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Abstract

Introduction: The levels of many blood proteins are associated with Alzheimer’s dis-

ease (AD) or its pathological hallmarks. Elucidating the molecular factors that control

circulating levels of these proteins may help to identify proteins associated with dis-

ease risk mechanisms.

Methods: Genome-wide and epigenome-wide studies (nindividuals ≤1064) were per-

formed on plasma levels of 282 AD-associated proteins, identified by a structured

literature review. Bayesian penalized regression estimated contributions of genetic

and epigenetic variation toward inter-individual differences in plasma protein levels.

Mendelian randomization (MR) and co-localization tested associations between pro-

teins and disease-related phenotypes.

Results: Sixty-four independent genetic and 26 epigenetic loci were associated

with 45 proteins. Novel findings included an association between plasma trigger-

ing receptor expressed on myeloid cells 2 (TREM2) levels and a polymorphism and
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cytosine-phosphate-guanine (CpG) site within the MS4A4A locus. Higher plasma

tubulin-specific chaperone A (TBCA) and TREM2 levels were significantly associated

with lower AD risk.

Discussion:Our data inform the regulation of biomarker levels and their relationships

with AD.

1 INTRODUCTION

Alzheimer’s disease (AD) is one of the leading causes of disease burden

and death globally.1,2 Blood-based methods for assessing disease risk

are potentially more cost-effective and less invasive than neuroimag-

ing methods or lumbar punctures for collecting cerebrospinal fluid

(CSF). Approaches that use genomics and untargeted proteomics have

suggested that there are signals in blood that can supplement targeted

assays, and contribute to the understanding and prediction of AD.3,4

However, the relevance of many candidate protein markers identified

by untargeted approaches to AD remains unclear.5,6 Understand-

ing the molecular factors that regulate the levels of AD-associated

proteins may identify proteins that bear relevance to disease risk

mechanisms.

Unlike genetic factors, which remain largely stable over the life-

course, differential DNA methylation (DNAm) profiles are influenced

by genetic and non-genetic factors.7 DNAm is characterized by the

addition of methyl groups to DNA, typically in the context of cytosine-

phosphate-guanine (CpG) nucleotide base pairings. Clusters of CpG

sites termedCpG islands are located near 70%of gene promoters. CpG

island methylation is typically associated with reduced gene expres-

sion. However, it is important to note that DNAm is dynamic, tissue-

specific, and cell-specific.8 DNAmdatamay capture independent infor-

mation beyond genetic factors in explaining inter-individual variation

in circulating protein levels. Several genome-wide association studies

(GWAS) have catalogued polymorphisms associated with plasma pro-

tein levels and identified proteins that correlate with risk scores for

various disease states including AD.9–11 Zaghlool et al. (2020) per-

formed the only large-scale epigenome-wide association study (EWAS)

to date on plasma protein levels (>1000 proteins).12 Few studies have

combinedGWASandEWASdata toquantify the independent and com-

bined contributions of genetic and epigenetic factors toward differen-

tial protein biomarker levels.13–15

We performed a structured literature review of studies that report

associations between plasma proteins and AD diagnosis or related

traits such as amyloid beta (Aβ) burden and cortical atrophy.16–27

We focused on studies that measured plasma protein levels using

the SOMAscan affinity proteomics platform (SomaLogic Inc.), as this

matches the protocol used in our study, Generation Scotland.We iden-

tified 282 proteins that were also measured in our sample (n ≤ 1064).

Our first aim was to conduct GWAS and EWAS on plasma levels of

282 AD-associated proteins. Using Bayesian penalized regression, we

estimated the proportion of inter-individual variability in plasma pro-

tein levels that can be accounted for by variation in genetic and DNAm

factors. BayesR+ implicitly adjusts for probe intercorrelations and

data structure, including relatedness.28 For our second aim, we used

Mendelian randomization (MR) and co-localization analyses to test for

relationships between plasma protein levels and AD phenotypes.

2 METHODS

2.1 Study cohort

Analyseswere performed using blood samples from participants of the

STratifyingResilienceandDepressionLongitudinally (STRADL) cohort,

comprising 1188 individuals from the larger, family-structured Gener-

ation Scotland: the Scottish Family Health Study (GS). GS consists of

24084 individuals from across Scotland. Recruitment forGS took place

between 2006 and 2011. STRADL participants partook in follow-up

data collection 4 to 13 years after baseline.29,30

2.2 Search strategy

We searched MEDLINE (Ovid interface, Ovid MEDLINE in-process

and other non-indexed citations and Ovid MEDLINE 1946 onwards),

Embase (Ovid interface, 1980 onwards), Web of Science (core collec-

tion, Thomson Reuters), andmedRxiv/bioRxiv to identify relevant arti-

cles indexed as of May 28, 2021. Search terms are outlined under sup-

plementary information. Twenty-five articles were identified and one

further articlewas identified through a supplementalmanual literature

search. After removal of duplicates, 23 articleswere assessed for inclu-

sion criteria: (1) original research article, (2) proteinsweremeasured in
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plasma, (3) proteins were measured using SOMAscan technology, and

(4) proteins were associated with AD or related phenotypes. Twelve

articles met inclusion criteria.

2.3 Protein quantification

The 5k SOMAscan v4 array was used to quantify the levels of plasma

proteins in GS participants (n = 1065). This highly multiplexed plat-

form uses chemically modified aptamers termed SOMAmers (Slow

Off-rateModifiedAptamers) that recognize epitopes on their cognate

protein targets with high specificity and high affinity in the nanomolar-

to-picomolar range. The recognition signal is measured as relative

fluorescence units (RFUs) onmicroarrays.

Plasma samples were collected in 150 μL aliquots and stored at

−80◦C. Samples were run in 96-well plates and reagents were spread

across three dilution factors (0.005%, 0.5%, and 20%) to create distinct

sets for high, medium, and low abundance proteins, respectively. Raw

microarray data were normalized through a number of quality control

steps, which are detailed in the supplementary information. After qual-

ity control and the exclusion of non-human proteins, deprecatedmark-

ers and spuriomers, 4235 SOMAmers were retained for proteomic

analyses.

Normalized RFUs (from SomaLogic) were log-transformed

and regressed onto the following covariates: age, sex, study site

(Aberdeen/Dundee), time between sample being collected and pro-

cessed for proteomics (factor, 4 levels), and 20 genetic principal

components (PCs) of ancestry from multidimensional scaling (to

control for population structure). Relationships between covariates

and SOMAmers are shown in Table S1. Residualized RFUs were

transformed by rank-based inverse normalization. We refer to these

as protein levels; however, they reflect RFUs that have undergone a

number of quality control, transformation and pre-correction steps.

2.4 GWAS

Generation Scotland samples were genotyped using the Illumina

Human OmniExpressExome-8v1.0 Bead Chip and processed using the

Illumina Genome Studio software v2011 (Illumina, San Diego, CA,

USA). Quality control steps are outlined under supplementary infor-

mation. After quality control, 561125 single nucleotide polymorphisms

(SNPs) remained for 1064 individuals. In total, 1064 individuals had

both genotype and proteomic data available for analyses.

Bayesian penalized regression GWAS were performed using

BayesR+ software in C++.28 BayesR+ utilizes amixture of prior Gaus-

sian distributions to allow for markers with effect sizes of different

magnitudes. It also includes a discrete spike at zero that enables the

exclusion of markers with non-identifiable effects on the trait of inter-

est. Guided by data from our previous studies, mixture variances for

the stand-alone GWAS were set to 0.01 and 0.1 to allow for markers

that account for 1% or 10% of variation in circulating protein levels,

respectively.14,15 In the combined GWAS/EWAS analysis, genotype

RESEARCH INCONTEXT

1. Systematic Review: The authors performed a struc-

tured literature review of studies that reported associa-

tions between SOMAscan-measured plasmaproteins and

Alzheimer’s disease (AD). Twelve studies were included

following a search of MEDLINE, Embase,Web of Science,

and preprint servers. The goal of the study was to com-

bine genome-wide and epigenome-wide association stud-

ies (GWAS and EWAS) with causal modeling methods to

investigate associations between plasmaproteins andAD

risk. The study used data from the Scottish population-

based cohort, Generation Scotland.

2. Interpretation: Two hundred eighty-two proteins across

the included studies were available for testing in Gen-

eration Scotland. Seven novel genetic and 19 novel

cytosine-phosphate-guanine (CpG) sites were associated

with plasma levels of 18 proteins. Higher plasma levels

of tubulin-specific chaperone A (TBCA) and triggering

receptor expressed on myeloid cells 2 (TREM2) associ-

ated with lower risk of AD.

3. Future Directions: Triangulation of evidence across other

experimental andepidemiological approacheswill benec-

essary to determine if blood proteins influence AD risk.

and DNAm data must have had the same number of prior variances

(n = 3 each). Mixture variances for SNP data were set to 0.01, 0.1, and

0.2 in combined analyses. Input data were scaled to mean zero and

unit variance. Gibbs sampling was used to sample over the posterior

distribution conditional on input data and 10000 samples were used.

The first 5000 samples of burn-in were removed and a thinning of five

samples was applied to reduce autocorrelation. SNPs that exhibited a

posterior inclusion probability (PIP)≥95%were deemed significant.

2.5 EWAS

BloodDNAm in Generation Scotland participants was quantified using

the Illumina HumanMethylationEPIC BeadChip Array. Blood DNAm

was assessed in two separate sets. After quality control, 793706 and

773860 CpG remained in sets 1 and 2, respectively. In total, 772619

CpG sites were shared across sets. Each set was truncated to these

overlapping probes.

In the stand-aloneEWASand combinedGWAS/EWAS,mixture vari-

ances were set to 0.001, 0.01, and 0.1 (n = 778). Missing DNAm

data were mean imputed separately within each set as BayesR+ can-

not accept missing values. Both sets were combined and adjusted for

DNAm batch, set, age, and sex. Each CpG site was scaled to mean zero

and unit variance. Houseman-estimated white blood cell proportions

were included as fixed-effect covariates.31 CpG sites that had a PIP

≥95%were deemed significant.
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Sensitivity EWAS analyses were performed using linear mixed-

effects models and the lmekin function from the R coxme package (ver-

sion 2.2-16).32 DNAm data were pre-corrected for age, sex, batch,

and set. Houseman-estimatedwhite blood cell proportionswere incor-

porated as fixed-effect covariates and a kinship matrix was fitted to

account for relatedness among individuals in STRADL.

2.6 Co-localization analyses

Formal Bayesian tests of co-localization were used to determine

whether a shared causal variant likely underpinned two traits of

interest.33 A 200 kilobase (kb) region (upstream and downstream, rec-

ommendeddefault setting) surrounding thevariantwasextracted from

our GWAS summary statistics.

Expression quantitative trait loci (eQTL) data were extracted from

eQTLGen summary statistics. Methylation QTL (mQTL) summary

statistics were extracted from phenoscanner, GoDMC, or our own

mQTL analyses.MethylationQTL analyseswere performed using addi-

tive linear regression models and by regressing CpG sites (beta val-

ues) on SNPs (0, 1, 2) while adjusting for age, sex, DNAm batch, set,

Houseman-estimatedwhite blood cell proportions, and 20 genetic PCs

(n = 778). In instances where an mQTL effect was identified in more

than one database, summary statistics from the study with the largest

sample size were used in coloc.34–36 For AD-related traits, summary

statistics were extracted from the relevant GWAS.3,37–39 Default pri-

ors were applied. Summary statistics for all SNPs (± 200 kb from the

queried SNP) were used to estimate the posterior probability for five

separate hypotheses: a single variant underlying both traits, separate

variants for both traits, a causal variant for one trait (encompassing two

hypotheses), or no causal variant for either trait. Posterior probabilities

≥95% provided strong evidence for a given hypothesis.

2.7 Mendelian randomization (MR)

BidirectionalMendelian randomization (MR) was used to test for asso-

ciations between (1) gene expression and plasma protein levels, (2)

DNAm and plasma protein levels, and (3) plasma protein levels and

AD risk or related biomarkers. Pruned variants (r2< 0.1) were used as

instrumental variables (IVs) in MR analyses. Analyses were conducted

using MR-base.40 Two-sample MR was applied and relationships were

assessed using theWald ratio test. Further information on IVs used are

provided in supplementary information.

3 RESULTS

3.1 Identification of plasma proteins associated
with AD

Twelve studies were identified that reported associations between

SOMAscan plasma proteins and AD or related traits (Figure 1). Three

hundred fifty-nine unique proteins were identified and 22 (6.1%) were

reported in more than one study (Table S2-S4). In the Generation

Scotland dataset, there were 308 SOMAmers (SlowOff-rateModified

Aptamers) that targeted 282 of 359 proteins of interest (Table S5 and

Figure S1). The 282unique proteinswere brought forward for analyses

(UniProt IDs and Seq-ids are shown in Table S6).

3.2 GWAS on AD-associated proteins

There were 1064 individuals with genotype and proteomic data in

Generation Scotland. The mean age of the sample was 59.9 years

(standard deviation [SD]= 5.9) and 59.1% of the sample was female. In

the BayesR+ GWAS, 64 independent variants (or protein quantitative

trait loci, pQTLs) were associated with 41 SOMAmers that mapped

to 39 unique protein targets (PIP≥ 95%; Table S7). The phenotypic

correlation structure of these 41 SOMAmers is presented in Figure S2.

The median correlation coefficient between SOMAmer levels was

0.18. Thirty-six pQTLs represented cis associations (pQTLs within 10

megabases [Mb] of transcription start site [TSS] for a given gene) and

28 pQTLs were trans-chromosomal effects (Figure 2). The majority of

variants were located in intronic regions using annotations from the

ENSEMBL variant effect predictor (46.9%, Figure S3).

Fifty-seven pQTLs were previously reported in GWAS of blood pro-

tein levels (Table S8). Variants either directly replicated known associa-

tions or showed high linkage disequilibrium (LD, r2> 0.75) with known

pQTLs for queried proteins. Relative effect sizes reported in the liter-

ature correlated strongly with those in our study (r = 0.77, 95% confi-

dence interval [CI]=0.66, 0.84).We identified sevennovel pQTLs asso-

ciated with seven unique proteins. Three pQTLs were in cis (for GM2A,

MATN3 and IL1RAP). Four pQTLs represented trans-chromosomal

effects: rs1126680 (BCHE for KLK6), rs7867739 (near ABO for ALPI),

rs3820897 (COLEC11 for ALPL), and rs1530914 (MS4A4A for trigger-

ing receptor expressed onmyeloid cells 2 [TREM2]).

Thirty-three pQTLs were associated with at least one trait in the

GWAS Catalog at P < 5 × 10−8 (range = 1 to 96 associations;

Table S9).41 In relation to AD traits, the trans pQTL in MS4A4A

(rs1530914) for TREM2 levels is in high LD with a TREM2 variant

(rs1582763, r2 ∼ 0.9) associated with AD in apolipoprotein E (APOE)

ε4 carriers and family history of AD.3,42 In addition, the trans pQTL in

APOE (rs769449) for tubulin-specific chaperone A (TBCA) levels was

associated with 15 AD-related traits including genetic predisposition

to AD and CSF biomarkers of the disease.

BayesR+ was used to estimate the proportions of inter-individual

variation in plasma protein levels that were attributable to common

SNPs (minor allele frequency >1%). Estimates ranged from 5.3% (PRL;

95% credible interval [CrI] = 0%, 24.4%) to 73.0% (IL1RAP; 95%

CrI = 56.0%, 83.0%), with a median estimate of 13.0% across all 308

SOMAmers (Table S10).

3.3 Co-localization of protein QTLs
with expression QTLs

The 36 cis pQTLs identified in BayesR+ were annotated to 23 unique

proteins. For 12 of 23 proteins, at least one pQTL was previously
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F IGURE 1 Structured literature review of SOMAscan plasma proteins that were associated with AD in the literature, and assessment of their
molecular architectures and relationships with AD in the present study. TheMEDLINE, Embase,Web of Science databases, and preprint servers
were queried to identify studies that reported associations between SOMAscan-measured plasma proteins and AD. GWAS, EWAS, and causal
inference analyses were performed to identify molecular correlates of 282 AD-associated plasma protein levels and to probe their associations
with AD and related traits. AD, Alzheimer’s disease; EWAS, epigenome-wide association studies; GWAS, genome-wide association studies. Figure
created using Biorender.com

reported to be an expression QTL for the respective gene in blood tis-

sue (eQTL consortium database).34 The R package coloc33 was used to

test the hypothesis that a single variant associates with differences

in gene expression (eQTL) and protein levels (pQTL) for each gene

of interest. For two proteins (PCSK7 and F7), there was strong evi-

dence (posterior probability [PP]) >95%) for a shared variant underly-

ing gene expression and protein levels (Table S11). MR analyses pro-

vided evidence for reciprocal associations between changes in gene

expression and circulating levels of these proteins (Table S12). Three

proteins had weaker evidence for co-localization (PP ≥75% for GM2A,

LYZ, PDCD1LG2) and seven proteins had strong evidence for separate

variants underlying gene expression and protein levels.
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3.4 EWAS on AD-associated proteins

There were 778 individuals with DNAm and proteomic data in the

Generation Scotland sample. The mean age of the sample was 60.2

(SD = 8.8) years and 56.4% of the sample were female. Twenty-six

CpGswere associatedwith the levels of 20 unique proteins (PIP>95%,

Table S13 and Figure S4). The median correlation coefficient between

measured protein levels was 0.16. The associations consisted of 10 cis

CpG sites and 16 trans CpG loci (Figure 3). The cg07839457 probe in

theNLRC5 locuswas associatedwith IL18BP andCSF1R levels, and the

smoking-associated probe cg05575921 in AHRR was associated with

GHR, PIGR, andWFDC2 levels.

We used linear mixed-effects models that accounted for related-

ness to perform sensitivity analyses for the 26CpGassociations identi-

fied in BayesR+ (Table S14).32 Effect sizes were highly correlated with

those fromBayesR+ and showed full directional concordance (r=0.95,

95% CI = 0.90, 0.98; Figure S5). Twenty-one associations were repli-

cated at a genome-wide significance threshold of P < 3.6 x 10−8,and

the remaining five associations were replicated at P < 2.0 × 10−3. Fur-

thermore, 7 of 26CpG associationswere previously reported in the lit-

erature and relative effect sizes correlated strongly with those in our

study (r= 0.98, 95% CI= 0.87, 1.0). The 19 novel CpG sites were asso-

ciated with levels of 14 unique proteins.

In BayesR+, estimates for the proportions of variability in

SOMAmer levels that could be accounted for by DNAm measured

on the EPIC BeadChip array ranged from 7.1% (EEA1; 95% CrI = 0%,

27.7%) to 33.8% (MAP kinase-activated protein kinase, MAPKAPK5;

95%CrI= 22.6%, 47.0%), with amedian estimate of 10.0% (Table S15).

Estimates for variance in SOMAmer levels accounted for by genetic

and methylation data together, while conditioned on each other,

ranged from 21.8% for ENTPD1 (95% CrI = 0.0%, 59.1%) to 93.3% for

GHR (95% CrI= 80.1%, 100%) (Table S16). The mean and median esti-

mates were 48.7% and 46.8%, respectively.

3.5 Co-localization of protein QTLs
with methylation QTLs

Fourteen proteins had both genome-wide significant pQTL and CpG

associations inour study. Therewere39possible SNP-CpGpairs across

these proteins. For each pair, we used linear regression to test if the

SNP was associated with CpG methylation at P < 5 × 10−8, thereby

representing an mQTL effect (Table S17). We also performed look-up

analyses ofmQTL databases includingGoDMCand phenoscanner.35,36

In instances where an mQTL effect was identified in more than one

database, coefficients from the studywith the largest sample sizewere

brought forward for co-localization analyses. In addition, in instances

where two or more mQTLs were associated with the same CpG site in

a given locus, only the most significant mQTL was brought forward for

co-localization analyses (n= 19mQTLs, 13 proteins; Table S18).

For six proteins, we observed strong evidence in coloc that a single

cis-acting variant might underpin differential DNAm levels and protein

abundances (PP >95%, Table S19). The six proteins were ANXA2, F7,

MATN3, PCSK7, PLA2G2A, and SERPINA3.MR analyses provided evi-

dence that relationships between methylation and protein levels were

bidirectional (Table S20).

3.6 MR analyses between plasma proteins and
AD risk

Bidirectional MR was applied to test for associations between the 41

SOMAmers with pQTL associations in BayesR+ and 20 AD-related

traits (Table S21). A Bonferroni-corrected threshold of P< 6.10× 10−5

(< 0.05/41 × 20) was set. Plasma levels of three proteins had a uni-

directional association with AD risk: TREM2 (Table 1, Wald ratio test,

beta = −0.13, SE = 0.05, P = 8.4 × 10−17), colony stimulating factor

3 (CSF3) (Wald ratio test, beta = 0.10, SE = 0.02, P = 5.9 × 10−6),

and TBCA (inverse variance-weightedmethod, beta= -0.50, SE= 0.12,

P = 1.2 × 10−5). Conversely, AD risk was not associated with plasma

levels of these proteins. Co-localization analyses suggested that one

variant was associated with TREM2 or TBCA levels and AD risk, and

two separate variants were associated with CSF3 levels and AD risk

(Table S22).

4 DISCUSSION

We identified seven novel protein QTLs and 19 novel CpG sites

that associated with plasma levels of 18 AD-related proteins. Using

BayesR+, we provided estimates for associations between common

genetic andDNAm variation and inter-individual differences in plasma

levels of 282AD-related proteins.We integrated our datawith publicly

available gene expression and methylation QTL databases and high-

lightedmolecularmechanisms thatmight link pQTLs to differential lev-

els of six proteins. We observed strong associations between plasma

levels of TREM2 or TBCA and AD risk. These associations were driven

by trans pQTLs inMS4A4A and APOE, respectively.

We show that a trans pQTL (rs1530914) in the MS4A4A locus

associates with higher plasma TREM2 levels. It is in strong LD (r2 ∼

0.9) with the variant rs1582763, which has been associated with

higher CSF TREM2 levels and lower AD risk.3,43 It is also in mod-

erate LD (r2 = 0.6) with a variant in the 3′UTR region of MS4A6A

(rs610932), which was associated with plasma TREM2 levels in a sam-

ple of 35,559 Icelanders.11 Polymorphisms in MS4A4A were shown

to alter MS4A4A expression and subsequently modulate TREM2 con-

centration in human macrophages.44 We supplement existing data

by identifying a novel blood CpG correlate of plasma TREM2 levels

(cg02521229) located near MS4A4A that previously associated with

dementia risk in Generation Scotland participants.45 Our data suggest

that riskmechanisms arising fromMS4A4Apolymorphisms andTREM2

levels can be captured in plasma assays and that these mechanisms

involve differential methylation in theMS4A4A locus.

We observed associations between plasma levels of three proteins

(CSF3,MAPKAPK5, andTBCA) and transpQTLs in theTOMM40-APOE-

APOC2 locus. Furthermore, we identified two pQTLs and three CpG
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TABLE 1 MRanalyses of plasma protein levels and AD-associated traits (Bonferroni-corrected P< 6.10× 10−5)

Protein Trait Method Beta SE P Reference

Protein levels affecting AD-associated traits

TBCA Log-transformed CSF Aβ42 IVW −0.09 0.01 2.5× 10−17 38

TREM2 AD risk Wald ratio −0.13 0.02 8.4× 10−17 3

TBCA CSF APOE Wald ratio 0.75 0.10 7.3× 10−14 39

TBCA CSF Aβ (Z-scores) IVW −0.45 0.06 2.1× 10−13 38

TBCA Log-transformed CSF Aβ42/Aβ40 IVW −0.08 0.01 6.9× 10−10 38

CSF3 AD risk Wald ratio 0.10 0.02 5.9× 10−6 3

TBCA AD risk IVW −0.50 0.12 1.2× 10−5 3

AD-associated traits affecting protein levels

TBCA Log-transformed CSF Aβ42 Wald ratio −11.14 0.53 4.4× 10−98 38

TBCA CSF Aβ (Z-scores) Wald ratio −2.13 0.10 5.7× 10−98 38

TBCA Log-transformed CSF Aβ42/Aβ40 Wald ratio −11.13 0.53 5.7× 10−98 38

TBCA CSF Aβ Wald ratio 12.21 0.63 3.7× 10−84 37

Abbreviations: CSF, cerebrospinal fluid; IVW, inverse variance-weightedmethod;MR, mendelian randomization; SE, standard error.

correlates of plasma MAPKAPK5 levels near the transmembrane pro-

tein 9 (TMEM97)locus. MAPKAPK5 correlated with cognitive decline

in the Twins UK cohort; however, its relationship with neuropathol-

ogy is unknown.22 TMEM97 acts a synaptic receptor for Aβ and medi-

ates its cellular update via APOE-dependent and APOE-independent

mechanisms.46 Given that TMEM97 polymorphisms may influence

MAPKAPK5 levels, our data prioritizeMAPKAPK5 for follow-up stud-

ies as a potential downstream effector or correlate of TMEM97 in Aβ
clearance. TBCA correlates with Aβ burden.16 TBCA levels are higher

in individuals with the protective APOE ε2/ε2 genotype and lower in

carriers of the risk ε4 polymorphism.47 These data are consistent with

our GWAS and MR analyses. Future studies should examine whether

TBCA dysregulation is a cause or consequence of disease risk mecha-

nisms in carriers of APOE ε4 polymorphisms.

Our study has a number of limitations. First, our review does not

reflect an exhaustive list of potential AD-associated traits. Further-

more, there is heterogeneity across studies in terms of diagnostic cri-

teria and phenotype definitions. Second, by focusing on the SOMAs-

can platform alone, we do not capture all blood protein correlates of

AD that are reported in the literature. Third, an insufficient number of

variantswere available to test for horizontal pleiotropy inMRanalyses.

Fourth, it is important to note that variants may alter SOMAmer reac-

tivity with protein targets, or reflect technical artifacts such as sam-

ple handling and cross-reactive events. Fifth, our sample consisted of

Scottish individuals with a relatively homogenous genetic background

thereby limiting generalizability of findings.

5 CONCLUSIONS

Our strategy of integrating multiple omics measures determined the

degree to which molecular factors can explain inter-individual differ-

ences in blood levels of possible biomarkers for AD, and advanced

understanding of mechanisms underlying AD risk.
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