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Glioma is a highly malignant brain tumor with a poor survival rate. The involvement of fatty
acid metabolism in glioma was examined to find viable treatment options. The information
was gathered from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome
Atlas (CGGA) databases. A prognostic signature containing fatty acid metabolism-
dependent genes (FAMDs) was developed to predict glioma outcome by multivariate
and most minor absolute shrinkage and selection operator (LASSO) regression analyses.
In the TCGA cohort, individuals with a good score had a worse prognosis than those with
a poor score, validated in the CGGA cohort. According to further research by
“pRRophetic” R package, higher-risk individuals were more susceptible to crizotinib.
According to a complete study of the connection between the predictive risk rating model
and tumor microenvironment (TME) features, high-risk individuals were eligible for
activating the immune cell-associated receptor pathway. We also discovered that
anti-PD-1/PD-L1 and anti-CTLA4 immunotherapy are more effective in high-risk
individuals. Furthermore, we demonstrated that CCNA2 promotes glioma proliferation,
migration, and invasion and regulates macrophage polarization. Therefore, examining the
fatty acid metabolism pathway aids our understanding of TME invasion properties,
allowing us to develop more effective immunotherapies for glioma.
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INTRODUCTION

Glioma is the most prevalent type of primary brain tumor and
accounts for almost 80% of the central nervous system (CNS)
malignancies (1). Although there are mounting options for treating
glioma, mainly comprising surgery, chemotherapy, and
immunotherapy, the prognosis is still not ideal, with a median
survival of 8 months for glioma patients by CBTRUS data (2). At
present, glioma patients’ treatment options mainly depend on
WHO classification (WHO I-IV) (3, 4), as well as molecular
subtypes, like IDH mutations, 1p19q deletion status, and MGMT
methylation (5–7). Nevertheless, there are still significant differences
in drug resistance, recurrence rates, and survival times for glioma
patients with the same subtype. Available biomarkers cannot
provide glioma patients a personalized treatment and optimal
survival time. Therefore, identifying novel targets for the glioma
therapy approach and prognostic assessment is warranted.

Different from normal cells, cancer cells have distinct metabolic
features. When the carcinogenic signal is inhibited, they cope with
unfavorable microenvironments by changing their metabolism to
preserve cancer cell proliferation and survival (8–10). With a deep
understanding of tumor biology and the complexity of tumor
metabolism, modern metabolic reprogramming is a sign of a
malignant tumor. Cancer cells and tumors have a lot of metabolic
variabilities compared to normal tissues, but essentially little
metabolic activity is unique to tumors. And there is metabolic
heterogeneity between different tumors (11, 12), which leads to the
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difference in the efficacy of metabolic drugs in other tumors.
Metabolic characterization and metabolic reliance change as
cancer progress from premalignant lesions to regional invasion
and metastasis (13, 14). In recent years, the link between fatty acid
metabolism and tumor development has been a popular topic. Fatty
acid metabolism is critical for tumor cell proliferation and spread. In
terms of synthesis, fatty acids can participate in the structural
synthesis of phospholipids on the cancer cell membrane and the
transduction of necessary signals (such as PI3K/Akt/mTOR) (15,
16). In terms of decomposition, cancer cells mainly use fatty acids b-
ATP produced by oxidation to maintain the required energy, and
nicotinamide adenine dinucleotide phosphate (NADPH) is used to
maintain the redox balance in the body (17). Increased lipolysis and
fatty acid production induced by the activated nuclear factors-B
(NF-B) signal has been demonstrated to cause lymph node
metastases in cervical cancer patients (18). Through remodeling,
active fatty acid oxidation may help AML cells survive and bone
marrow adipocytes lipolyze (19). Furthermore, the expression
pattern of genes involved in fatty acid metabolism is linked to the
degree of malignancy, prognosis, and immunophenotype of glioma
(20). The function of fatty acid metabolic features in the therapeutic
therapy of gliomas, on the other hand, has not been
well investigated.

The genetic information of glioma samples was analyzed using
two databases to thoroughly estimate the fatty acid metabolism
model and create the dependent predictive risk score model. And
the survival result of glioma patients was independently predicted
July 2022 | Volume 13 | Article 902143
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using the constructed scoring model. The relationship between the
TME cell infiltration characteristics and the prediction risk rating
model was also looked into. The predictive risk score approach
correctly identifies glioma patients who are immunotherapy
candidates, indicating that maybe fatty acid metabolism would
be an essential individual TME feature for glioma development.
These findings bring up new research pathways into the metabolic
process of glioma and its treatment (Graphic Abstract,
Figure 1 Flowchart).
MATERIALS AND METHODS

Downloading and Analyzing Data
TCGA database (https://portal.gdc.cancer.gov/) was applied to
retrieve raw RNA sequencing (RNA-seq) data profiles for 701
glioma tissue samples. The TCGA database also yielded clinical
information on 668 glioma samples, including age, gender, grade,
and prognostic factors. CGGA database (http://www.cgga.org.cn/
index.jsp) was used to retrieve the mRNA sequencing data of 1018
glioma samples. Since glioma has no normal tissue data in TCGA,
to analyze differential gene expression, we combined 1152 cases of
normal brain tissue in the GTEx (https://xenabrowser.net/
datapages/) database. Using the annotation platform, the Ensembl
Gene IDs were transformed into matching gene symbols. The mean
value was used if more than one probe targeted the same Entrez
Gene ID. In addition, clinical data for each CGGA sample was
retrieved from the CGGA database (21). The GTEx and TCGA
databases were transformed into log2 (FPKM+1), and the
CGGA database was transformed into log2 (RNA-seq+1).
Previous research found 309 genes involved in fatty acid
Frontiers in Immunology | www.frontiersin.org 3
metabolism (22–24). In TCGA cohorts, 191 candidate genes
were chosen among these genes.

Enrichment Analysis of DEGs
Fatty acid metabolism-dependent DEGs in normal and tumor
tissues were used to evaluate the R package “limma”. Statistical
significance was assigned to genes with an FDR of less than 0.05. To
validate the key biological properties and cellular functional
pathways connected to fatty acids, “cluster profile” software was
used to conduct a GO and KEGG enrichment analysis of differential
genes. P < 0.05 is considered as statistical significance. To show the
enrichment analysis findings, we utilized the R software packages
“enrich plot” and “ggplot2”.

Construction of Risk Prediction Model of
Fatty Acid Related Genes
We firstly classified the TCGA dataset into a training group and a
testing group according to 2:1, while CGGA was used as another
validation set. To begin, the expression levels of DEGs associated
with fatty acidmetabolismwere compared to theprognosisfindings
for each sample. The genes associated with prognosis were selected
from theDEGs linked to fatty acidmetabolismusing univariate and
multivariate cox regression methods in the TCGA cohort. Genes
having a P value of less than 0.001 were chosen. The mutation and
gene association in tumor samples from the training set were
analyzed using the R software package “maftools”. The prognosis-
related genes were further processed utilizing the “glmnet” R
software package, and the prognosis risk score model of glioma
OSwas constructed using LASSO. The penalty parameter (l) of the
model was determined by ten cross verifications. The risk score for
every sample is generated by the method below.
FIGURE 1 | Flowchart.
July 2022 | Volume 13 | Article 902143
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Risk   Score =oi
1 Coefi ∗ ExpGeneið Þ

“ExpGene” is the transcriptomicvalue fromthepredictive risk score
model, and “Coef” is the non-zero regression coefficient obtained
utilizing LASSO. All samples were separated into two subgroups
based on themedian value of risk scores: low- and high-risk groups.
To examine OS variations between high- and low-score subgroups,
Kaplan-Meier (K-M) and the log-rank procedure were performed.
The ROC curve was drawn using the R software package
“survivalROC” to analyze the predictive risk score model's
prediction accuracy. Finally, we checked the test set to see
whether the predictive risk score model was reliable.

PCA of Risk Score Model
We used the limma software package for principal component
analysis (PCA) of gene expression to understand the significant
differences between the two groups. We first analyzed the face of all
DEGs related to fatty acid metabolism by PCA. After that, the gene
expression in the predictive risk rating model was analyzed by
principal component analysis. Finally, the PCA results are presented
on the two-dimensional graph using the “ggplot2” software package.

The Link Between Risk Ratings and
Clinical Characteristics
According to the sample ID, the value of every sample was blended
with the associated clinical features. Limma R software tool was
adopted to investigate the association between risk scores and
clinical data. The TCGA database was also employed to collect
the expression levels of immunological checkpoints (symbolized by
PD-1/PD-L1 and CTLA4). Immunological checkpoint levels in the
two subgroups were then investigated. Simultaneously, clinical data
on glioma in the CGGA cohort was gathered to establish the
association between clinical factors and risk scores. According to
clinical characteristics, the data were separated into two subgroups,
and the differences in risk scores were examined. To assess the two
groups, the Kruskal Wallis (K-W) method was utilized. A p value
of < 0.05 was defined as statistical significance.

Assessment of Immune Characteristics
Between Two Subgroups
Gsva is an unsupervised, nonparametric approach for evaluating
route modifications or biological processes using expression matrix
samples. The “gsva” R program was employed to assess the
differences in biological processes between the lower and higher
subgroups. As a reference gene set, we used the “C2. Cp. kegg. V7.4.
Symbol” gene set from the molecular feature database (https://www.
gsea-msigdb.org/gsea/msigdb). A statistically meaningful
enrichment route is one with an FDR of less than 0.05. To
calculate the IC50 of temozolomide within every sample, the
pRRophetic R program was utilized. The IC50 value represents a
substance’s ability to block certain biological or metabolic activities.
To estimate the degree of immune-related infiltration in each
patient in the TCGA set, ssGSEA was calculated by “GSEABase”
and GSVA R packages (25). The data sets were gathered for the
prior study’s assessment of immune-related aspects in TME
(Table S1). The ssGSEA algorithm’s enrichment index reflected
Frontiers in Immunology | www.frontiersin.org 4
the degree to which each immune-related trait was expressed in
each sample. The differences in enrichment scores between the
lower and higher subgroups were analyzed. The relationship
between prognosis-related genes and immune cells was indeed
investigated. Finally, in the two risk score subgroups, TIDE was
utilized to predict immune checkpoint reaction inhibitors of PD-1
and CTLA-4 (26).

Construct Nomogram
Nomogram of gender, age, grade, histological type, IDH1 mutation
status, pq status, MGMT status, and predictive risk score model was
built according to the TCGA cohort, utilizing the “RMS” software
package in R to predict the OS of the glioma. To forecast the
nomogram’s accuracy, a time-dependent calibration curve was
created. Furthermore, a multivariate Cox regression analysis was
done to see if a predictivemodel can be employed as an independent
predictor of OS in glioma patients. The AUC was then determined
using a ROC curve to confirm the nomogram’s predictive value.

Analysis of Survival-Related Hub Genes
According to the Prediction Model
First, the limma R software program was used to compare the data
of two subgroups to identify DEGs, which were defined as genes
with an adjusted p-value < 0.05. Based on the string database
(https://string-db.org/; version: 11.0), data from the PPI network
with interaction scores > 0.40 (median confidence) were produced
(Table S2). Then, to further analyze and show PPI network data,
utilize Cytoscape software (version 3.9.1). Cytohubba is a Cytoscape
plug-in that uses a topological technique to find the center gene
among all DEGs. Then, the deferentially expressed genes were
gathered in normal brain tissue and glioma tissue. The
clusterprofiler software tool was employed to do a Go and KEGG
enrichment analysis of genes. Finally, a gene from the hub gene was
chosen for model validation, and all samples were separated into
two subgroups according to this gene’s expression: low expression
and high expression. To see whether there was a variation in
survival between the two subgroups, Kaplan Meier analysis was
utilized. This gene was then investigated for immune
cell infiltration.

Cell Culture and Transfection
The glioma cells (LN229, T98G, U251, U87, and U118) and the
normal control cell NHA were cultured in DMEMwith 10% FBS at
37°C in a 5% CO2 incubator. The logarithmic phase cells were
chosen for the following functional studies. For CCNA2 knockdown
or overexpression, glioma cells were transfected with plasmid si-
CCNA2 or CCNA2-cDNA utilizing Lipofectamine® 3000
transfection reagent, following the manufacturer’s manual.

Macrophage Polarization and Co-Culture
To obtainM0macrophages, THP-1 cells were firstly induced by 320
NM PMA for 24h; To polarize M0 to M2 macrophages, cells were
then treated with 20ng/ml IL-4 and 20ng/ml IL-13 for 48h. M0
macrophages were put into upper wells for cell co-culture, and
U251-NC and U251-shCCNA2 cells were seeded into the bottom
July 2022 | Volume 13 | Article 902143
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well. Macrophages were then collected and labeled with M1- and
M2-like markers to identify the polarization features.

qRT-PCR
Total RNA was extracted from cells utilizing Trizol reagent
(Invitrogen, America), then cDNAs were created using the
HiScript Synthesis kit (Vazyme, China). Subsequently, the PCR
mixture consisted of cDNA, ddH2O, primer, and SYBR Green
Master Mix. Finally, qRT-PCR amplification was measured on the
StepOnePlus Real-Time PCR system (Applied Biosystems, US).
Primers were as follows: CCNA2, forward-5’- TGG AAA GCA
AAC AGT AAA CAG CC-3’, reverse-5’- GGG CAT CTT CAC
GCT CTA TTT-3’; iNOS, forward-5’- TCA TCC GCT ATG CTG
GCT AC-3’, reverse-5’- CCC GAA ACC ACT CGT ATT TGG-3’,
TNF-a, forward-5’-GAGGCCAAGCCC TGG TATG-3’, reverse-
5’-CGG GCC GAT TGA TCT CAG C-3’; IL-1b, forward-5’- GAA
ATG CCA CCT TTT GAC AGT G-3’, reverse-5’-TGG ATG CTC
TCA TCA GGA CAG-3’, CD206, forward-5’- CTA CAA GGG
ATCGGGTTTATGGA-3’, reverse-5’-TTGGCATTGCCTAGT
AGC GTA-3’, Arg1, forward-5’- TTG GGT GGA TGC TCA CAC
TG-3’, reverse-5’-GTA CAC GAT GTC TTT GGC AGA-3’; YM1/
2, forward-5’-TCA GCA GGT TCC CTA CGC A-3’, reverse-5’-
GCA GGA TTT GCC AGT GAA GTC-3’.

Western Blot
The western blot procedure was conducted as described previously
(27). Primary antibodies in this study included iNOS (1:1000,
Proteintech), CD206 (1:1000, Proteintech), b-Actin (1:1000, Bioss).

Flow Cytometry
To examine the polarization of macrophages, M0 macrophages
were collected, fixed, then incubated with F4/80-FITC, iNOS-APC,
and CD206-PE for 30 min at four °C, based on the manufacturer’s
instructions. Cells were determined using a flow cytometer
(Cytoflex, USA), and the data were analyzed using FlowJoTM
software (Version 10.7.1).

CCK-8 and Clone Assay
CCK-8 and plate colony assays were utilized to examine the glioma
cells’ proliferation capacity. The CCK8 kit (Beyotime, China) was
used to quantify cell growth at 0h, 24h, 48h, 72h, and 96h by the
manufacturer’s protocol. Absorbance at 450 nm was determined on
enzyme labeling (Thermo, USA). For the cloning test, about 500
cells from various groups were placed in each well of a six-well plate.
Once colonies appeared, 4% paraformaldehyde and crystal violet
were employed to stain and fix cells.

Transwell Invasion Assay
After si-CCNA2 and CCNA2-cDNA transfection, 5×104 glioma
cells were placed into the upper chambers of Transwell in an
empty DMEM medium, which was pre-coated with Matrigel
(Biosciences, USA), while the lower chamber was filled with
DMEM containing 10% FBS. For macrophage migration assay,
M2 macrophage was placed on upper chambers, and glioma cells
were added to the lower chamber. After 24 hours, the invasive
cells were fixed with 4% formalin, then stained with 0.1% crystal
Frontiers in Immunology | www.frontiersin.org 5
violet. The stained cells were visualized and counted in an
inverted microscope.

Subcutaneous Xenograft Assay
Nanjing medical university animal care and use committee and
followed guidelines for animal welfare. Four-week-old BALB/c male
nude mice were used to construct the xenograft model, which
randomly classified into two groups. The glioma cells infected with
siCCNA2 or control were subcutaneously embedded in nude mice,
respectively. Tumor volumes were measured every one week. After
one month, mice were euthanatized, and subcutaneous tumors were
removed. Tumor weight and pictures were finally recorded.

Statistical Analysis
To assess the differences between poor and good score
subgroups, the Wilcoxon rank sum test was utilized. The
variation in OS between the good and poor subgroups was
determined using Kaplan Meier analysis. The independent
determinants of OS in glioma were determined using the Cox
regression procedure. The predictive efficacy of the nomogram,
clinical factors, and predictive risk score model was evaluated
using a ROC curve. R 4.0.4 was used to conduct all statistical
analyses (P < 0.05).
RESULTS

Differential Expression Analysis Between
Normal and Glioma Samples
We analyzed the transcriptional activity of FAMDs in tumor and
normal samples and identified 191 genes in TCGA datasets with
an FDR < 0.05. It comprises 95 down-regulated genes and 96
genes that have been up-regulated (Figure S1A). Then, to
double-check, we performed KEGG and GO enrichment
analysis. Fatty acid metabolism, catabolism, and other activities
have been discovered to be substantially abundant in biological
processes (Figure S1B). KEGG terms for fatty acid breakdown,
metabolism, and biosynthesis are abundant (Figure S1C).

Establishment of the Prognostic Model in
the Training Set
Glioma patients in the TCGA database were randomly divided into
a training cohort and a testing cohort at a 2:1 ratio, we used the
training set to construct a prognostic model. On 191 FAMDs, a
Univariate Cox regression analysis was conducted.With a p value of
0.001, a total of 133 genes associated with prognosis were discovered
(Table S3). The somatic mutation profile of the 18 genes involved in
fatty acid metabolism that have been linked to prognosis was first
summarized. As indicated in Figure 2A, a total of 477 of 984 glioma
samples had mutations in FAMDs, with a prevalence of 48.48
percent. IDH1 has the most mutations. Further research revealed
that ACACB and TBXAS1 had a mutation co-occurrence
association (Figures 2B–D). The number of genes was then
reduced using the LASSO Cox regression analysis. Finally, ten
genes were employed to create a predictive risk score model
July 2022 | Volume 13 | Article 902143
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(ACO2, PTGR1, GPD1, HCCS, ABCD1, RETSAT, SMS, CA2,
ELOVL5, and SCD) (Figures 2E, 2F). The following formula was
used to compute every sample’s score: risk score = (-0.362) ×
ACO2 + (0.246) × PTGR1 + (0.127) × GPD1 + (0.411) ×HCCS +
(0.241) × ABCD1 + (0.326) × RETSAT + (0.338) × SMS + (0.202) ×
CA2 + (0.256) × ELOVL5 + (-0.429) × SCD. Table S4 shows how
this was accomplished. To fully differentiate glioma samples, the risk
score model was applied (Figures 2G, 2H)

In the training set, patients were classified into the high- and
low-risk group according to the median value. K-M curves
showed that the high-risk group had a poor prognosis
compared to low-risk patients (p < 0.05) (Figure 3A). The
highest AUC value reached 0.898 for 1-year OS, and 0.932 for
3-year OS (Figure 3E). To better discern the survival differences
between these two groups, we ranked all patients based on their
Frontiers in Immunology | www.frontiersin.org 6
risk scores, then plotted to scatter maps to describe each patient’s
survival time and status (Figures 3B–D).

Validation of the Prognostic Model in the
Testing Set, Entire TCGA and CGGA Set
To verify the robustness of this risk model, the predictive
performance was determined in the testing set, entire TCGA and
CGGAset. Similarly, patients in these cohortswere categorized into
high- and low-risk groups, according to the cut-off value achieved in
the training cohort. There were 116 high-risk patients, 84 low-risk
patients in the testing set, and 350 high-risk patients, 318 low-risk
patients in the entireTCGAset, and615high-risk patients, 313 low-
risk patients in the CGGA set.

K-M curves indicated that high-risk individuals in these
cohorts had a shorter OS than the low-risk group (p < 0.05)
A B

D E

F G H

C

FIGURE 2 | Predictive risk score model development. (A) The frequency of mutations in 18 FAMDs in 984 glioma patients from the TCGA cohort. (B) Mutation co-
occurrence and selection analysis for 18 genes involved in fatty acid metabolism. Green denotes co-occurrence; purple denotes exclusion. (C) Locations of CNV
alterations in FAMDs on 23 chromosomes. (D) Frequencies of CNV gain, loss, and non-CNV among FAMDs. (E) LASSO coefficients for the FAMDs involved in fatty
acid metabolism. (F) Gene discovery for the construction of a predictive risk score model. (G) Principal component analysis of FAMDs in glioma. (H) In the TCGA
cohort, principal component analysis was used to identify cancers from standard samples using a fatty acid metabolism vulnerability index. High-risk patients were
represented by the red group, whereas the blue group represented low-risk patients. *P<0.01, •P<0.05.
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(Figures 3F, K, P). The AUC for predictive OS was 0.812 at 1
year, 0.949 at 3 years in the testing cohort, 0.871 at 1 year, 0.936
at 3 years in the entire TCGA cohort, 0.768 at 1 year, 0.829 at 3
years in the CGGA cohort (Figures 3J, O, T). Also, we graded
respectively different populations in these cohorts based on their
risk score. The high-risk group exhibited a poor prognosis
compared to low-risk patients, which was consistent with the
findings in the training set (Figures 3G–I, L–N, Q–S).

The Connection Between the Risk Model
and Clinical Information
To investigate the relationship between the risk model and
clinical features, we determined the risk scores of related
samples in terms of age, gender, grade, IDH1 mutation status,
pq status, and MGMT status. Although there was no significant
difference in risk score by gender, significant variations in risk
score by age, grade, IDH1 mutation status, pq status, and MGMT
status (p<0.05; Figures 4A–F). Higher scores were linked to
being older, having higher grades, wild type IDH1 mutations,
unmethylated MGMT status, and non-codel pq status. The
Frontiers in Immunology | www.frontiersin.org 7
accuracy of the prognostic risk model was validated by plotting
a time-dependent ROC at 5 years (Figure 4G). Age, grade, IDH
status, pq status, and risk score were predictive factors of OS in
multivariate analysis among characteristics linked with OS in
univariate analysis (Figure 4H).

Construction of Survival-
Prediction Nomogram
A nomogram comprising gender, age, grade, IDH1 mutation,
MGMT status, pq status, and risk score was created to predict OS
in glioma tissues (Figure 5A). Figure 5B shows calibration
curves for patients with gliomas at 1, 3, and 5 years,
demonstrating that nomograms may reliably predict OS in
these patients. The nomogram (AUC = 0.774) has a stronger
predictive value than a single indicator such age (AUC = 0.684),
grade (AUC = 0.660), or the prognostic risk scoring model
(AUC = 0.767; Figure 5C). The predictive risk score model
and grade were shown to be independent prognostic factors in
multivariate and univariate Cox regression analysis
(Figures 5D, E).
A

B

D

E

F

G

I

H

J

K

L

M

N

C

O

P

Q

R

S

T

FIGURE 3 | Construction and validation of risk model in TCGA training, testing, entire cohort, and CGGA cohort. (A, F, K, P), (K–M) curves of subgroups for OS in
TCGA training, testing, entire cohort, and CGGA cohort. The distribution plots of risk score (B, G, L, Q), survival status (C, H, M, R), and 10 selected FAMDs (D, I,
N, S) in TCGA training, testing, entire cohort, and CGGA cohort. (E, J, O, T) ROC curve analysis of risk score in predicting 1-, 3-, and 5-year OS in TCGA training,
testing, entire cohort, and CGGA cohort.
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Response of Two Groups to Crizotinib
The association between risk level and medication resistance was
examined since risk score is linked to poor prognosis. The
“pRRophic” R package has been used to estimate the therapeutic
efficacy of crizotinib in the TCGA cohort using the half maximal
inhibitory concentration (IC50). For the management of glioma,
samples with a low-risk score were more susceptible to crizotinib
(Figures 6A, B). In TCGA data, there was a high association
between chemotherapy drugs sensitivity and risk score at 3 years,
according to PFS (progression-free survival) (Figure 6C). The
elevated score was significantly closely linked with the intensive
activation of matrix pathways, including epithelial mesenchymal
transformation 1 (EMT1), angiogenesis, andWnt targets, according
to an analysis of the activity of matrix-related pathways leading to
chemotherapy resistance (Figure 6D).
Frontiers in Immunology | www.frontiersin.org 8
GSVA
Gsva enrichment analysis showed that most metabolic pathways,
including the biosynthetic metabolic pathway of unsaturated
fatty acids, increased in the low-risk score. Genetic abdominal
muscle analysis of high scoring population showed that it was
related to immunity, such as primary immunodeficiency, natural
killer cell mediated cytotoxicity, etc. (Figure 7A). The risk score
was negatively connected with the fatty acid metabolism score,
which was generated using ssGSEA, which examined the
expression of fat metabolism-related genes in glioma patients
and was consistent with GSVA (Figures S2A–C). Although the
fat metabolic score could reliably predict the survival in patients
at 5 years using a time-dependent ROC, the predictive value
(AUC = 0.385) was poorer than the risk rating model (AUC =
0.880) (Figures S2D–E). In addition, we compared several
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FIGURE 4 | Prognostic value of the fatty acid metabolism score model in glioma patient survival. (A–F) The association between risk score and clinicopathological
variables such as age (A), gender (B), grade (C), IDH1 status (D), MGMT promoter status (E), and pq status (F). (G) ROC curves are used to assess the predictive
power of clinical characteristics. (H) The forest plot of the TCGA cohort’s multivariate Cox regression analysis. *p < 0.05; ***p < 0.001.
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FIGURE 5 | Prognostic efficacy of risk score in OS of patients from the TCGA cohort when combined with clinical-pathological features. (A) Nomogram indicates
OS in the TCGA cohort of patients. (B) The nomogram’s calibration plots. The y-axis represents actual survival, whereas the x-axis represents nomogram-predicted
survival. (C) Receiver operating characteristic charts for risk score and clinical features. (D, E) The nomogram’s univariate and multivariate Cox regression analyses.
*p < 0.05; **p < 0.01; ***p < 0.001..
A B

DC

FIGURE 6 | A model of fatty acid metabolism in the context of chemotherapy. (A) The relationship between patient risk ratings and crizotinib’s projected IC50 value. (B)The
disparities in crizotinib response between groups with poor and good risk scores. (C) The TCGA cohort’s progression-free survival (PFS) was compared between low- and
high-risk score groups. (D) Variation in stroma-activated networks between groups with low and high-risk scores (**p < 0.01; ***p < 0.001).
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mutant genes with high mutation frequency in glioma, TP53,
ATRX, PTEN, and TTN. Patients with TP53 and ATRX
mutations had higher risk scores and statistically significant
differences (Figures 7B–E).
Characteristics of the Immune System in
the High- and Low-Risk Groups
The high score group demonstrated an increasing trend in T cells
CD8, macrophage M1, and macrophage M2 compared to the low
score group, consistent with the high score group’s reduced survival
rate. The group with the lowest ranking had a higher increase in
monocytes and mast cells activated (Figure 8A). Furthermore, the
high-risk group’s type I IFN response, type II IFN response,
checkpoint, HLA, T cell co-inhibition, T cell co-stimulation, etc.,
Frontiers in Immunology | www.frontiersin.org 10
were all activated, suggesting that patients with immune
suppression in the high-risk group would react to
immunotherapy (Figure 8B). The TCGA samples were
additionally immunotype, and the elevated/low score groups had
substantial variations in C3, C4, and C5 (Figures 8C, D). CTLA4
and PD-1 inhibition are two examples of immunotherapy that have
achieved significant advances in cancer treatment. As a result, we
looked at the predictive risk score model’s capacity to distinguish
between individuals who react to immune checkpoint inhibitor
treatment in various ways. The findings revealed that the projected
risk score was highly connected with immune checkpoint gene
expression (PD-1, PD-L1, and CTLA4) and that the expression was
considerably higher in the high-risk group. This shows that our risk
ratings for fatty acid metabolism might be relevant in determining
immunotherapy prognosis (Figures 8E–J).
A
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C

FIGURE 7 | GSVA analysis of elevated/low score groups diagram. (A) GSVA enrichment heatmap for excellent and poor score groups. (B–E) Varied mutant genes,
namely ATRX mutation (B) PTEN mutation (C) TP53 mutation (D) and TTN mutation (E) have different fatty metabolism scores.
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Verification of Prediction Model by the
Hub Gene in DEGs of High- and
Low-Risk Groups
The expression patterns of DEGs in the low- and high-risk
groups were analyzed using the string online database. As
illustrated in Figure S3, a protein interaction diagram of DEGs
was created. PPI network data is processed and shown using the
Frontiers in Immunology | www.frontiersin.org 11
Cytoscape program. Figure 9A depicts the DEG interaction, with
red indicating up-regulated transcripts in the excellent score
group and green indicating up-regulated genes in the poor score
group. Cytohubba is a Cytoscape plug-in that helps you find the
core gene among DEGs. As seen in Figure 9B, we chose 10 genes
from the network. To further understand the roles of DEGs,
researchers used the R software tool “goplot” to conduct a Go
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FIGURE 8 | Model of fatty acid metabolism in immunotherapy. (A) The difference in immune infiltration between high-risk and low-risk scores. (B) The difference
between subjects with a high score and those with a poor rating in terms of the known function related to immune modulation. (C, D) The distribution of
immunological subtypes (C3, C4, and C5) across risk groupings are shown in a heatmap and table. (E–G) Immune checkpoint transcriptional activation and hazard
score, PD-L1(E), PD1(F), and CTLA3 correlation analysis (G). (H–J) The disparities between the low-risk and high-risk groups in terms of identified Immune
checkpoint genes. *P<0.05, **P<0.01, ***P<0.001.
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and KEGG study. The genes are engaged in skeletal system
development, extracellular matrix organization, extracellular
structure organization, etc., according to GO findings. These
genes were shown to be abundant in hematopoietic cell lineage,
ECM-receptor interaction, cytokine-cytokine receptor
interaction, etc., according to KEGG findings (Figure 9C). For
verification, we used CCNA2 in the hub gene. The expression
levels of CCNA2 were shown to be substantially linked with the
mortality of glioma patients in a survival study (Figure 9D).
Furthermore, CCNA2 expression increased with age and grade.
However, in the IDH1 mutation, pq codel, MGMT methylated
group, CCNA2 expression was dramatically reduced
(Figures 9E–J). To see whether there is a difference in TME
immune infiltration between individuals with high- and
Frontiers in Immunology | www.frontiersin.org 12
low– CCNA2 expression. Compared to patients with low
transcription, tumors with high CCNA2 expression showed
considerably higher macrophages M2 and M1 (Figure 9K).

CCNA2 Promoted Malignant Glioma
Progression In Vitro, and Vivo
To further validate the role of CCNA2 in glioma, we assessed if
changes in CCNA2 expression affect glioma cell proliferation
and malignant abilities. We first detected the expression of
CCNA2 in different cells by qRT-PCR and found that CCNA2
mRNA levels were significantly high in LN229, T98G, U251,
U87, and U118 cells compared to NHA (Figure 10A). We chose
U251 for si‐CCNA2 and U87 for CCNA2 cDNA transfections.
The results indicated that CCNA2 shRNA reduced CCNA2
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FIGURE 9 | Protein-protein interaction (PPI) graph. (A) PPI network generated by Cytoscape (red): DEGs that exhibited strongly in the excellent score category;
green: DEGs that showed highly in the low-risk score group. (B) The top ten hub genes were chosen by cytoHubba. (C) The findings of GO and KEGG enrichment
analysis on DEGs. (D) Mortality analysis for patients divided into subgroups based on CCNA2 mRNA expression. (E-J) The difference in CCNA2 mRNA expression
between various clinical characteristics, such as age (E), gender (F), grade (G), IDH1 mutation (H), MGMT promoter status (I), and pq status (J, K) In subjects with
elevated/low CCNB1 mRNA expression, the number of TME-infiltrating cells. *p < 0.05; **p < 0.01; ***p < 0.001.
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expression in U251 cells, whereas CCNA2 cDNA up‐regulated
CCNA2 expression in U87 cells (Figure 10B). The CCK-8
(Figures 10C, D) and colony formation (Figure 10E) results
demonstrated that down‐regulation of CCNA2 expression
inhibited U251 cell proliferation, whereas up‐regulation of
CCNA2 expression promoted tumor U87 cell proliferation. In
transwell assay, suppressing CCNA2 expression significantly
resulted in a reduction of invaded U251 cells, whilst
upregulating CCNA2 expression significantly expanded the
amount of invaded U87 cells (Figure 10F). Moreover, the
animal experiment suggested that CCNA2 knockdown
suppressed g l ioma growth in v ivo , whi l e CCNA2
overexpression promoted tumor growth (Figures 10G–I).
These results indicated that CCNA2 facilitated in vitro and in
vivo proliferation, migration, and invasion of glioma cells.
Frontiers in Immunology | www.frontiersin.org 13
CCNA2 Regulated
Macrophages Polarization
To further examine the relationship between CCNA2 and
macrophage polarization in vitro, we chose U251 cells for
further study. U251 cells were transfected with shCtrl and
shCCNA2, then co-cultured with macrophages. The result of
qRT-PCR showed that the macrophages co-cultured with U251-
siCCNA2 had higher M1-like markers iNOS, TNF-a, and IL-1b
(Figure 11A), while having lower M2-like markers CD206, Arg1
and YM1/2 compared with controls (Figure 11B). Western blot
and flow cytometry showed that knockdown of CCNA2
significantly inhibited the shift to M2 macrophages compared
with the NC group (Figures 11C–F). IHC staining indicated that
CCNA2 expression and M2 macrophage marker CD206 were
stronger in GBM than usual (Figure 11G). Transwell assay
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FIGURE 10 | CCNA2 promoted glioma cell proliferation and migration. (A) qRT-PCR of CCNA2 mRNA expression in NHA and glioma cells. (B) qRT-PCR of CCNA2 levels
in U251 and U87 cells transfected with si-CCNA2 and CCNA2-cDNA. (C, D) CCK-8 of the cell growth curve in transfected U251 and U87 cells. (E) Colony assay in
transfected U251 and U87 cells. (F) Transwell invasion test in transfected U251 and U87 cells. (G) Representative images of subcutaneous xenograft tumors implanted with
U251-siCCNA2 and U87-CCNA2 cells. (H, I) Tumor volume and tumor weight of indicated xenograft models. *P < 0.05, **P < 0.01, ***P < 0.001.
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showed that silencing CCNA2 in U251 cells significantly
decreased the M2 macrophage infiltration (Figures 11H, I).
The results showed that CCNA2 regulated the polarization
of macrophages.
DISCUSSION

For a long time, people have been considering the metabolic
conversion of cancer cells from the perspective of how and why
cancer cells give priority to the use of glucose through aerobic
glycolysis (the so-calledWarburg effect). In the past few years, we
have made great progress in understanding the newly connected
Frontiers in Immunology | www.frontiersin.org 14
metabolic networks intertwined with carcinogenic signals of
cancer cells. Among these metabolic reprogramming theories,
the deregulation of lipid metabolism is considered one of the
primary metabolic markers of tumor cells (28). Aside from
aberrant glucose metabolism, cancer cells’ lipid, nucleic acid,
and amino acid metabolism will vary (29). It has been discovered
that lipid initiating changes plays a crucial role in membrane
synthesis, signal transduction, and energy production of cancer
cells (30). Most research now concentrates on the involvement of
a single gene in glioma, and the full impact of numerous fatty
acid metabolism genes is unknown. Understanding the
significance of distinct fatty acid metabolism processes in
glioma and their association with immunotherapy may suggest
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FIGURE 11 | Effect of CCNA2 on macrophage polarization. (A, B) mRNA expression levels of M1-like and M2-like markers of macrophages after co-cultured with
U251-siCCNA2 cells and controls. (C, D) Protein levels of iNOS and CD206 of macrophages after co-cultured with transfected cells. (E, F) Flow cytometry analysis
of iNOS and CD206 expression in indicated groups. (G) Representative IHC images of CCNA2 and M2-like marker Arg1 in normal brain and glioma tissues from the
HPA database. (H, I) M2 macrophage infiltration after co-cultured with indicated cells. *P < 0.05, **P < 0.01, ***P < 0.001.
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appropriate treatment methods by increasing the knowledge of
fatty acid metabolism in tumor progression.

There are many successfully constructed prognostic models for
glioma, such as the methylation-related or immune-relatedmodels
in glioma (31–35) and other tumors (36, 37). But research focused
on fatty acid metabolism. The connection between FAMDs and
glioma was investigated. Univariate Cox regression assessment and
lasso cox regression analysis were employed to assess prognostic
risk. In the TCGA training cohort, a scoring model was developed
for 191 expression levels associated withmetabolism in normal and
tumor brain tissue. In patients with glioma, the predictive risk score
approach was utilized to predict OS. And we validate the model in
the TCGA testing cohort, TCGA entire cohort, and CGGA cohort.
We used a clinical correlation study to better know about the
importance of these genes in glioma. The poor score subgroup and
the good score subgroup had different survival rates. The testing
cohort yielded the same findings, showing that the predictive risk
score model may identify patients with low-risk viability. The
predicted risk score model was developed using a multivariate
analysis of prognostic data. Furthermore, by combining
nomograms with specific clinicopathological variables, we may
improve the prediction power of our prognostic risk score model.

Because gliomas need to be treated with a combination of
chemotherapy drugs in the later stage. As a result, to better
understand the relevance of the predictive risk model in glioma,
we evaluated the medication treatment responses of patients in
the good and poor score groups. The risk score was positively
correlated with crizotinib resistance, which was consistent with
previous studies (38). Our personalized PFG score for patients
with glioma can be used for the prognosis of glioma. Individuals
with elevated ratings had considerable matrix activation,
suggesting the existence of chemoresistance, which was similar
to previous findings. Chemoresistance is common in individuals
with high hazard scores, hence immunotherapy is usually
avoided. Most individuals with poor glioma are not candidates
for immunotherapy (Immunologic checkpoint, inhibiting
[PD-1/L1 and CTLA4]). As a result, distinguishing people who
are candidates for immunotherapy is critical in clinical practice.
Patients with high-level scores are rich in inhibitory immune
cells and immune inflammatory cells. In addition, patients with
better scores have the functions of activating type I and II IFN
responses which can promote inflammation. All of this suggests
that individuals with good scores are candidates for
immunotherapy, which is consistent with cancer immune
dysfunction and resistance being predicted.

Because the high- and low-score subgroups varied significantly,
the distinct genes in the 2 categories were investigated further.
CCNA2 was discovered to be necessary. Not only was CCNA2
mRNA expression linked to the clinical stage, but it was also linked
to a worse prognosis. The CCNA2 knockdown has also been
shown to suppress cell growth by impairing cell cycle progression
and inducing cell apoptosis (39). Rui et al. reported that the ability
of cancer cell proliferation, invasion, and metastasis was decreased
after down-regulated expression of CCNA2 in prostate cancer cell
lines (40). However, no research on CCNA2 in glioma has been
published, and the process in glioma has to be investigated further.
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In conclusion, the fatty acid predictive risk score model may be
utilized to assess the fatty acid metabolism network completely. The
calculated risk score may be used to classify a patient’s
clinicopathological characteristics, such as clinical stages.
Furthermore, the risk score is linked to the prognosis of patients
and may predict immunotherapy. As a result, the clinical practice
may be successfully guided by relative risk and clinical-stage to
produce a more tailored clinical follow-up approach. These results
present a unique, efficient, and accurate predictive and
immunotherapy response prediction methodology, paving the
way for tailored cancer immunotherapy in the future.
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