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In complex autoimmune rheumatic diseases, 
high- throughput technologies simultaneously 
analysing dozens, hundreds or thousands of 
biological cues (genes, metabolites, serum 
proteins etc) have long been considered valu-
able in obtaining unique pathogenic insights 
while facilitating the discovery of therapeutic 
targets and biomarkers for diagnosis, moni-
toring and prognosis.1

In the current issue of Lupus Science and 
Medicine, Brunekreef et al2 used a custom 
chip- based microarray to probe serum 
samples for a total 57 known and new IgG 
autoantibodies and explore their diagnostic 
utility in SLE. By comparing the prevalence 
of each autoantibody in 483 patients with 
SLE and 1397 disease controls (including 
361 healthy individuals), they found that 
anti- double stranded(ds)DNA antibodies 
and antibodies against Cytosine- phosphate- 
Guanine (anti- CpG) DNA motifs could best 
discriminate SLE versus control groups with 
corresponding area under the receiver oper-
ating curve (AUC) values of 0.800 and 0.756, 
respectively.2 Notably, 15.1% of patients with 
SLE negative for anti- dsDNA tested posi-
tive for anti- CpG DNA antibodies, therefore 
suggesting added diagnostic value. Although 
the exact specificity of CpG- targeting anti-
bodies was not explored and some cross- 
reactivity with anti- dsDNA antibodies cannot 
be entirely excluded, the results are biologi-
cally plausible given the abundance of nucleic 
acids containing unmethylated or hypometh-
ylated CpG DNA in SLE.3–5

Pending further standardisation of the CpG 
DNA detection methods and validation of 
these findings, certain methodological aspects 
of this work merit discussion. First, patients 
were designated as SLE or other disease/
condition by the use of a text mining algorithm 
that searched for pre- specified disease- related 
or symptom- related keywords in retrospec-
tively collected electronic health records. 

Although, in general, such strategies are 
considered valid and advantageous for large 
datasets,6 algorithm- assigned diagnoses were 
not ascertained by the existing classification 
criteria or other means. This might account 
for the lower- than- expected frequency of anti- 
nuclear antibodies (19 out of 147 first samples 
tested negative) in patients with SLE and also 
the fact that about 30% of all patients received 
more than one diagnosis.

Second, the researchers assigned patients 
without SLE to multiple control groups 
including one with mild, non- specific symp-
toms resembling healthy controls, a second 
with lupus- like (or incomplete lupus) 
presentations (eg, arthritis, nephritis, seros-
itis) and a third with an autoimmune disease 
other than SLE.2 Notwithstanding this might 
reflect the ‘real- life’ situation where patients 
do not always fit into exact diagnostic enti-
ties, one should consider that autoimmune 
rheumatic diseases like SLE tend often to 
develop over time; therefore, some of the 
disease controls might represent early (or 
pre-) lupus forms.7 8 This is also supported 
by the between- group differences in the 
prevalence of autoantibodies reported by 
the authors.2

These complexities in the definition and 
phenotypic heterogeneity of autoimmune 
rheumatic disorders bring out the issue 
of how we can best use high- throughput 
studies and big data towards disease diag-
nosis/classification and risk stratifica-
tion. To date, the majority of studies have 
employed a conventional, ‘supervised’-type 
approach to analyse biological (input) data 
which are tagged with pre- specified (output) 
‘labels’ (diagnostic or endophenotypic 
groups). Although this method is straight-
forward and can yield accurate classification 
results, especially following implementation 
of sophisticated machine learning tools,9–11 
it is biased heavily on the accuracy of the 
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available diagnostic information (considered to be 
‘ground truth’) and pre- existing grouping of the dataset. 
In the situation we have no accurate prior knowledge on 
the diagnostic groups for the samples or the output is 
not really “yes or no” (eg, SLE or not) but rather behaves 
as a continuum of states (eg, ranging from healthy, pre- 
lupus, mild lupus, severe lupus), unsupervised clustering 
(or learning) might represent a more suitable solution.

Indeed, these computational methods require 
no preconceived assumptions, work with unlabeled 
outputs and infer the inherent structure present within 
a dataset.10 12 Accordingly, they are useful to recognise 
hidden patterns or combinations of biological data, 
therefore providing a natural clustering of the complex- 
structured samples. Interpretability of the resulting 
clusters and characterisation of their distinctive features 
in a compact form may require additional steps as part 
of a decision- making process;13 nonetheless, unsuper-
vised approaches move closer to the current concept of 
revisiting autoimmune rheumatic diseases based on the 
underlying molecular taxonomy.14

To this end, high- throughput studies such as this by 
Brunekreef et al2 represent notable contributions in 
the diagnostics of rheumatic diseases and the identifi-
cation of sub- phenotypes with possibly distinct under-
lying pathophysiology. With accruing experience in the 
analysis of big data, the community should gradually 
move forward to implementing less biased classification 
methods to ultimately ‘let the data speak for themselves’.
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