and ArthβDG lowered the oligomerization state increasing the solvent exposed
surface and thereby flexibility [81,86]. Nevertheless, also higher multimerization could be
considered a strategy of cold adaptation, as it may increase the flexibility of the solvent-
exposed region as described for EaBglA [31] or create a large catalytic cavity, which
modulates the substrate accessibility as described for C221-β-Gal and M- βGal [29,30].

It is interesting to note that this heterogeneity is also observed among members of the
same protein family, suggesting that two enzymes, phylogenetically distant, could give
rise to different strategies if exposed to similar selective pressure. Overall, the structural
reasons of cold adaptation seem to be inspired by thermodynamic requirements to enhance
the catalytic efficiency at low temperatures rather than to derive from a common signature.

Biotechnological exploitation of cold-active β-galactosidases. The importance and the
advantage of cold-active enzymes in industrial application are known and their potentiality
is reported in several reviews [3,12,13]. Cold-active β-galactosidases from psychrophilic
and mesophilic organisms might play a key role in food industries in the production of
lactose free products and prebiotics. However, the lack of standardization makes it difficult
to compare the hydrolytic activity of different enzymes. Therefore, a set of parameters,
including milk preparation, enzyme concentration and temperature of hydrolysis, have
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to be defined to compare different biocatalytic processes and to improve their industrial
exploitation.

The transglycosylation activity of cold-active β-galactosidases can be applied in the
synthesis of GOS, heterooligosaccharides and alkyl glycosides. Since transglycosylation
takes place with an enzyme dependent mechanism, the discovery of new cold-active
β-galactosidases could drive the development of new products and the design of new
processes that aim to replace chemical treatments with enzymatic ones.

In conclusion, cold-active β-galactosidases are still poorly explored. However, the
structural and functional heterogeneity they display can be useful to shed light on the
molecular bases of cold adaptation and for their biotechnological exploitation. In this
context, the marked biodiversity of marine environments could play a key role in the
discovery of new cold-active β-galactosidases with industrial and scientific interest.
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Appendix A

The temperature dependence of the activity of enzymes is a key property in the
study of cold adaptation. The optimum temperature of catalysis (Topt) is determined by
measuring enzyme activity at fixed temperature and conditions. Thus, the enzyme activity
or relative activity is plotted as a function of temperature to obtain the graph shown in
Figure A1a. Generally, the comparison of the optimum profiles of cold-active enzymes with
those of mesophilic homologues pointed out that cold-active enzymes are more active at
low and moderate temperatures than their mesophilic counterparts (Figure A1a). Moreover,
usually the highest activity of cold-active enzymes is displayed at 20–45 ◦C, whereas that
of mesophilic enzymes is displayed at 50–60 ◦C (Figure A1a) [9,10,44].

Thermal unfolding can be determined through differential scanning calorimetry (DSC)
or through circular dichroism and/or fluorescence spectroscopies. DSC measures the heat
absorbed in the medium during unfolding (Figure A1b) [9]. This technique allows us to
determine (i) the Tm, corresponding to the temperature of the top of the transition; (ii)
the calorimetric enthalpy (∆Hcal) obtained calculating the area of the peak and related to
enthalpic contribution; (iii) the cooperativity of the unfolding transition [9,126]. Similarly,
Tm can be determined by monitoring changes in secondary or tertiary structure, at fixed
wavelength, in a given temperature range using CD (Far-UV and Near-UV) or intrinsic
fluorescence spectroscopies [127,128]. With these techniques it is possible to calculate the
Tm, which corresponds to the flex of the sigmoidal curve and the cooperativity of the
unfolding transition (Figure A1c) [127,128].

Another useful parameter is the long-term thermostability measured by incubating
the enzyme at fixed temperature and monitoring the decrease of activity and/or structure
over the time (Figure A1d) [9]. Cold-active enzymes are characterized by low long-term
thermostability and maintain their activity for a few hours when incubated at temperatures
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near the Topt. By contrast, mesophilic and thermophilic enzymes are stable for a long time
(some hours or days) at the same temperature [9].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 14 of 19 
 

 

of mesophilic homologues pointed out that cold-active enzymes are more active at low and 
moderate temperatures than their mesophilic counterparts (Figure A1a). Moreover, usually 
the highest activity of cold-active enzymes is displayed at 20–45 °C, whereas that of mes-
ophilic enzymes is displayed at 50–60 °C (Figure A1a) [9,10,44]. 

Thermal unfolding can be determined through differential scanning calorimetry 
(DSC) or through circular dichroism and/or fluorescence spectroscopies. DSC measures 
the heat absorbed in the medium during unfolding (Figure A1b) [9]. This technique allows 
us to determine (i) the Tm, corresponding to the temperature of the top of the transition; 
(ii) the calorimetric enthalpy (ΔHcal) obtained calculating the area of the peak and related 
to enthalpic contribution; (iii) the cooperativity of the unfolding transition [9,126]. Simi-
larly, Tm can be determined by monitoring changes in secondary or tertiary structure, at 
fixed wavelength, in a given temperature range using CD (Far-UV and Near-UV) or in-
trinsic fluorescence spectroscopies [127,128]. With these techniques it is possible to calcu-
late the Tm, which corresponds to the flex of the sigmoidal curve and the cooperativity of 
the unfolding transition (Figure A1c) [127,128]. 

Another useful parameter is the long-term thermostability measured by incubating 
the enzyme at fixed temperature and monitoring the decrease of activity and/or structure 
over the time (Figure A1d) [9]. Cold-active enzymes are characterized by low long-term 
thermostability and maintain their activity for a few hours when incubated at tempera-
tures near the Topt. By contrast, mesophilic and thermophilic enzymes are stable for a long 
time (some hours or days) at the same temperature [9]. 

 
Figure A1. Biochemical and biophysical features of a generic cold-active enzyme and of a mesophilic homologue. (a) The
optimum temperature of catalysis of psychrophilic (cyan) and mesophilic enzymes (grey). (b,c) Thermal unfolding of
cold-active enzymes. (b) Thermograms obtained by DSC. Cold-active enzymes are characterized by lower Tm (top of
the peak) and ∆Hcal (area under the peak). (c) Thermal unfolding profile obtained by circular dichroism or fluorescence
spectroscopies. (d) Long-term thermal stability obtained incubating the enzymes at temperatures close to the Topt.

References
1. De Maayer, P.; Anderson, D.; Cary, C.; Cowan, D.A. Some like it cold: Understanding the survival strategies of psychrophiles.

Embo Rep. 2014, 15, 508–517. [CrossRef] [PubMed]
2. D’Amico, S.; Collins, T.; Marx, J.C.; Feller, G.; Gerday, C. Psychrophilic microorganisms: Challenges for life. Embo Rep. 2006, 7,

385–389. [CrossRef]
3. Collins, T.; Margesin, R. Psychrophilic lifestyles: Mechanisms of adaptation and biotechnological tools. Appl. Microbiol. Biotechnol.

2019, 103, 2857–2871. [CrossRef]
4. Bruno, S.; Coppola, D.; di Prisco, G.; Giordano, D.; Verde, C. Enzymes from Marine Polar Regions and Their Biotechnological

Applications. Mar. Drugs 2019, 17, 544. [CrossRef]
5. Vallesi, A.; Pucciarelli, S.; Buonanno, F.; Fontana, A.; Mangiagalli, M. Bioactive molecules from protists: Perspectives in

biotechnology. Eur. J. Protistol. 2020, 75, 125720. [CrossRef]
6. Vance, T.D.R.; Bayer-Giraldi, M.; Davies, P.L.; Mangiagalli, M. Ice-binding proteins and the ‘domain of unknown function’3494

family. Febs J. 2019, 286, 855–873. [CrossRef]

http://doi.org/10.1002/embr.201338170
http://www.ncbi.nlm.nih.gov/pubmed/24671034
http://doi.org/10.1038/sj.embor.7400662
http://doi.org/10.1007/s00253-019-09659-5
http://doi.org/10.3390/md17100544
http://doi.org/10.1016/j.ejop.2020.125720
http://doi.org/10.1111/febs.14764


Mar. Drugs 2021, 19, 43 15 of 19

7. Bar Dolev, M.; Braslavsky, I.; Davies, P.L. Ice-binding proteins and their function. Annu. Rev. Biochem. 2016, 85, 515–542.
[CrossRef]

8. Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Microbiol. 2003, 1, 200. [CrossRef]
9. Feller, G. Protein stability and enzyme activity at extreme biological temperatures. J. Phys. Condens. Matter 2010, 22, 323101.

[CrossRef] [PubMed]
10. Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P. Discovery, molecular mechanisms, and industrial applications

of cold-active enzymes. Front. Microbiol. 2016, 7, 1408. [CrossRef] [PubMed]
11. Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and hot extremozymes: Industrial relevance and current trends. Front. Bioeng.

Biotechnol. 2015, 3, 148. [CrossRef] [PubMed]
12. Mangiagalli, M.; Brocca, S.; Orlando, M.; Lotti, M. The “cold revolution”. Present and future applications of cold-active enzymes

and ice-binding proteins. New Biotechnol. 2020, 55, 5–11. [CrossRef] [PubMed]
13. Gupta, S.K.; Kataki, S.; Chatterjee, S.; Prasad, R.K.; Datta, S.; Vairale, M.G.; Sharma, S.; Dwivedi, S.K.; Gupta, D.K. Cold adaptation

in bacteria with special focus on cellulase production and its potential application. J. Clean. Prod. 2020, 258, 120351. [CrossRef]
14. Lu, L.; Guo, L.; Wang, K.; Liu, Y.; Xiao, M. β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates.

Biotechnol. Adv. 2019, 39, 107465. [CrossRef] [PubMed]
15. Henrissat, B.; Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997, 7,

637–644. [CrossRef]
16. Rappé, M.S.; Giovannoni, S.J. The uncultured microbial majority. Annu. Rev. Microbiol. 2003, 57, 369–394. [CrossRef]
17. Lewis, W.H.; Tahon, G.; Geesink, P.; Sousa, D.Z.; Ettema, T.J.G. Innovations to culturing the uncultured microbial majority. Nat.

Rev. Microbiol. 2020, 1–16. [CrossRef]
18. Hansson, T.; Andersson, M.; Wehtje, E.; Adlercreutz, P. Influence of water activity on the competition between β-glycosidase-

catalysed transglycosylation and hydrolysis in aqueous hexanol. Enzym. Microb. Technol. 2001, 29, 527–534. [CrossRef]
19. Lonhienne, T.; Gerday, C.; Feller, G. Psychrophilic enzymes: Revisiting the thermodynamic parameters of activation may explain

local flexibility. Biochim. Et Biophys. Acta (Bba)-Protein Struct. Mol. Enzymol. 2000, 1543, 1–10. [CrossRef]
20. Georlette, D.; Blaise, V.; Collins, T.; D’Amico, S.; Gratia, E.; Hoyoux, A.; Marx, J.C.; Sonan, G.; Feller, G.; Gerday, C. Some like it

cold: Biocatalysis at low temperatures. Fems Microbiol. Rev. 2004, 28, 25–42. [CrossRef]
21. Lonhienne, T.; Zoidakis, J.; Vorgias, C.E.; Feller, G.; Gerday, C.; Bouriotis, V. Modular structure, local flexibility and cold-activity

of a novel chitobiase from a psychrophilic Antarctic bacterium. J. Mol. Biol. 2001, 310, 291–297. [CrossRef] [PubMed]
22. Zamora, R.A.; Ramirez-Sarmiento, C.A.; Castro-Fernández, V.c.; Villalobos, P.; Maturana, P.; Herrera-Morande, A.; Komives, E.A.;

Guixé, V. Tuning of Conformational Dynamics Through Evolution-Based Design Modulates the Catalytic Adaptability of an
Extremophilic Kinase. ACS Catal. 2020, 10, 10847–10857. [CrossRef]

23. Russell, N.J. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 2000, 4, 83–90.
[CrossRef] [PubMed]

24. Smalås, A.O.; Leiros, H.K.; Os, V.; Willassen, N.P. Cold adapted enzymes. Biotechnol. Annu. Rev. 2000, 6, 1–57.
25. Gianese, G.; Bossa, F.; Pascarella, S. Comparative structural analysis of psychrophilic and meso-and thermophilic enzymes.

Proteins Struct. Funct. Bioinform. 2002, 47, 236–249. [CrossRef]
26. D’Amico, S.; Claverie, P.; Collins, T.; Georlette, D.; Gratia, E.; Hoyoux, A.; Meuwis, M.-A.; Feller, G.; Gerday, C. Molecular basis of

cold adaptation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2002, 357, 917–925. [CrossRef]
27. Pucci, F.; Rooman, M. Physical and molecular bases of protein thermal stability and cold adaptation. Curr. Opin. Struct. Biol. 2017,

42, 117–128. [CrossRef]
28. Brocca, S.; Ferrari, C.; Barbiroli, A.; Pesce, A.; Lotti, M.; Nardini, M. A bacterial acyl aminoacyl peptidase couples flexibility and

stability as a result of cold adaptation. FEBS J. 2016, 283, 4310–4324. [CrossRef]
29. Mangiagalli, M.; Lapi, M.; Maione, S.; Orlando, M.; Brocca, S.; Pesce, A.; Barbiroli, A.; Camilloni, C.; Pucciarelli, S.; Lotti, M.

The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary
arrangement. FEBS J. 2020. [CrossRef]
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