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Impulse control disorders (ICDs) are relatively frequent in patients with Parkinson’s dis-
ease (PD), although it is still unclear whether an underlying pathological process plays a 
significant role in the development of ICD in PD apart from dopaminergic replacement 
therapy. In this study, we have investigated alterations of white matter tract in drug-naïve 
PD patients with ICDs via diffusion MRI connectometry. Our results showed that disrupted 
connectivity in the complex network of dynamic connections between cerebellum, basal 
ganglia, cortex, and its spinal projections serves as the underlying neuropathology of ICD 
in PD not interfered with the contribution of dopaminergic replacement therapy. These 
findings provide the first evidence on involved white matter tracts in the neuropathogen-
esis of ICD in drug-naïve PD population, supporting the hypothesis that neural distur-
bances intrinsic to PD may confer an increased risk for ICDs. Future studies are needed 
to validate the attribution of the impaired corticocerebellar network to impulsivity in PD.

Keywords: impulse control disorders, Parkinson’s disease, diffusion Mri, connectometry, drug-naïve

inTrODUcTiOn

Impulse control disorders (ICDs) are repetitive, excessive, and compulsive behaviors, disrupting 
a person’s function in major areas of life (1). Prevalence of ICDs is higher among patients with 
Parkinson’s disease (PD) compared to normal population affecting 6–15.5% of PD patients while 
hitting 1.1–1.6% of the general adult population (2). Major ICDs distressing PD patients, include 
pathological gambling, hypersexuality, compulsive buying, and binge eating (3). In addition, other 
disorders have been reported in the impulsive–compulsive spectrum in PD patients, such as dopa-
mine dysregulation syndrome, dopamine dependency syndrome, dopamine deficiency syndrome 
(4), punding (stereotyped, repetitive, aimless behaviors), hobbyism (e.g., artistic endeavors, exces-
sive writing) (5), and excessive hoarding (6).

It is now well established that ICDs can be triggered by dopaminergic drugs (7). Therefore, previous 
studies have mainly attributed the emergence of ICDs in PD patients to the side effect of dopaminergic 
replacement therapy. Preliminary comparison studies have shown that ICDs are more common in PD 
patients on dopamine agonists than healthy controls (HC) (8–11), and untreated de novo PD patients 
manifest these behavioral phenotypes not more than general population (12, 13). However, not all 
PD patients on dopaminergic drugs suffer ICD. Besides other possible contributing variables, such 
as younger age, being unmarried, cigarette smoking, male sex, and positive family history (10, 14),  
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it is not yet clear whether neural disturbances intrinsic to PD may 
confer an increased risk for ICDs. Although prevalence studies 
have not reached to this notion, there exist some supportive 
evidence. Milenkova et  al. showed that PD patients without 
ICD perform more impulsively irrelevant of on/off treatment 
status (15). In addition, disinhibition failure in treated PD was 
revealed to be related to cortical atrophy in fronto-striatal areas 
(16), the key regions of the hallmark mesocorticolimbic network 
responsible of impulsive–compulsive behaviors (17). Similar 
phenotypic manifestations and neural underpinnings of ICD in 
PD and non-PD population are apparent in subsequent studies. 
Different neuroimaging studies in treated PD patients with ICD 
have shown various dysfunctions in the brain networks involved 
in decision making and risk processing, such as disconnection 
between anterior cingulate cortex and the striatum, increased 
monoaminergic activity in the medial orbitofrontal cortex, an 
abnormal resting-state dysfunction of the mesocorticolimbic net-
work, etc (18–23). Consequently, it is suggested that ICD should 
be considered as a distinct endophenotype in PD, resulting from 
neuroanatomical abnormalities in impulse control regions of 
the brain, which would be provoked mainly by dopaminergic 
replacement therapy (24). However, all these studies have been 
conducted on PD patients already on dopaminergic treatment, 
so it is impossible to distinguish these findings as a reflection of 
treatment (25) or potential biomarkers of ICD in PD. A recent 
functional MRI study was designed to explore neural markers of 
upcoming ICD in drug-naïve early PD patients after initiation of 
the dopaminergic therapy. The results demonstrate that altered 
connectivity in salience, executive, and default-mode networks 
in baseline visits predict the development of ICD triggered by 
dopaminergic treatment (26).

In order to examine whether an underlying neuropathological 
process apart from medication-related effects plays a remarkable 
role in the establishment of ICD in PD, we investigated alterations 
of white matter tract in drug-naïve early PD patients with ICDs 
(PD-ICD) compared to PD patients without ICD (PD-nICD) and 
healthy controls (HC) via diffusion MRI connectometry.

MaTerials anD MeThODs

Participants
Participants involved in this research were recruited from 
Parkinson’s Progression Markers Initiative (PPMI, http://www.
ppmi-info.org/) (27). The study was approved by the institutional 
review board of all participating sites. Written informed consent 
was obtained from all participants before study enrollment. The 
study was performed in accordance with relevant guidelines 
and regulations. The participants’ PD status was confirmed by 
Movement Disorder Society-Unified Parkinson’s Disease Rating 
Scale (MDS-UPDRS) and the loss of dopaminergic neurons was 
observed on DAT scans. Patients were tested and confirmed 
negative for any neurological disorders apart from PD. Subjects 
were only excluded if imaging failed specific quality control 
criteria. 113 cases divided into three groups, (21 PD-ICD, 68 
PD-nICD, and 23 HC) were recruited from baseline available 
diffusion imaging data from PPMI project. ICD was assessed 

using the Questionnaire for Impulsive–Compulsive Disorders 
(QUIP), which is a validated screening tool in PD patients (28). 
Participants in each category were matched for age, sex, and years 
of education. PD patients of two groups did not differ in terms of 
disease duration, motor severity (total UPDRS and Hoehn and 
Yahr stage), motor subtype (tremor versus postural instability gait 
difficulty), cognitive status (Montreal Cognitive Assessment), and 
other non-motor symptoms (REM sleep behavior disorder, exces-
sive daytime sleepiness, and olfaction dysfunction). Although 
neither group showed depressive symptoms based on geriatric 
depression scale (29), nICD group showed significantly higher 
scores than ICD group. However, in the following connectometry 
analysis, PD-nICD did not show lower connectivity in any white 
matter pathways compared to PD-ICD. PD patients differed from 
HC in motor impairment and also only in olfactory dysfunction 
and depressive symptoms among all non-motor symptoms sur-
veyed. Demographic and clinical data are represented in Table 1.

Data acquisition
Data used in the preparation of this article were obtained from 
the PPMI database (www.ppmi-info.org/data) (27). This dataset 
was acquired on a 3 T Siemens scanner, producing 64 diffusion 
MRI (repetition time = 7,748 MS, echo time = 86 ms; voxel size: 
2.0 mm × 2.0 mm × 2.0 mm; field of view = 224 mm × 224 mm) at 
b = 1,000 s/mm2 and one b0 image along with a 3D T1-weighted 
structural scan (repetition time = 8.2 ms, echo time = 3.7 ms; 
flip angle = 8°, voxel size: 1.0 mm × 1.0 mm × 1.0 mm; field of 
view = 240 mm, acquisition matrix = 240 × 240).

Diffusion Mri Processing
The diffusion MRI data were corrected for subject motion and 
eddy current distortions using Explore DTI toolbox, which 
reorients the B-matrix in the stage of realigning the images to 
preserve the orientational information correctly (30). Orienting 
B-matrix is a simple, but indeed essential step in avoiding bias in 
diffusion measures especially in PD patients who are susceptible 
to move during the scans (31). We also performed quality control 
analysis on the subject’s signals based on the goodness-of-fit value 
given in q-space diffeomorphic reconstruction (QSDR) of fibers 
(32). Each QSDR reconstruction file has a goodness-of-fit value 
quantified by R2. For example, an R82 indicates a goodness-of-fit 
between of the subject and template of total 0.82. We excluded 
cases in which the R2 value did not reach a threshold of 0.6 
otherwise.

Between groups analysis
The diffusion data were reconstructed in the MNI space using 
QSDR to obtain the spin distribution function (SDF), to detect 
the differences between groups (PD-ICD, PD-nICD, and HC).

Connectometry (33) is a novel approach in the analysis of diffu-
sion MRI signals that simply tracks the difference of white matter 
tracts between groups, or correlation of white matter fibers with a 
variable of interest. Connectometry approach extracts the SDF in 
a given fiber orientation, as a measure of water density along that 
direction. There is a multitude of diffusion indices derived from 
spin density, i.e., SDF, quantitative anisotropy (QA) being one of 
them. QA of each fiber orientation gives the peak value of water 
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TaBle 1 | Demographic information and comparison of clinical outcomes between HC and patients with PD.

characteristic hc (n = 23) PD-icD (n = 21) PD-nicD (n = 68) P Value Post hoc P value 
(PD groups)

Age, mean (SD) [95% CI], years 58.3 (10.5) [53.7–62.8] 57.7 (9.8) [53.3–62.2] 59.1 (9.5) [56.9–61.5] 0.801a 0.829
Female/male, No. (% male) 11/12 (52.2) 7/14 (66.6) 24/44 (64.7) 0.511b 0.869
Left-handed/right-handed, No. (% right-handed)x 3/19 (82.6) 1/19 (90.5) 7/58 (85.3) 0.925b 0.741
Education, mean (SD) [95% CI], years 14.6 (2.8) [13.4–15.8] 14.6 (2.7) [13.4–15.8] 15.4 (2.9) [14.6–16.0] 0.374c 0.307
Disease duration, mean (SD) [95% CI], years … 10.4 (10.5) [5.6–15.1] 5.8 (5.3) [4.6–7.1] 0.272d …
Hoehn and Yahr stage, mean (SD) … 1.6 (0.5) 1.6 (0.5) 0.891b …
Tremor score, mean (SD) 0.063 (0.84) 0.446 (0.300) 0.458 (0.282) <0.001c,e 0.631
PIGD score, mean (SD) 0.052 (0.108) 0.229 (0.192) 0232 (0.164) <0.001c,e 0.702
MDS-UPDRS part I score, mean (SD) 2.8 (1.6) 6.2 (3.1) 4.4 (3.2) <0.001c,e 0.007
MDS-UPDRS part II score, mean (SD) 2.2 (2.7) 5.1 (4.5) 5.2 (5.0) 0.008c,e 0.880
MDS-UPDRS part III score, mean (SD) 0.6 (1.2) 21.1 (8.5) 21.4 (8.8) <0.001c,e 0.973
MDS-UPDRS total score, mean (SD) 5.6 (3.6) 32.4 (10.7) 31.0 (11.2) <0.001c,e 0.492
MoCA score, mean (SD) 28.4 (1.1) 27.2 (2.0) 27.6 (2.0) 0.196c 0.450
GDS score, mean (SD) 4.7 (1.1) 3.8 (1.4) 4.6 (1.2) 0.046c 0.033
UPSIT score, mean (SD) 33.5 (4.6) 22.1 (8.1) 23.2 (8.4) <0.001c,e 0.474
RBD score, mean (SD) 3.2 (2.3) 4.7 (3.2) 3.8 (2.4) 0.357 0.342
ESS score, mean (SD) 6.2 (4.3) 6.8 (3.3) 6.1 (3.3) 0.739 0.478

Type of icD
Hypersexuality 1 (4.5%)
Compulsive buying 1 (4.5%)
Compulsive eating 8 (36%)
Hobbies 2 (9%)
Punding 5 (23.5%)
Walking or Driving + hobbies 2 (9%)
Compulsive eating + punding 1 (4.5%)
Compulsive buying + hobbies 1 (4.5%)
Compulsive buying + eating + punding 1 (4.5%)

HC, healthy controls; PD, Parkinson disease; PIGD, postural instability and gait difficulty; MDS-UPDRS, movement disorder society-sponsored revision of the unified Parkinson’s 
disease rating scale; MoCA, montreal cognitive assessment; GDS, geriatric depression scale; UPSIT, University of Pennsylvania smell identification test; ESS, epworth sleepiness 
scale; RBD, REM sleep behavior disorder.
aBased on one-way ANOVA.
bBased on χ2 test.
cBased on Kruskal–Wallis test.
dBased on Mann–Whitney U test.
ePost hoc analysis showed significant differences between HC and two PD groups.
×Others were mixed-handed.
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density in that direction. We used diffusion MRI connectometry 
to identify white matter tracts in which QA was significantly dif-
ferent between three groups. Resulting uncorrected output was 
corrected for multiple comparisons by false discovery rate (FDR). 
A deterministic fiber tracking algorithm (34) was conducted 
along the core pathway of the fiber bundle to connect the selected 
local connectomes. Tracts with QA > 0.1, angle threshold lesser 
than 40o, and tract length greater than 40 mm were included. To 
estimate the FDR, a total of 2,000 randomized permutation was 
applied to the group label to obtain the null distribution of the track 
length. Permutation testing allows for estimating and correcting 
the FDR of type-I error inflation due to multiple comparisons. 
The analysis was conducted using publicly available software DSI 
Studio (http://dsi-studio.labsolver.org).

statistical analysis
Demographic and clinical data were analysed  using SPSS version 
22 (IBM Corp., Armonk, NY, USA). P values less than 0.05 were 
considered to be statistically significant. Pearson’s chi-square was 
used to assess nominal variables across groups. Mann–Whitney 
U test was used to assess differences between two groups, and 

Kruskal–Wallis test or one-way ANOVA was used for multiple 
comparisons for three groups.

resUlTs

PD-icD Patients Versus PD-nicD Patients
The group differences between PD-ICD patients and PD-nICD 
are shown in Figure  1. Compared with PD-nICD patients, 
PD-ICD patients showed decreased connectivity in the left and 
right cortico-thalamic tract, the left and right cortico-pontine 
tract, the left and right corticospinal tract (CST), the left and right 
superior cerebellar peduncle (SCP), and the left and right middle 
cerebellar peduncle (MCP) (FDR = 0.008).

PD-nicD Versus hc
The group differences between PD-nICD patients and HC are 
shown in Figure 2. The differences were that connectivity in HC 
was higher than that in PD-nICD in the left inferior longitudinal 
fasciculus (ILF), the left and right CST, and the left and right 
cingulum (FDR = 0.001).
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FigUre 2 | White matter pathways with significantly reduced anisotropy in Parkinson’s disease-nICD compared to healthy controls (false discovery rate = 0.001). 
(a) Left corticospinal tract, (B) left cingulum, (c) left inferior longitudinal fasciculus, (D) right corticospinal tract, and (e) right cingulum. The results are overlaid on 
ICBM152 (mni_icbm152_t1) from the McConnell Brain Imaging Centre using DSI-STUDIO software.

FigUre 1 | White matter pathways with significantly reduced anisotropy in PD-ICD patients compared to Parkinson’s disease-nICD [false discovery rate = 0.008]. 
(a) Left cortico-thalamic tract, (B) left superior cerebellar peduncle (SCP), (c) left corticospinal tract (CST), (D) left cortico-pontine tract, (e) right cortico-thalamic 
tract, (F) right SCP, (g) right CST, (h) right cortico-pontine tract, and (i) middle cerebellar peduncle. The results are overlaid on ICBM152 (mni_icbm152_t1) from the 
McConnell Brain Imaging Centre using DSI-STUDIO software.
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PD-icD Patients Versus hc
The differences were that connectivity in HC was higher than that 
in PD-ICD patients in the left and right ILF, genu and body of the 
corpus callosum (CC), the left and right CST, the left SCP, and the 
left and right cingulum (FDR = 0.002).

DiscUssiOn

This study revealed that compared to HC, drug-naïve PD patients 
have microstructural changes in the CST, ILF, and cingulum. 
PD-ICD patients also showed additional pathways, i.e., genu and 
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body of CC and SCP compared to HC. These tracts are com-
monly presented in the literature in relation to various motor 
and non-motor symptoms of PD, such as olfaction dysfunction, 
mood and sleep dysregulations, and cognitive decline [reviewed 
in Hall et al. (35)].

Neural contributions of impulsivity in PD have recently 
grabbed attention, and some studies have investigated white 
tract alterations in PD patients with ICDs. In a DTI study, Canu 
et al. compared white matter microstructure of PD patients with 
and without punding, at the time when they were on dopamin-
ergic medication. They showed that punding in PD patients is 
associated with the disconnection between midbrain, limbic, 
and white matter tracts projecting to the frontal cortex (36). 
Yoo et al. also indicated some structural alterations in PD-ICD 
patients, especially in the CC (22). Another study using DTI 
and resting-state fMRI showed that PD-ICD patients had more 
severe involvement of frontal, mesolimbic, and motor circuits 
(23). These results suggest that ICD might be the result of a 
disconnection between sensorimotor, associative, and cognitive 
networks in PD patients (23).

fMRI studies showed that ventral striatum and anterior 
cingulate might be associated with risk and reward-related 
behaviors and decision making (37, 38). In a risk-taking 
task, PD-ICD patients showed decreased anterior cingulate 
and orbitofrontal cortex activity in comparison to PD-nICD. 
Moreover, pharmacological manipulation (using dopamine 
agonists) resulted in decreased ventral striatal activity in 
PD-ICD group, compared with PD-nICD group (38). An 
experiment with gambling-related visual cue showed that in 
PD patients with pathological gambling, there is altered activity 
in the ventral striatum, anterior cingulate cortex, and frontal 
gyri (39). Resting-state fMRI studies also indicated a functional 
disconnection between a striatal associative area (the left puta-
men) and cortical associative (inferior temporal) and limbic 
regions (anterior cingulate) in PD patients with ICD compared 
to PD-nICD group (40).

Regarding gray matter (GM), studies are not consistent. 
Some studies showed that PD patients with ICD had a reduction 
in cortical thickness of fronto-striatal regions when compared 
to other PD patients (41). Moreover, Biundo et  al. indicated 
that the level of GM alterations is associated with the sever-
ity of ICDs in PD patients (42). Interestingly, Tessitore et  al. 
had completely different results. They indicated that PD-ICD 
patients have thicker orbitofrontal and anterior cingulate cor-
tices, in comparison to PD-nICD. They also showed that these 
abnormalities were positively correlated with ICD severity 
(26). Finally, another study showed relatively preserved GM in 
PD patients with ICD when compared to PD patients without 
such disorder (43).

Most studies have compared brain alterations of PD patients 
with and without ICD at the time they were on dopaminergic 
medication (44). However, evidence from our study on white 
matter microstructural alterations in drug-naïve PD patients 
supports the hypothesis that these abnormalities may be due 
to neurodegenerative processes intrinsic to PD. These changes 
might be an independent risk factor for developing ICDs in PD 

patients and may interact with chronic treatment with dopamine 
agonists. Other studies have shown that decreased dopamine 
transporter availability might predict the risk of future ICD 
behaviors in drug-naïve PD patients who are going to take 
dopamine replacement therapy in the future (45). Variend et al. 
also showed that lower level of dopamine transporters in striatal 
regions might predate the incidence of ICDs in PD patients 
after the beginning of dopaminergic treatment and may be an 
independent risk factor for punding behaviors (46). These results 
highlight the fact that PD itself may play a significant role in 
developing ICDs in parkinsonian patients.

Cerebellum participates in higher order functions of cogni-
tion and emotion by means of bidirectional communications 
to limbic and paralimbic regions and neocortex, especially 
prefrontal and posterior parietal areas (47–50). Several behav-
ioral disorders such as impulsive actions are reported following 
cerebro-cerebellar circuitry damage (51, 52). Disruption of the 
parieto-ponto-cerebellar loop through lower connectivity in 
MCP and cerebello-basal ganglia-thalamo-cortical loop via 
lower connectivity in SCP was demonstrated in relation to 
ICD in our cohort of PD patients. These loops process informa-
tion in cognitive, emotional, and behavioral domains. In this 
complicated network, cerebellum, cortex, and basal ganglia 
have integrated roles in reinforcement learning anchored to 
reward predictions of dopamine signals in the striatum (53). 
The interplay between these structures underlies the complex 
motor and cognitive functions. Evidence regarding disruption 
of this system is multitude with respect to motor and cognitive 
features of PD (53). In particular, the cerebellum is strongly 
connected to the striatum via output projections of SCP to the 
thalamus (54). Since striatum as a part of mesocorticolimbic 
network plays the central role in the pathology of misbehav-
iors such as addiction and impulsion–compulsion linked to 
reward learning (17), it seems that cerebellar corroboration 
in this scenario is often neglected. Although the vast network 
of cerebro-cerebellar communications is often assumed to be 
confined to multi-synaptic pathways by means of pontine and 
thalamic nuclei, simultaneous activation of corticospinal fib-
ers plays a definitive role in relaying feedbacks to the learning 
processes (53). The contribution of the multi-synaptic cortico-
cerebellar network as underlying neuropathology of ICD in 
early PD without the interference of dopaminergic drugs is a 
novel and promising result that should be more addressed in 
future studies.

Some methodological limitations should be considered when 
interpreting our results, such as small sample size of participants, 
no-follow up assessments, and not to take into account other risk 
factors attributed to ICD such as previous histories of addiction 
and family histories of ICD. Although PD-ICD and PD-nICD 
patients did not differ in terms of motor and non-motor 
symptoms, PD patients showed worse scores in screening tests 
of olfaction function and depressive symptoms compared to 
healthy controls. This may account for observed alterations in 
neural connectivity comparing PD-ICD with HC. Future studies 
are needed to validate if the presented white matter tracts by this 
preliminary study serve as possible neural markers of ICD in PD. 
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Measurement of the correlation of severity of ICD symptoms 
with MRI parameters will add valuable information.

In conclusion, this is the first study that investigates the 
alteration of white matter tracts relative to impulsive–compul-
sive behaviors in drug-naïve PD patients. Our results showed 
that disrupted connectivity in the complex network of dynamic 
connections between cerebellum, basal ganglia, cortex, and its 
spinal projections serves as the underlying neuropathology of 
ICD in PD not interfered with the contribution of dopaminer-
gic replacement therapy. Association of these novel pathways 
provides a potential explanation of why dopamine agonists can 
lead to an unconscious bias toward risk in some individuals 
suffering PD. Further studies can evaluate this hypothesis and 
bring about more evidence, to diagnose ICDs in early stages 
of PD.
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