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Abstract: Discovery of novel antibacterial agents with new structures, which combat pathogens
is an urgent task. In this study, a new library of (+)-neoisopulegol-based O-benzyl derivatives of
aminodiols and aminotriols was designed and synthesized, and their antimicrobial activity against
different bacterial and fungal strains were evaluated. The results showed that this new series of
synthetic O-benzyl compounds exhibit potent antimicrobial activity. Di-O-benzyl derivatives showed
high activity against Gram-positive bacteria and fungi, but moderate activity against Gram-negative
bacteria. Therefore, these compounds may serve a good basis for antibacterial and antifungal drug
discovery. Structure–activity relationships were also studied from the aspects of stereochemistry of
the O-benzyl group on cyclohexane ring and the substituent effects on the ring system.

Keywords: (+)-neoisopulegol; O-Benzyl derivatives; imidazole; 1,2,4-triazole; aminodiol; aminotriol

1. Introduction

Heterocyclic compounds, occurring both naturally and produced synthetically, exhibit
various pharmacological and biological properties and, therefore, they are interesting
synthetic targets in the search of therapeutic agents [1,2]. O-Benzyl azole derivatives have
played crucial roles in the history of heterocyclic chemistry and have been used extensively
as important pharmacophores and synthons in the field of organic chemistry and drug
design [1]. Azoles such as imidazole [3] and triazole [4] are the most extensively studied
classes of antifungal agents due to their high therapeutic index, good bioavailability, and
favorable safety profile [5] while the O-benzyl substituent plays an important role in the
increased antimicrobial activity of these molecules [6] (Figure 1).

O-Benzyl-1,2,4-triazole derivatives were reported to exhibit various pharmacological
activities such as antimicrobial [7,8], analgesic [9], anti-inflammatory [10], anticancer [8],
antitubercular [11], anti-HIV [12], and antioxidant [13] properties. In addition, drugs with
chemotherapeutic effect such as Anastrozole [14] and Letrozole [15] (chemotherapeutic
anticancer drug), Ribavirin [16–19] (antiviral agent), Rizatriptan [20] (antimigraine agent),
Alprazolam [21] (anxiolytic agent), Fluconazole [22], and Itraconazole [23] (antifungal
agent) as well as Prothioconazole [21] (plant-pathogenic effect) are examples of potent
molecules possessing a triazole nucleus [24,25].
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O-Benzyl imidazole derivatives have evoked considerable attention in recent years be-
cause these are endowed with a wide range of pharmaceutical activities. These include anti-
fungal [26], antiparasitic [27], antigiardiasis [28], antitubercular [29], antihistaminic [30], an-
tineuropathic [31], antiobesity [32], antihypertensive [33], antioxidant [34], cardiotonic [35],
antithrombotic [36], anti-convulsant [37,38], antiviral [39], and anti-hepatitis B and C virus
activity [40] and they may also act as HIV-IPR [41] and IL-1 [42] inhibitors. In particular, a
large number of imidazole-based compounds have been widely used drugs such as anti-
cancer [43,44] (dacarbazine, zoledronicacid, azathioprine, and tipifarnib), antifungal [45,46]
(clotrimazole, miconazole, ketoconazole, and oxiconazole), antibacterial [47,48] (metron-
idazole, ornidazole, and secnidazole), antiprotozoal [49–54] (megazol, benznidazole, and
metronidazole), antihistaminic [55–57] (cimetidine, imetit, immepip, and thioperamide),
antineuropathic [31,58–64] (nafimidone, fipamezole, and dexmedetomidine), and antihy-
pertensive [65,66] (losartan, eprosartan, and olmesartan) agents to treat various types of
diseases with high therapeutic potency, which shows their huge development value [40].
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Figure 1. Azoles as potent antimicrobial agents.

The increasing number of multidrug-resistant pathogen infections has led to the dis-
covery of new antimicrobial drugs with activity against resistant clinical isolates [67]. In
our long-term program toward the synthesis of new antimicrobial agents, we demonstrated
that (−)-isopulegol-based O-benzyl aminotriol and aminodiol derivatives exert marked
antimicrobial effectiveness [68]. Therefore, the present study reports the synthesis of a
series of novel (+)-neoisopulegol-based O-benzyl derivatives of aminodiols and aminotriols
with nitrogen atoms usually incorporated in an imidazole or triazole ring system possess-
ing activity against various bacteria and yeast strains. According to their antimicrobial
activities, structure–activity relationships have also been discussed.
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2. Results
2.1. Synthesis of (+)-Neoisopulegol-Based O-Benzyl Derivatives

(+)-Neoisopulegol 2 was prepared from commercially available (−)-isopulegol 1 by
oxidizing its hydroxyl function followed by the stereoselective reduction of the result-
ing carbonyl group applying literature methods [69–72]. In order to produce O-benzyl
derivatives, benzyl-protected neoisopulegol 3 was prepared by reacting of 2 with BnBr in
the presence of a catalytic amount of KI [73,74]. Without the addition of KI, the reaction
proceeded very slowly whereas with the addition of 1 equiv. of KI, the reaction proceeded
rapidly due to the formation of more reactive BnI from BnBr [75]. Epoxidation of 3 with
m-CPBA buffered with Na2HPO4 provided a 1:2 mixture of epoxides 4a and 4b in good
yield good yields [76]. The two epoxides were separated by column chromatography
to give less polar isomer 4a and more polar isomer 4b. Aminolysis of epoxide 4a with
different amines in the presence of LiClO4 delivered O-benzyl derivatives 5a–6a [77,78].
The role of LiClO4 shows enhanced reactivity for the ring opening of epoxides through the
coordination of Li+ with epoxide oxygen, rendering the epoxide more susceptible to nucle-
ophilic attack by amines, therefore reducing the reaction times dramatically and improved
the yields [79,80]. Likewise, no products were observed during ring-opening of the oxirane
3a with azoles and LiClO4. This is probably the difference in reactivity between amines and
azoles. Fortunately, it was achieved by reacting 4a with azoles promoted by K2CO3 [81]. A
possible reaction pathway through potassium carbonate-mediated ring-opening reaction of
epoxide 4a and subsequent nucleophilic addition afforded O-benzyl derivatives 7a–8a [82].
Debenzylation of 5a by hydrogenolysis over Pd/C in MeOH resulted in primary aminodiol
9a in excellent yield. Since neither aminolysis of the served oxirane 4a in alkaline condition
nor the hydrogenolysis of N-benzyl analogue 5a had an effect on the absolute configuration,
the relative configuration of the chiral centers of 5a–9a is known to be the same as that of
epoxide 4a [83,84]. The other epoxide (4b) underwent similar reactions to afford 5b–9b in
valuable yields (Scheme 1).
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Scheme 1. Synthesis of (+)-neoisopulegol-based O-benzyl aminodiols. Reaction conditions: (i) NaH
(1 equ.), BnBr (1.5 equ.), KI (1 equ.), dry THF, 60 ◦C, 12 h, 63%; (ii) m-CPBA (2 equ.), Na2HPO4.
12H2O (3 equ.), CH2Cl2, 25 ◦C, 2 h, 23% (4a), 47% (4b); (iii) R1R2NH (2 equ.), LiClO4 (1 equ.), MeCN,
70–80 ◦C, 20 h, 25–78% (for 5a–b and 6a–b) or imidazole/1,2,4-triazol (3 equ.), K2CO3 (5 equ.), dry
DMF, 70–80 ◦C, 24 h, 42–67% (for 7a–b and 8a–b); (iv) 5% Pd/C, H2 (1 atm), MeOH, 25 ◦C, 24 h, 91%
(from 5a or 5b).
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To prepare a highly diverse library of O-benzyl aminotriols, 3 was oxidized to 10 using
SeO2/t-BuOOH (TBHP) as oxidant [85]. The epoxidation of 10 with m-CPBA delivered a
4:1 mixture of epoxides 11a and 11b. The separation of 11a and 11b was not satisfactory
on a gram scale; therefore, the mixture was treated with different nucleophiles resulting
in a library of O-benzyl derivatives 12–15. In our delight, amine-substituted O-benzyl
derivatives could easily be separated while in the case of azoles, only the major products
were isolated. The debenzylation of 12a by hydrogenolysis over Pd/C gave primary
aminotriol 16a with good yield (Scheme 2).
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Scheme 2. Synthesis of (+)-neoisopulegol-based O-benzyl aminotriols. Reaction conditions: (i) SeO2

(0.24 equ.), 70% t-BuOOH (4 equ.), CHCl3, 25 ◦C, 20 h, then NaBH4 (3 equ.), dry MeOH, 0 ◦C, 2 h, 27%;
(ii) m-CPBA (2 equ.), Na2HPO4. 12H2O (3 equ.), CH2Cl2, 25 ◦C, 2 h, 60% (11a + 11b); (iii) R1R2NH (2
equ.), LiClO4 (1 equ.), MeCN, 70–80 ◦C, 8 h, 7–54% (for 12a–b and 13a–b) or imidazole/1,2,4-triazol
(3 equ.), K2CO3 (5 equ.), dry DMF, 70–80 ◦C, 12 h, 14a: 58%, 15a: 46%; (iv) 5% Pd/C, H2 (1 atm),
MeOH, 25 ◦C, 24 h, 78% (from 12a).

During our attempt to improve the separation of epoxides 11a–b, we realized that
O-benzylation of 10 could serve this purpose. The synthesis of 18a starting from 10 with
NaH/BnBr/KI system, however, provided low-yield transformation (20%). Fortunately, it
was achieved starting from 17, made by the oxidation of 2 [69–72]. Diol 17 was reacted with
benzyl bromide under reflux condition in dry THF to give 18a, whereas 18b was prepared
at room temperature. Epoxidation of 18a with m-CPBA produced a 1:1 mixture of epoxides
19a and 19b. After purification, ring opening of oxiranes 19a–b was accomplished with
different nucleophiles resulting in a library of di-O-benzyl derivatives 20a–24a and 20b–
24b, respectively. The debenzylation of 20a and 20b by hydrogenolysis over Pd/C gave,
respectively, primary aminotriols 16a and 16b in exceptionally high yields (Scheme 3).
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Scheme 3. Synthesis of (+)-neoisopulegol-based di-O-benzyl aminotriols. Reaction conditions: (i)
NaH (1 equ.), BnBr (1.5 equ.), KI (1 equ.), dry THF, 60 ◦C, 24 h, 56%; (ii) m-CPBA (2 equ.), Na2HPO4.
12H2O (3 equ.), CH2Cl2, 25 ◦C, 2 h, 36% (19a), 36% (19b); (iii) R1R2NH (2 equ.), LiClO4 (1 equ.),
MeCN, 70–80 ◦C, 6 h, 53–84% (for 20a–b and 21a–b) or imidazole/1,2,4-triazol (3 equ.), K2CO3 (5
equ.), dry DMF, 70–80 ◦C, 48 h, 42–67% (for 22a–b and 23a–b); (iv) 5% Pd/C, H2 (1 atm), MeOH,
25 ◦C, 24 h, 94% (from 20a or 20b).

The epoxidation of 18b with m-CPBA gave a 3:1 mixture of epoxides 24a and 24b. After
separation by column chromatography, they were subjected to aminolysis with different
nucleophiles to form a library of O-benzyl derivatives 25a–28a and 25b–28b, respectively.
Primary aminotriols 16a and 16b were prepared via the usual way by hydrogenolysis of
aminodiols 25a and 25b over Pd/C (Scheme 4).
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Scheme 4. Synthesis of (+)-neoisopulegol-based O-benzyl aminotriols. Reaction conditions: (i) NaH
(1 equ.), BnBr (1.5 equ.), KI (1 equ.), dry THF, 24 ◦C, 24 h, 59%; (ii) m-CPBA (2 equ.), Na2HPO4.
12H2O (3 equ.), CH2Cl2, 25 ◦C, 2 h, 42% (25a), 15% (25b); (iii) R1R2NH (2 equ.), LiClO4 (1 equ.),
MeCN, 70–80 ◦C, 8 h, 71–88% (for 25a–b and 26a–b) or imidazole/1,2,4-triazol (3 equ.), K2CO3 (5
equ.), dry DMF, 70–80 ◦C, 12 h, 67–83% (for 27a–b and 28a–b); (iv) 5% Pd/C, H2 (1 atm), MeOH,
25 ◦C, 24 h, 91% (from 25a or 25b).



Int. J. Mol. Sci. 2021, 22, 5626 6 of 31

2.2. Synthesis of (−)-Isopulegol-Based O-Benzyl Derivatives

Our previous work demonstrated that the O-benzyloxy group on the cyclohexyl ring
is much more effective to induce antimicrobial activity. Therefore, to explore the role of
the configuration of the O-benzyloxy group, some (−)-isopulegol-based O-benzyl deriva-
tives were also prepared under optimized condition and using literature information [68]
(Scheme 5).
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dation according to our previous work [68], (ii) R1R2NH (2 equ.), LiClO4 (1 equ.), MeCN, 70–80 ◦C,
6–20 h, 47% (30b), 76% (34a), 67–80% (38a–b), 76–88% (41a–b) or imidazole/1,2,4-triazol (3 equ.),
K2CO3 (5 equ.), dry DMF, 70–80 ◦C, 12–96 h, 38–83% (for 31a–b and 32a–b), 50–67% (for 35a–b and
36a–b), 67–83% (for 39a–b and 40a–b), 58–67% (for 41a–b and 42a–b).

2.3. Determine Relative Configuration of (+)-Neoisopulegol-Based O-Benzyl Derivatives

Epoxidation of 2 with t-BuOOH in the presence of vanadyl acetylacetonate (VO(acac)2)
as catalyst furnished epoxide 44 in a stereoselective reaction [72]. Debenzylation of 4b
provided 44 in a moderate yield whereas exposure of 44 to NaOH furnished 45 with the
retention of stereochemistry [86]. The absolute configuration of O-benzyl derivatives 19a
and 25a was determined by debenzylation together with reduction via hydrogenolysis
over Pd/C [87,88] to provide triol 45 with stereochemical retention [68]. The stereochem-
ical structure of epoxide 44 is well-known in the literature [72]; therefore, the absolute
configuration of O-benzyl derivatives could also be determined (Scheme 6).
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73% (25a).
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2.4. Antimicrobial Effects

Since several O-benzyl derivatives exerted antimicrobial activities on various mi-
croorganisms [68], antimicrobial activities of the prepared O-benzyl analogues were also
explored against two yeasts as well as two Gram-positive and two Gram-negative bacteria
(Table 1, only the best results are shown). Furthermore, the minimal inhibitory concen-
trations (MIC) of the compounds showed significantly high level (>80%) antimicrobial
activity and their MIC values were determined against the test microorganism, where the
high inhibition activity was detected (Table 1, in brackets).

Table 1. Most relevant antimicrobial activity of O-benzyl derivatives expressed as inhibitory effect (%) and MIC values (in
brackets).

Inhibitory Effect (%) ± RSD (%)

Gram Positive Gram Negative Yeast

Analogue Conc. (µg/mL) B. subtilis
SZMC0209

S. aureus
SZMC14611

E. coli
SZMC6271

P. aeruginosa
SZMC23290

C. albicans
SZMC1533

C. krusei
SZMC1352

Nystatin
100 - - - - 93.38 ± 2.13

(100 µg/mL)
92.01 ± 3.64
(100 µg/mL)

10 - - - - 92.88 ± 10.18 58.00 ± 9.21

Ampicillin
100 95.22 ± 8.40

(<0.78 µg/mL)
81.88 ± 8.99

(<0.78 µg/mL)
94.07 ± 3.61
(100 µg/mL) 29.03 ± 2.06 - -

10 93.00 ± 3.20 70.37 ± 6.15 89.37 ± 0.39 - - -

3
100 97.60 ± 6.42

(100 µg/mL) 57.57 ± 9.93 - 49.10 ± 7.52 - -

10 59.58 ± 8.06 - - - - -

5a
100 92.82 ± 4.69

(25 µg/mL)
80.07 ± 2.21
(50 µg/mL) - 54.06 ± 9.08 91.56 ± 1.27

(>100 µg/mL)
94.88 ± 2.18
(100 µg/mL)

10 48.25 ± 6.16 - - - - -

5b
100 86.35 ± 1.88

(50 µg/mL) 71.48 ± 1.28 - 46.66 ± 1.37 92.88 ± 2.63
(>100 µg/mL) 93.62 ± 0.80

10 23.23 ± 3.15 - - - - -

7a
100 81.51 ± 4.73

(50 µg/mL) 70.66 ± 0.91 - - 87.90 ± 10.46
(>100 µg/mL) -

10 - - - - - -

7b
100 95.34 ± 4.81

(50 µg/mL)
92.34 ± 1.32
(100 µg/mL) - 41.59 ± 3.53 - -

10 50.00 ± 7.21 - - - - -

10
100 95.16 ± 2.81

(100 µg/mL)
90.71 ± 3.27
(100 µg/mL) - 50.87 ± 9.72 95.91 ± 16.31

(>100 µg/mL) -

10 55.43 ± 15.48 - - 44.05 ± 7.57 - -

12a
100 95.16 ± 6.46

(100 µg/mL) - - 70.85 ± 6.49 95.83 ± 11.18
(>100 µg/mL) -

10 73.41 ± 5.45 - - 47.81 ± 7.92 - -

12b
100 91.84 ± 6.01

(100 µg/mL)
83.11 ± 2.61
(100 µg/mL) 50.07 ± 10.97 75.84 ± 7.14 94.50 ± 0.97

(>100 µg/mL) 67.59 ± 16.45

10 32.17 ± 11.19 - - 58.24 ± 4.20 - -

14a
100 92.67 ± 3.90

(100 µg/mL)
82.35 ± 3.19
(100 µg/mL) - 52.97 ± 7.47 - -

10 - - - 44.00 ± 1.32 - -

20a
100 84.57 ± 3.18

(6.25 µg/mL) 70.13 ± 0.90 - - 91.35 ± 1.07
(>100 µg/mL) -

10 89.70 ± 1.32 65.81 ± 0.51 - - - -

20b
100 78.34 ± 2.51 69.49 ± 0.57 - - 90.74 ± 2.90

(>100 µg/mL) 79.88 ± 3.39

10 78.43 ± 5.39 61.84 ± 0.27 - - 80.54 ± 17.23 -
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Table 1. Cont.

Inhibitory Effect (%) ± RSD (%)

Gram Positive Gram Negative Yeast

Analogue Conc. (µg/mL) B. subtilis
SZMC0209

S. aureus
SZMC14611

E. coli
SZMC6271

P. aeruginosa
SZMC23290

C. albicans
SZMC1533

C. krusei
SZMC1352

22a
100 83.44 ± 20.97 76.39 ± 1.13 - - - -

10 81.63 ± 1.22
(25 µg/mL) 70.02 ± 1.01 - - - -

22b
100 78.43 ± 10.14

(<0.78 µg/mL) 60.32 ± 1.11 - - 81.97 ± 4.00
(>100 µg/mL) -

10 81.01 ± 1.08 62.77 ± 0.27 - - 61.02 ± 6.51 -

23a
100 73.83 ± 4.14

(<0.78 µg/mL) 73.99 ± 5.15 - 47.92 ± 1.67 - -

10 83.29 ± 5.94 - - 47.78 ± 3.40 - -

23b
100 75.64 ± 0.21 71.95 ± 4.38 - 46.03 ± 2.10 - -

10 77.54 ± 5.94 - - 42.22 ± 1.49 - -

25a
100 78.96 ± 0.88 - - - - -

10 - - - - - -

27a
100 71.13 ± 4.78 - - 43.48 ± 3.42 - -

10 - - - 38.95 ± 9.32 - -

27b
100 - - - 34.19 ± 6.00 80.58 ± 12.34

(>100 µg/mL) -

10 - - - 33.16 ± 8.01 - -

31a
100 95.13 ± 9.21

(100 µg/mL)
82.58 ± 10.08
(>100 µg/mL) - 48.38 ± 1.94 - -

10 12.76 ± 9.95 - - 32.10 ± 3.98 - -

31b
100 93.89 ± 5.51

(21 µg/mL)
86.85 ± 4.00
(50 µg/mL) - 53.31 ± 4.84 95.21 ± 3.59

(100 µg/mL) -

10 47.83 ± 9.92 - - 47.81 ± 6.60 - -

39a
100 79.38 ± 4.19

(3.13 µg/mL) 63.47 ± 4.90 - - 88.22 ± 3.96
(>100 µg/mL) -

10 82.73 ± 0.52 69.84 ± 0.00 - - - -

39b
100 87.80 ± 7.04

(1.56 µg/mL)
79.66 ± 2.59

(3.13 µg/mL) - 48.09 ± 1.38 90.89 ± 13.31
(>100 µg/mL)

91.08 ± 4.90
(>100 µg/mL)

10 92.94 ± 1.46 83.69 ± 38.18 - 33.59 ± 6.43 85.10 ± 9.56 -

40a
100 72.88 ± 1.68 68.26 ± 1.66 - 37.66 ± 2.39 - -

10 55.43 ± 5.07 - - 38.89 ± 1.13 - -

40b
100 71.39 ± 3.84 69.37 ± 1.44 - 42.13 ± 2.25 - -

10 65.82 ± 4.56 - - 39.58 ± 0.73 - -

42a
100 69.05 ± 10.02 - - - - -

10 51.75 ± 11.13 - - - - -

42b
100 86.62 ± 8.48

(>100 µg/mL) 66.22 ± 4.03 - - - -

10 43.95 ± 5.65 - - - - -

43b
100 - - - - 80.90 ± 4.76

(>100 µg/mL) -

10 - - - - - -
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3. Discussion
3.1. Antimicrobial Activity

The MIC values of significant O-benzyl derivatives (I% > 80%) obtained against the
tested microorganisms are presented in Table 1. The strongest antifungal activity was
shown by compound 22b, 23a (di O-benzyl aminotriols) at a concentration of 0.78 µg/mL,
they were as same as the reference drug ampicillin (0.78 µg/mL). Another di O-benzyl
aminotriols 20a and 39a–b were effective against B. subtilis below than 10 µg/mL of
MIC values. Moreover, O-benzyl aminotriols 5a–b, 7a–b, 31b together with imidazole-
substituted di O-benzyl aminotriol 22a showed lower activity against B. subtilis with MIC
values in the range between 20 and 50 µg/mL. The weak effect on B. subtilis was observed
for compounds 3, 10, 12a–b, 14a, 31a, 42a (MIC ≥ 100 µg/mL).

Growth inhibition of S. aureus was observed at the concentration of 50 µg/mL of O-
benzyl aminodiols 5a and 31a. Imidazole-substituted di O-benzyl aminotriol 39b exhibited
relatively high antibacterial potency against S. aureus at the MIC values of 3.13 µg/mL,
whereas derivatives 7b, 10, 12b, and 14a was less active against S. aureus and inhibited
bacterial growth at the concentration of 100 µg/mL. The MICs of standard drug ampicillin
for the S. aureus were 0.78 µg/mL.

On the other hand, regarding MIC for pathogenic fungi, O-benzyl derivatives showed
poor activity against all the tested fungal strains, which obtained by the MIC values against
C. albicans and C. krusei (>100 µg/mL).

As shown in Table 1, N-benzyl and imidazole-substituted O-benzyl derivatives
showed significant inhibitory activity against Gram-positive bacteria B. subtilis and S.
aureus. Di-O-benzyl-substituted derivatives (20, 22–23, 39–40) exerted bactericidal activi-
ties against the bacterial species of B. subtilis and S. aureus at low concentrations (10 µM).
Only 12a–b showed significant effect against Gram-negative bacterium P. aeruginosa as well
as a moderate effect against E. coli (12b). Other derivatives possessed moderate antibacte-
rial activity against P. aeruginosa. Three di-O-benzyl derivatives (20b, 22b, 39b) were highly
effective against both C. albicans and C. krusei. Furthermore, O-benzyl derivatives 27b
and 43b were found to exhibit marked growth inhibition against C. albicans. N-Dibenzyl-
substituted O-benzyl derivatives were found to be weakly active or inactive against all
tested strains.

The obtained results showed that all synthetic derivatives proved to be more active
against Gram-positive than against Gram-negative bacteria. O-benzyl derivatives that
contain N-benzyl and imidazole substitution were the most active compounds against
Gram-positive bacteria and had moderate antimicrobial effect against the P. aeruginosa
(Gram-negative) strain. The mechanism of bactericidal action of heterocycles containing
the imidazole ring is thought to be due to disruption of intermolecular interactions in the
cell membrane. This can cause dissociation of cellular membrane lipid bilayers, which
compromises cellular permeability controls and induces leakage of cellular contents [89].

Regarding the yeasts, N-benzyl- and imidazole-substituted O-benzyl derivatives were
also found to be the most active compounds against C. albicans. The imidazole derivatives
can inhibit the transformation of blastospores of C. albicans into the invasive mycelial
form [90]. In addition, the preliminary in vitro antifungal screening indicated that S-
isomers showed better potency compared to R-isomers against C. albicans. Since the widely
accepted primary effect of imidazoles is the inhibition of cytochrome P450-mediated 14a-
sterol demethylase of the ergosterol precursor lanosterol from C. albians [91]. This enzyme
with strict substrate requirements interacted differentially with the stereoisomers of O-
benzyl derivatives, therefore the affinity of O-benzyl derivatives for cytochrome P-450
enzymes involved in steroid synthesis is highly dependent on the stereochemistry of the
entire molecule.

The results obtained showed that the tested O-benzyl derivatives that contain N-
dibenzyl substituents have no antibacterial or antifungal activity against any of the tested
pathogenic species of bacteria and fungi. The steric hindrance of the substituents, which
prevents the destruction of normal permeability, might be the reason for the low antimi-



Int. J. Mol. Sci. 2021, 22, 5626 10 of 31

crobial and antifungal activity of the N-dibenzyl-substituted derivatives. Therefore, the
inactivity of N-dibenzyl derivatives observed in the present study can be due to the mode
of substitution.

3.2. Structure-Activity Relationship

(i) N,O-dibenzyl aminodiols (5a–b) exhibited significant inhibitory activity against
both Gram-positive bacteria (B. subtilis and S. aureus) and Gram-positive bacteria (P. aerug-
inosa ) as well as yeast (C. albicans and C. krusei). Replacing N-benzyl substitution by
imidazole (7a–b) led to the loss of activity against C. krusei.

(ii) When the -CH3 group of isopropyl part was changed to -CH2OH, disappearance on
inhibitory activity against S. aureus and C. krusei was observed on N,O-dibenzyl aminodiol
containing R-isomer (12a) whereas the other stereoisomer (12b) exhibited an additive effect
on E. coli. In the case of imidazole O-benzyl aminotriols, this route reduced activity on C.
albicans with R-isomer (14a) and totally lost on antifungal effectiveness on the other isomer
(14b).

(iii) Benzylation of -CH2OH provided di O-benzyl aminotriols. Our tests revealed
that the lack of antifungal activity and high potency against positive-Gram bacteria in both
N-benzyl (20a–b) and imidazole (24a–b) aminotriols were produced at a low concentration
(10 µM). This modification probably improves the lipophilic properties that enhanced
interactions in the cell membrane. In addition, the synthesized triazole analogues (23a–b)
also exhibit marked growth inhibition against Gram-positive bacteria (B. subtilis and S.
aureus) and Gram-positive bacteria (P. aeruginosa).

(iv) The almost complete loss of antimicrobial activity resulting from the debenzylation
on the cyclohexane ring demonstrated with aminotriol derivatives (25a–b) suggests that the
benzyl moiety on cyclohexyl ring is a key element to have satisfactory antimicrobial activity
in the case of N,O-dibenzyl aminotriol whereas they exert markedly selective antibacterial
action on P. aeruginosa in the case of imidazole O-benzyl aminotriol.

(v) In the stereochemistry study of the OH group on the cyclohexyl ring, aminodiol
with S-configuration (27a–b) displayed a potential negative-Gram bacterial effect (P. aerugi-
nosa) while derivatives with R-configuration (42a–b) had significant positive-Gram bacterial
effect (B. subtilis) whereas the stereochemistry of the O-benzyl substituent on the cyclohex-
ane ring in the aminodiol and aminotriol function has no influence on the antimicrobial
effect.

(vi) The available data demonstrated that most of the N-benzyl and imidazole-
substituted O-benzyl derivatives exhibited more antimicrobial potency than triazole or
N,N-dibenzyl O-benzyl ones.

(vii) Further, this result indicates that S-isomer showed better potency compared to
R-isomer against fungi.

4. Materials and Methods
4.1. General Methods

Commercially available compounds were used as obtained from suppliers (Molar
Chemicals Ltd., Halásztelek, Hungary; Merck Ltd., Budapest, Hungary and VWR In-
ternational Ltd., Debrecen, Hungary), while solvents were dried according to standard
procedures. Optical rotations were measured in MeOH at 20 ◦C, with a Perkin-Elmer
341 polarimeter (PerkinElmer Inc., Shelton, CT, USA). Chromatographic separations and
monitoring of reactions were carried out on Merck Kieselgel 60 (Merck Ltd., Budapest,
Hungary). Elemental analyses for all prepared compounds were performed on a Perkin-
Elmer 2400 Elemental Analyzer (PerkinElmer Inc., Waltham, MA, USA). GC measurements
for direct separation of commercially available enantiomers of isopulegol to determine the
enantiomeric purity of starting material 1 were performed on a Chirasil-DEX CB column
(2500 × 0.25 mm I.D.) on a Perkin-Elmer Autosystem XL GC equipped with a Flame
Ionization Detector (Perkin-Elmer Corporation, Norwalk, CT, USA) and a Turbochrom
Workstation data system (Perkin-Elmer Corp., Norwalk, CT, USA). Melting points were
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determined on a Kofler apparatus (Nagema, Dresden, Germany) and are uncorrected. 1H-
and 13C-NMR spectra were recorded on Brucker Avance DRX 500 spectrometer (Bruker
Biospin, Karlsruhe, Baden Württemberg, Germany) [500 MHz (1H) and 125 MHz (13C),
δ = 0 (TMS)]. Chemical shifts are expressed in ppm (δ) relative to TMS as the internal
reference. J values are given by Hz.

(−)-Isopulegol (1) is commercially available from Merck Co with ee = 95%, ([α]20
D = −22.0,

neat) and its enatimomer (+)-1 (ee = 90%, [[α]20
D = +22.0, neat). (+)-Neoisopulegol (2) ([α]20

D = +28.7,
c = 17.2, CHCl3) and its enatimomer (−)-2 ([α]20

D = −22.2, c = 2.0, CHCl3) were synthesized from
(−)-1 and its isomer (+)-1 following a reported procedure, respectively [71]. Diol 17, epoxide
44 [72] as well as compounds 29, 33, and 37a–b [68] were prepared according to literature
procedures. All spectroscopic data were similar to those described therein. Since any of the
applied transformations do not reach all the four chiral centers at the same time, giving rise
to racemization, rather only the formation of the prescribed and isolated diastereoisomers,
we believe that the enantiomer purity of the prepared compounds can be defined as ee ≥
95% (commercial (−)-isopulegol). 1H, 13C, HSQC, HMBC and NOESY NMR spectra of new
compounds and GC chromatograms of isopulegol enantiomers are available in Supplementary
Materials.

4.2. Experimental Section and Compound Characterisations
4.2.1. (S)-2-((1R,2R,4R)-2-Hydroxy-4-methylcyclohexyl)propane-1,2-diol (45)

Compound 44 (0.60 mmol) was treated with DMSO (3.0 mL) and 3 M NaOH (3.0 mL).
The resulting homogenous solution was stirred at 80 ◦C for 2 h. After being cooled to
room temperature, EtOAc (20 mL) was added, and the aqueous layer was washed with
EtOAc (3 × 20 mL). The combined organic layers were dried over Na2SO4, filtered, and
concentrated in vacuo. The crude material was purified by column chromatography on
silica gel (n-hexane:EtOAc = 1:4) to provide compound 45.

Yield: 76%, colorless oil. [α]20
D = +14.0 (c 0.22, MeOH). 1H NMR (500 MHz, CDCl3):

δ = 0.88 (3H, d, J = 6.2 Hz), 0.91–0.97 (1H, m), 1.10–1.16 (1H, m), 1.25 (3H, s), 1.35–1.39
(1H, m), 1.49–1.53 (1H, m), 1.62–1.70 (1H, m), 1.76–1.85 (3H, m), 3.23 (2H, brs), 3.29 (1H, d,
J = 11.1 Hz), 3.63 (1H, d, J = 11.1 Hz), 4.38 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 21.4,
22.3, 25.0, 25.9, 35.2, 42.8, 48.9, 67.0, 67.3, 74.4. Found: C, 63.83; H, 10.69. Anal. Calcd for
C10H20O3: C, 63.80; H, 10.71.

4.2.2. 2-((1S,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)prop-2-en-1-ol (10)

To a solution of t-BuOOH (70% purity in H2O, 32.80 mmol) in CH2Cl2 (50 mL), dried
briefly (Na2SO4), was added finely powdered SeO2 (1.96 mmol) followed by 30 minutes
by the addition of 3 (8.20 mmol). After stirring for 20 h at 25 ◦C, saturated NaHCO3
solution (50 mL) was added, then CH2Cl2 phases were separated and the aqueous phase
was extracted with CH2Cl2 (3 × 50 mL). The organic layer was dried (Na2SO4) and
concentrated in vacuo to afford colorless oil, which was added at 0 ◦C to a suspension of
NaBH4 (24.60 mmol) in dry MeOH (50 mL). The reaction mixture was stirred for 2 h at
0 ◦C while the reaction progress was monitored by TLC. When the reaction was complete,
the mixture was poured into brine (100 mL) and the product was extracted with CH2Cl2
(3 × 100 mL). The combined extracts were washed with water and dried over anhydrous
Na2SO4. The solvent was evaporated in vacuo. The crude product was purified by column
chromatography on silica gel using n-hexane:EtOAc = 4:1.

Yield: 27%, colorless oil. [α]20
D = +29.0 (c 0.27, MeOH). 1H NMR (500 MHz, CDCl3):

δ = 0.89 (3H, d, J = 6.4 Hz), 0.94–1.07 (2H, m), 1.50–1.55 (1H, m), 1.76–1.80 (2H, m), 1.87–1.95
(1H, m), 2.07–2.11 (1H, m), 2.24 (1H, d, J = 13.0 Hz), 2.67 (1H, t, J = 5.4 Hz), 3.71 (1H,
d, J = 2.4 Hz), 3.94 (1H, dd, J = 12.7, 5.8 Hz), 4.06 (1H, dd, J = 12.7, 4.1 Hz), 4.34 (1H, d,
J = 11.6 Hz), 4.60 (1H, d, J = 11.7 Hz), 4.96 (1H, s), 5.07 (1H, d, J = 1.0 Hz), 7.25–7.32 (5H, m).
13C NMR (125 MHz, CDCl3): δ = 22.5, 25.0, 26.0, 35.0, 37.5, 46.6, 65.2, 70.6, 77.3, 113.2, 127.7,
127.9, 128.4, 138.4, 151.0. Found: C, 78.40; H, 9.33. Anal. Calcd for C17H24O2: C, 78.42; H,
9.29.
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4.2.3. General Procedure for Benzylation

A suspension of NaH (60% purity, 6.6 mmol) in dry THF (10 mL) was added to a
solution of alcohol (6.6 mmol) in dry THF (20 mL). The reaction mixture was stirred at 25 ◦C
for 30 min before benzyl bromide (9.9–19.8 mmol) and KI (6.6 mmol) were added to the
mixture. Stirring was continued for 12–24 h at 25–60 ◦C. When the reaction was complete,
the mixture was poured into saturated NH4Cl solution (30 mL) and extracted with EtOAc
(3 × 50 mL). The combined organic phase was dried over anhydrous Na2SO4. The solvent
was evaporated in vacuo and the crude product was purified by column chromatography
on silica gel to provide 3 or 18a–b, respectively.

((((1S,2S,5R)-5-Methyl-2-(prop-1-en-2-yl)cyclohexyl)oxy)methyl)benzene (3)

Prepared with 2 and benzyl bromide (9.9 mmol) at reflux for 12 h and eluted by
n-hexane:EtOAc = 19:1. Yield: 63%, colorless oil. [α]20

D = +24.0 (c 0.28, MeOH). 1H NMR
(500 MHz, CDCl3): δ = 0.87 (3H, d, J = 6.4 Hz), 0.86–0.89 (2H, m), 0.92–1.00 (2H, m), 1.25–
1.31 (2H, m), 1.51–1.54 (1H, m), 1.73 (3H, s), 1.74–1.80 (2H, m), 1.85–1.95 (2H, m), 2.01–2.06
(1H, m), 3.75 (1H, d, J = 1.6 Hz), 4.38 (1H, d, J = 12.1 Hz), 4.56 (1H, d, J = 12.1 Hz), 4.77 (1H,
d, J = 0.5 Hz), 4.80 (1H, s), 7.21–7.32 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 22.4, 22.5,
22.8, 25.2, 26.3, 35.2, 38.6, 48.6, 70.8, 76.1, 110.5, 127.2, 127.5, 128.2, 139.8, 148.0. Found: C,
83.50; H, 9.93. Anal. Calcd for C17H24O: C, 83.55; H, 9.90.

(((2-((1S,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)allyl)oxy)methyl)benzene (18a)

Prepared with 17 and benzyl bromide (19.8 mmol) at reflux for 24 h and eluted by
n-hexane:EtOAc = 19:1. Yield: 56%, colorless oil. [α]20

D = +20.0 (c 0.25, MeOH). 1H NMR
(500 MHz, CDCl3): δ = 0.88 (3H, d, J = 6.4 Hz), 0.94–1.01 (2H, m), 1.20–1.30 (3H, m), 1.52–
1.57 (5H, m), 1.75–1.78 (2H, m), 1.83–1.91 (1H, m), 2.02–2.05 (1H, m), 2.13–2.17 (1H, m), 3.71
(1H, s), 3.89 (1H, d, J = 12.5 Hz), 3.99 (1H, d, J = 12.5 Hz), 4.31 (1H, d, J = 12.0 Hz), 4.38 (1H,
d, J = 11.9 Hz), 4.46 (1H, d, J = 12.0 Hz), 4.54 (1H, d, J = 12.0 Hz), 5.06 (1H, s), 5.14 (1H, s),
7.23–7.36 (10H, m). 13C NMR (125 MHz, CDCl3): δ = 22.5, 25.2, 26.3, 35.2, 38.2, 44.5, 70.6,
72.0, 73.2, 112.9, 127.3, 127.5, 127.6, 127.8, 128.3, 128.5, 147.8. Found: C, 82.27; H, 8.67. Anal.
Calcd for C24H30O2: C, 82.24; H, 8.63.

(1S,2S,5R)-2-(3-(Benzyloxy)prop-1-en-2-yl)-5-methylcyclohexanol (18b)

Prepared with 17 and benzyl bromide (9.9 mmol) at 25 ◦C for 12 h and eluted by
n-hexane:EtOAc = 9:1. Yield: 59%, colorless oil. [α]20

D = +33.0 (c 0.28, MeOH). 1H NMR
(500 MHz, CDCl3): δ = 0.88 (3H, d, J = 6.5 Hz), 0.91–1.01 (1H, m), 1.13 (1H, t, J = 12.9 Hz),
1.41–1.47 (1H, m), 1.62 (1H, s), 1.74–1.83 (3H, m), 1.90–1.95 (1H, m), 2.21 (1H, d, J = 12.7 Hz),
2.26 (1H, s), 3.91 (1H, d, J = 11.8 Hz), 3.96 (1H, s), 4.07 (1H, d, J = 11.7 Hz), 4.48 (1H, d,
J = 11.9 Hz), 4.54 (1H, d, J = 11.8 Hz), 5.06 (1H, s), 5.21 (1H, s), 7.25–7.36 (5H, m). 13C NMR
(125 MHz, CDCl3): δ = 22.4, 24.1, 25.8, 35.0, 41.3, 45.9, 67.7, 72.5, 72.7, 115.2, 127.9, 128.6,
138.0, 143.4, 147.8. Found: C, 78.45; H, 9.27. Anal. Calcd for C17H24O2: C, 78.42; H, 9.29.

4.2.4. General Procedure of Epoxidation

To the solution of allylic alcohol derivatives (11.9 mmol) in CH2Cl2 (50 mL), Na2HPO4·12H2O
(35.7 mmol) in water (130 mL) and m-CPBA (70% purity, 23.8 mmol) were added at 0 ◦C, then
the mixture was stirred at room temperature. When the reaction was complete (2 h), the mixture
was separated, and the aqueous phase was extracted with CH2Cl2 (100 mL). The organic layer
was washed with 5% KOH solution (3 × 50 mL), dried (Na2SO4) and concentrated in vacuo.
The residue was purified by column chromatography on silica gel with an appropriate solvent
mixture to afford epoxides.

(R)-2-((1R,2S,4R)-2-(benzyloxy)-4-methylcyclohexyl)-2-methyloxirane (4a)

Prepared with 3 eluted by n-hexane:EtOAc = 9:1. Yield: 23%, colorless oil. [α]20
D = +32.0

(c 0.285, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87 (3H, d, J = 6.5 Hz), 0.85–0.95 (2H, m),
1.28 (3H, s), 1.44–1.56 (3H, m), 1.71–1.76 (2H, m), 2.06–2.11 (1H, m), 2.51 (1H, d, J = 4.9 Hz),
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2.73 (1H, d, J = 4.9 Hz), 3.87 (1H, d, J = 2.1 Hz), 4.39 (1H, d, J = 11.8 Hz), 4.62 (1H, d,
J = 11.8 Hz), 7.25–7.33 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 20.8, 22.1, 22.4, 26.4, 34.6,
37.7, 47.2, 53.6, 58.5, 70.3, 74.9, 127.4, 127.5, 128.4, 139.4. Found: C, 78.47; H 9.33. Anal.
Calcd for C17H24O2: C, 78.42; H, 9.29.

(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-2-methyloxirane (4b)

Prepared with 3 eluted by n-hexane:EtOAc = 9:1. Yield: 47%, colorless oil. [α]20
D = +88.7

(c 0.385, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87 (3H, d, J = 6.4 Hz), 0.84–0.95 (2H, m),
1.19–1.24 (1H, m), 1.33 (3H, s), 1.62–1.66 (1H, m), 1.77–1.82 (3H, m), 2.02–2.07 (1H, m), 2.49
(1H, d, J = 4.9 Hz), 2.68 (1H, d, J = 4.9 Hz), 2.72 (1H, d, J = 2.2 Hz), 4.35 (1H, d, J = 11.7 Hz),
4.60 (1H, d, J = 11.7 Hz), 7.25–7.34 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 20.5, 22.4, 23.2,
26.3, 34.8, 37.6, 53.4, 59.4, 70.1, 75.6, 76.9, 77.1, 127.4, 127.6, 128.4, 139.2. Found: C, 78.40; H
9.25. Anal. Calcd for C17H24O2: C, 78.42; H, 9.29.

(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-2-((benzyloxy)methyl)oxirane (19a)

Prepared with 18a eluted by n-hexane:EtOAc = 9:1. Yield: 36%, colorless oil. [α]20
D = +47.0

(c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87 (3H, d, J = 6.4 Hz), 0.86–0.97 (2H,
m), 1.40–1.50 (2H, m), 1.69–1.75 (2H, m), 1.89–1.93 (1H, m), 2.04–2.09 (1H, m), 2.64 (1H, d,
J = 4.7 Hz), 2.80 (1H, d, J = 4.8 Hz), 2.87 (1H, d, J = 11.6 Hz), 3.73 (1H, d, J = 11.6 Hz), 3.83 (1H,
d, J = 5.4 Hz), 4.25 (1H, d, J = 11.8 Hz), 4.40 (1H, d, J = 12.1 Hz), 4.51 (1H, d, J = 12.0 Hz), 4.57
(1H, d, J = 11.9 Hz), 7.24–7.34 (10H, m). 13C NMR (125 MHz, CDCl3): δ = 21.1, 22.4, 26.4, 34.5,
37.3, 42.4, 48.3, 60.1, 70.1, 71.6, 73.2, 74.3, 127.4, 127.5, 127.7, 127.8, 128.4, 128.5. Found: C, 78.67;
H 8.23. Anal. Calcd for C24H30O3: C, 78.65; H, 8.25.

(R)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-2-((benzyloxy)methyl)oxirane (19b)

Prepared with 18a eluted by n-hexane:EtOAc = 9:1. Yield: 36%, colorless oil. [α]20
D = +54.0

(c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86 (3H, d, J = 6.5 Hz), 0.85–0.95 (4H, m),
1.26–1.29 (2H, m), 1.50 (2H, m), 1.62–1.76 (5H, m), 2.01–2.04 (1H, m), 2.69 (1H, d, J = 5.3 Hz),
2.84 (1H, d, J = 5.4 Hz), 3.58 (1H, d, J = 10.9 Hz), 3.70 (1H, d, J = 11.4 Hz), 3.76 (1H, s) 4.32 (1H,
d, J = 11.6 Hz), 4.48 (2H, s), 4.54 (1H, d, J = 11.6 Hz), 7.23–7.32 (10H, m). 13C NMR (125 MHz,
CDCl3): δ = 22.4, 23.1, 26.3, 34.9, 37.7, 43.9, 48.9, 60.8, 70.2, 71.3, 73.5, 74.8, 127.4, 127.7, 127.8,
128.4, 128.4, 128.5, 138.6, 139.3. Found: C, 78.62; H 8.23. Anal. Calcd for C24H30O3: C, 78.65;
H, 8.25.

(1R,2R,5R)-2-((S)-2-((Benzyloxy)methyl)oxiran-2-yl)-5-methylcyclohexanol (24a)

Prepared with 18b eluted by n-hexane:EtOAc = 4:1. Yield: 42%, colorless oil. [α]20
D = +37.0

(c 0.275, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86 (3H, d, J = 6.4 Hz), 0.88–0.96 (1H, m),
1.00–1.06 (1H, m), 1.45–1.49 (1H, m), 1.55–1.59 (2H, m), 1.66–1.1.78 (2H, m), 1.82–1.87 (2H, m),
2.67 (1H, d, J = 4.6 Hz), 2.80 (1H, d, J = 4.6 Hz), 3.22 (1H, d, J = 10.3 Hz), 3.37 (1H, s), 3.82 (1H,
d, J = 10.3 Hz), 4.18 (1H, s), 4.53 (1H, d, J = 11.6 Hz), 4.57 (1H, d, J = 11.8 Hz), 7.25–7.37 (5H,
m). 13C NMR (125 MHz, CDCl3): δ = 22.2, 22.3, 25.6, 34.7, 41.7, 44.0, 50.2, 60.6, 67.8, 72.1, 73.7,
127.9, 128.0, 128.5, 137.1. Found: C, 78.90; H 8.77. Anal. Calcd for C17H24O3: C, 73.88; H, 8.75.

(1R,2R,5R)-2-((R)-2-((Benzyloxy)methyl)oxiran-2-yl)-5-methylcyclohexanol (24b)

Prepared with 18b eluted by n-hexane:EtOAc = 4:1. Yield: 15%, colorless oil. [α]20
D = +24.0

(c 0.295, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86 (3H, d, J = 6.4 Hz), 0.88–0.95 (1H,
m), 1.02–1.07 (1H, m), 1.47–1.50 (1H, m), 1.57 (1H, s), 1.59–1.66 (2H, m), 1.74–1.77 (1H, m),
1.82–1.88 (2H, m), 2.69 (1H, d, J = 4.6 Hz), 2.85 (1H, d, J = 4.6 Hz), 3.24 (1H, s), 3.43 (1H,
d, J = 10.8 Hz), 3.69 (1H, d, J = 10.9 Hz), 4.14 (1H, s), 4.53 (1H, d, J = 11.8 Hz), 4.61 (1H, d,
J = 11.9 Hz), 7.25–7.35 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 21.9, 22.3, 25.9, 34.9, 41.8,
44.3, 50.7, 66.7, 72.2, 73.8, 128.0, 128.1, 128.7, 137.4. Found: C, 78.85; H 8.74. Anal. Calcd for
C17H24O3: C, 73.88; H, 8.75.
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4.2.5. General Procedure for Ring-Opening of Epoxides with Different Amines

A solution of epoxides (2.9 mmol) in MeCN (30 mL) was added to the appropriate
amines (5.8 mmol) in MeCN (10 mL) and LiClO4 (2.9 mmol). The mixture was kept at reflux
temperature for 6–20 h. When the reaction was completed (indicated by TLC), the mixture
was evaporated to dryness, the residue was again dissolved in water (15 mL), and then ex-
tracted with CH2Cl2 (3 × 50 mL). The combined organic phase was dried (Na2SO4), filtered,
and concentrated. The crude product was purified by column chromatography on silica
gel with an appropriate solvent mixture, resulting in O-benzyl derivatives, respectively.

(R)-1-(Benzylamino)-2-((1R,2S,4R)-2-(benzyloxy)-4-methylcyclohexyl)propan-2-ol (5a)

Prepared with 4a with benzylamine at reflux for 20 h and eluted by n-hexane:EtOAc = 1:1.
Yield: 78%, colorless oil. [α]20

D = +41.0 (c 0.275, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87
(3H, d, J = 6.6 Hz), 0.83–0.97 (2H, m), 1.17 (3H, s), 1.42–1.46 (1H, m), 1.62–1.80 (4H, m), 2.05–
2.09 (1H, m), 2.54 (1H, d, J = 11.6 Hz), 2.63 (1H, d, J = 11.6 Hz), 3.71 (1H, d, J = 13.3 Hz), 3.80
(1H, d, J = 13.3 Hz), 3.92 (1H, d, J = 1.5 Hz), 4.13 (1H, d, J = 11.3 Hz), 4.50 (1H, d, J = 11.2 Hz),
7.23–7.33 (10H, m). 13C NMR (125 MHz, CDCl3): δ = 21.2, 22.4, 24.3, 26.1, 35.1, 37.1, 46.6, 54.5,
58.2, 69.7, 73.8, 75.5, 127.1, 127.8, 127.9, 128.5, 128.6, 138.4, 140.4. Found: C, 78.45; H, 9.07; N,
3.79. Anal. Calcd for C24H33NO2: C, 78.43; H, 9.05; N, 3.81.

(S)-1-(Benzylamino)-2-((1R,2S,4R)-2-(benzyloxy)-4-methylcyclohexyl)propan-2-ol (5b)

Prepared with 4 with benzylamine at reflux for 20 h and eluted by n-hexane:EtOAc = 1:1.
Yield: 64%, colorless oil. [α]20

D = +7.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.90
(3H, d, J = 6.4 Hz), 0.85–0.93 (2H, m), 0.93–1.00 (1H, m), 1.02–1.07 (1H, m), 1.20–1.29 (4H, m),
1.26 (3H, s), 1.53–1.57 (1H, m), 1.63–1.71 (2H, m), 2.16–2.22 (1H, m), 2.58 (1H, d, J = 12.4 Hz),
2.78 (1H, d, J = 12.4 Hz), 3.53 (1H, d, J = 13.4 Hz), 3.63 (1H, d, J = 13.4 Hz), 4.20 (1H, s), 4.37
(1H, d, J = 10.3 Hz), 4.63 (1H, d, J = 10.4 Hz), 7.02–7.04 (2H, m), 7.28–7.45 (8H, m). 13C NMR
(125 MHz, CDCl3): δ = 22.2, 26.2, 28.1, 29.8, 35.0, 36.9, 49.9, 52.0, 52.7, 70.8, 72.3, 75.0, 128.8,
129.0, 129.1, 129.3, 129.5, 137.2. Found: C, 78.40; H, 9.03; N, 3.84. Anal. Calcd for C24H33NO2:
C, 78.43; H, 9.05; N, 3.81.

(R)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(dibenzylamino)propan-2-ol (6a)

Prepared with 4 with dibenzylamine at reflux for 20 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 50%, white crystal, m.p = 138–140 ◦C. [α]20

D = +30.0 (c 0.27, MeOH). 1H NMR (500 MHz,
CDCl3): δ = 0.83–0.92 (2H, m), 0.84 (3H, d, J = 6.5 Hz), 1.13 (3H, s), 1.53–1.56 (4H, m), 1.63–1.75
(3H, m), 2.01 (1H, dd, J = 14.1, 1.9 Hz), 2.86 (1H, d, J = 13.8 Hz), 3.3. (1H, dd, J = 13.6, 4.9 Hz),
3.67 (2H, d, J = 12.4 Hz), 4.06 (1H, d, J = 11.9 Hz), 4.43 (2H, t, J = 13.1 Hz), 4.53–4.62 (3H, m),
7.13–7.57 (15H, m). 13C NMR (125 MHz, CDCl3): δ = 21.6, 22.2, 25.6, 26.4, 34.9, 37.3, 52.3,
57.0, 59.5, 61.1, 69.5, 72.8, 74.3, 126.8, 127.5, 128.4, 129.2, 129.4, 130.1, 130.3, 132.2, 132.7, 139.1.
Found: C, 81.33; H, 8.63; N, 3.04. Anal. Calcd for C31H39NO2: C, 81.36; H, 8.59; N, 3.06.

(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(dibenzylamino)propan-2-ol (6b)

Prepared with 4 with dibenzylamine at reflux for 20 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 25%, white crystal, m.p = 164–166 ◦C. [α]20

D = −4.0 (c 0.26, MeOH). 1H NMR (500 MHz,
CDCl3): δ = 0.82-0.89 (1H, m), 0.86 (3H, d, J = 6.4 Hz), 1.29–1.33 (2H, m), 1.32 (3H, s), 1.56–1.61
(3H, m), 1.73 (1H, dd, J = 12.2, 2.1 Hz), 2.10 (1H, dd, J = 14.4, 2.4 Hz), 2.63 (1H, d, J = 13.2 Hz),
3.48–3.53 (1H, m), 3.60–3.64 (1H, m), 4.04 (1H, s), 4.26 (1H, d, J = 11.3 Hz), 4.47–4.66 (5H, m),
7.25–7.65 (15H, m). 13C NMR (125 MHz, CDCl3): δ = 21.6, 22.2, 26.1, 26.2, 34.8, 37.0, 50.2,
57.1, 58.9, 60.7, 69.9, 73.0, 74.5, 127.8, 127.9, 128.7, 129.2, 129.4, 130.0, 130.1, 132.0, 132.8, 138.4.
Found: C, 81.40; H, 8.55; N, 3.07. Anal. Calcd for C31H39NO2: C, 81.36; H, 8.59; N, 3.06.

(S)-3-(Benzylamino)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)propane-1,2-diol
(12a)

Prepared with 11a with benzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 1:2.
Yield: 45%, colorless oil. [α]20

D = +28.0 (c 0.40, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.82–
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0.89 (1H, m), 0.86 (3H, d, J = 6.4 Hz), 1.29–1.33 (2H, m), 1.32 (3H, s), 1.56–1.61 (3H, m), 1.73
(1H, dd, J = 12.2, 2.1 Hz), 2.10 (1H, dd, J = 14.4, 2.4 Hz), 2.63 (1H, d, J = 13.2 Hz), 3.48–3.53 (1H,
m), 3.60–3.64 (1H, m), 4.04 (1H, s), 4.26 (1H, d, J = 11.3 Hz), 4.47–4.66 (5H, m), 7.25–7.65 (15H,
m). 13C NMR (125 MHz, CDCl3): δ = 21.6, 22.2, 26.1, 26.2, 34.8, 37.0, 50.2, 57.1, 58.9, 60.7, 69.9,
73.0, 74.5, 127.8, 127.9, 128.7, 129.2, 129.4, 130.0, 130.1, 132.0, 132.8, 138.4. Found: C, 81.40; H,
8.55; N, 3.07. Anal. Calcd for C31H39NO2: C, 81.36; H, 8.59; N, 3.06.

(R)-3-(Benzylamino)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)propane-1,2-diol
(12b)

Prepared with 11a with benzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 1:2.
Yield: 11%, colorless oil. [α]20

D = +19.0 (c 0.30, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86-
0.97 (6H, m), 0.88 (3H, d, J = 6.4 Hz), 1.25–1.42 (14H, m), 1.57–1.61 (3H, m), 1.70–1.77 (3H, m),
2.12–2.17 (1H, m), 2.76 (2H, s), 3.48 (1H, s), 3.62 (1H, q, J = 11.2 Hz), 3.70 (1H, q, J = 13.3 Hz),
3.90 (1H, s), 4.23 (1H, d, J = 11.0 Hz), 4.57 (1H, d, J = 11.0 Hz), 7.22–7.38 (10H, m). 13C NMR
(125 MHz, CDCl3): δ = 21.1, 22.3, 26.1, 34.9, 37.1, 45.1, 54.0, 54.9, 67.3, 70.0, 74.4, 74.8, 127.7,
128.2, 128.3, 128.6, 128.7, 128, 8, 137.8. Found: C, 81.33; H, 8.62; N, 3.11. Anal. Calcd for
C31H39NO2: C, 81.36; H, 8.59; N, 3.06.

(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(dibenzylamino)propane-1,2-diol
(13a)

Prepared with 11a with dibenzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 4:1.
Yield: 54%, colorless oil. [α]20

D = −2.0 (c 0.26, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87 (3H,
d, J = 6.2 Hz), 0.80–1.00 (4H, m), 1.10–1.25 (1H, m), 1.25–1.35 (2H, m), 1.45–1.80 (7H, m), 2.11
(1H, d, J = 14.0 Hz), 3.10 (1H, d, J = 13.0 Hz), 3.32 (1H, d, J = 8.6 Hz), 3.51 (1H, d, J = 12.5 Hz),
3.60 (1H, brs), 3.90–4.10 (1H, m), 4.04 (1H, d, J = 12.6 Hz), 4.24 (1H, s), 4.30 (1H, d, J = 11.1 H),
4.38 (1H, d, J = 11.7 Hz), 4.95 (1H, d, J = 11.9 Hz), 5.21 (1H, s), 5.91 (1H, s), 7.25–7.62 (15H, m).
13C NMR (125 MHz, CDCl3): δ = 21.5, 22.2, 26.1, 34.6, 36.9, 46.4, 57.3, 58.3, 59.5, 66.0, 70.2, 74.8,
74.9, 128.1, 128.2, 128.7, 129.4, 129.6, 130.2, 130.4, 131.5, 138.3. Found: C, 78.63; H, 8.27; N, 3.00.
Anal. Calcd for C31H39NO3: C, 78.61; H, 8.30; N, 2.96.

(R)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(dibenzylamino)propane-1,2-diol
(13b)

Prepared with 11b with dibenzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 4:1.
Yield: 7%, colorless oil. [α]20

D = +5.0 (c 0.20, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84 (3H,
d, J = 6.5 Hz), 0.84–0.90 (3H, m), 1.26 (3H, s), 1.25–1.29 (1H, m), 1.48–1.55 (1H, m), 1.57–1.62
(1H, m), 1.70–1.80 (3H, m), 2.05–2.13 (1H, m), 2.69 (2H, m), 3.37 (1H, d, J = 11.3 Hz), 3.41 (2H, d,
J = 13.3 Hz), 3.51 (1H, d, J = 11.3 Hz), 3.85 (2H, d, J = 13.3 Hz), 4.00 (1H, s), 4.25 (11.1 Hz), 4.55
(1H, d, J = 11.2 Hz), 7.23–7.49 (15H, m). 13C NMR (125 MHz, CDCl3): δ = 20.6, 22.3, 26.2, 34.9,
37.0, 59.2, 60.6, 67.2, 69.9, 75.4, 75.6, 127.5, 127.9, 128.6, 128.7, 129.5, 139.0. Found: C, 78.57; H,
8.33; N, 2.94. Anal. Calcd for C31H39NO3: C, 78.61; H, 8.30; N, 2.96.

(S)-1-(Benzylamino)-3-(Benzyloxy)-2-((1R,2S,4R)-2-(Benzyloxy)-4-
methylcyclohexyl)propan-2-ol (20a)

Prepared with 19a and benzylamine at reflux for 6 h and eluted by n-hexane:EtOAc = 2:1.
Yield: 77%, colorless oil. [α]20

D = +51.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87
(3H, d, J = 6.4 Hz), 0.86-0.95 (2H, m), 1.48-1.51 (1H, m), 1.64–1.76 (4H, m), 2.05–2.08 (1H, m),
2.72 (1H, dd, J = 16.4, 11.7 Hz), 3.44 (1H, d, J = 9.2 Hz), 3.50 (1H, d, J = 9.2 Hz), 3.67 (1H,
d, J = 13.3 Hz), 3.78 (1H, d, J = 13.4 Hz), 3.99 (1H, s), 4.13 (1H, d, J = 11.2 Hz), 4.42 (1H, d,
J = 12.0 Hz), 4.49 (1H, d, J = 11.2 Hz), 4.50 (1H, d, J = 12.0 Hz), 7.22–7.32 (15H, m). 13C NMR
(125 MHz, CDCl3): δ = 20.8, 22.4, 26.2, 35.0, 37.0, 43.8, 54.3, 55.2, 69.8, 73.6, 73.8, 74.9, 75.6,
127.0, 127.7, 127.8, 128.0, 128.4, 128.5, 128.6, 138.4, 138.5. Found: C, 78.59; H, 8.33; N, 2.98. Anal.
Calcd for C31H39NO3: C, 78.61; H, 8.30; N, 2.96.
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(R)-1-(Benzylamino)-3-(Benzyloxy)-2-((1R,2S,4R)-2-(Benzyloxy)-4-
methylcyclohexyl)propan-2-ol (20b)

Prepared with 19b and benzylamine at reflux for 6 h and eluted by n-hexane:EtOAc = 1:2.
Yield: 84%, colorless oil. [α]20

D = +42.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.85–
0.97 (3H, m), 0.88 (1H, d, J = 6.4 Hz), 1.25–1.29 (1H, m), 1.41–1.46 (1H, m), 1.57–1.65 (2H, m),
1.71–1.77 (2H, m), 2.13–2.17 (1H, m), 2.74 (1H, d, J = 12.2 Hz), 2.91 (1H, d, J = 12.2 Hz), 3.58
(1H, d, J = 11.3 Hz), 3.62 (1H, d, J = 11.3 Hz), 3.74 (2H, s), 4.10 (1H, s), 4.33 (1H, d, J = 10.9 Hz),
4.60 (1H, d, J = 10.9 Hz), 7.20–7.35 (10H, m). 13C NMR (125 MHz, CDCl3): δ = 21.2, 22.3, 26.1,
34.9, 37.0, 53.5, 53.8, 68.9, 70.2, 74.1, 75.2, 127.9, 128.2, 128.3, 128.8, 137.9. Found: C, 75.12; H,
8.70; N, 2.63. Anal. Calcd for C24H33NO3: C, 75.16; H, 8.67; N, 3.65.

(S)-1-(Benzyloxy)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-
(dibenzylamino)propan-2-ol (21a)

Prepared with 19a and dibenzylamine at reflux for 6 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 67%, white crystal, m.p. = 54–55 ◦C. [α]20

D = +39.0 (c 0.25, MeOH). 1H NMR (500 MHz,
CDCl3): δ = 0.83 (3H, d, J = 6.5 Hz), 0.79–0.90 (2H, m), 1.39–1.41 (1H, m), 1.57–1.69 (4H, m),
1.97–2.00 (1H, m), 2.70 (1H, d, J = 13.9 Hz), 2.77 (1H, d, J = 13.9 Hz), 3.33 (1H, d, J = 9.1 Hz), 3.49
(1H, d, J = 13.7 Hz), 3.60 (1H, d, J = 9.1 Hz), 3.77 (1H, d, J = 13.7 Hz), 3.80 (1H, d, J = 9.7 Hz),
3.87 (1H, s), 4.12 (1H, d, J = 11.5 Hz), 4.35 (1H, d, J = 16.6 Hz), 4.66 (1H, d, J = 16.7 Hz), 4.44
(1H, d, J = 11.4 Hz), 7.16–7.31 (20H, m). 13C NMR (125 MHz, CDCl3): δ = 20.9, 22.4, 26.3, 35.2,
37.4, 45.4, 58.2, 60.0, 69.8, 73.1, 73.4, 75.3, 76.0, 126.9, 127.5, 127.6, 127.8, 127.9, 128.2, 128.3,
128.5, 129.3, 138.7, 138.9, 140.0. Found: C, 80.95; H, 8.03; N, 2.50. Anal. Calcd for C38H45NO3:
C, 80.96; H, 8.05; N, 2.48.

(R)-1-(Benzyloxy)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-
(dibenzylamino)propan-2-ol (21b)

Prepared with 19b and dibenzylamine at reflux for 6 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 53%, colorless oil. [α]20

D = +26.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84
(3H, d, J = 6.5 Hz), 0.79–0.83 (3H, m), 1.51–1.58 (4H, m), 1.67–1.76 (3H, m), 1.97–2.01 (1H,
m), 2.60 (1H, d, J = 13.7 Hz), 2.71 (1H, d, J = 13.6 Hz), 3.23 (1H, d, J = 8.7 Hz), 3.40 (2H, d,
J = 13.9 Hz), 3.65 (1H, s), 3.73 (1H, d, J = 8.7 Hz), 3.80 (1H, s), 3.88 (2H, d, J = 13.9 Hz), 3.96
(1H, d, J = 12.7 Hz), 4.17 (1H, d, J = 11.9 Hz), 4.34 (1H, d, J = 12.0 Hz), 4.40 (1H, d, J = 11.3 Hz),
7.17–7.32 (20H, m). 13C NMR (125 MHz, CDCl3): δ = 20.8, 22.4, 26.2, 35.0, 36.9, 44.3, 57.5, 59.8,
69.5, 72.5, 73.2, 75.9, 76.5, 126.7, 127.6, 127.7, 127.8, 128.1, 128.2, 128.3, 128.5, 129.2, 138.5, 138.6,
140.2. Found: C, 81.00; H, 8.10; N, 2.45. Anal. Calcd for C38H45NO3: C, 80.96; H, 8.05; N, 2.48.

(1S,2R,5R)-2-((S)-1-(Benzylamino)-3-(Benzyloxy)-2-hydroxypropan-2-yl)-5-
methylcyclohexanol (25a)

Prepared with 25a and benzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 1:2.
Yield: 71%, colorless oil. [α]20

D = +18.0 (c 0.29, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.85
(3H, d, J = 6.4 Hz), 0.84–0.92 (2H, m), 1.00–1.06 (1H, m), 1.20–1.29 (2H, m), 1.53–1.62 (2H, m),
1.70–1.73 (1H, m), 1.86–1.94 (2H, m), 2.64 (1H, d, J = 11.9 Hz), 2.75 (1H, d, J = 12.0 Hz), 3.33
(1H, d, J = 9.2 Hz), 3.38 (1H, d, J = 9.2 Hz), 3.80 (2H, s), 4.23 (1H, s), 4.51 (1H, d, J = 16.8 Hz),
4.52 (1H, d, J = 16.8 Hz), 7.25–7.35 (10H, m). 13C NMR (125 MHz, CDCl3): δ = 21.5, 22.4, 26.0,
35.5, 42.4, 48.2, 50.6, 53.8, 64.6, 73.8, 74.7, 75.1, 127.7, 127.9, 128.1, 128.6, 128.7, 128.8, 137.7,
138.1. Found: C, 75.13; H, 8.65; N, 3.70. Anal. Calcd for C24H33NO3: C, 75.16; H, 8.67; N, 3.65.
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(1S,2R,5R)-2-((R)-1-(Benzylamino)-3-(Benzyloxy)-2-hydroxypropan-2-yl)-5-
methylcyclohexanol (25b)

Prepared with 25b and benzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 1:2.
Yield: 85%, colorless oil. [α]20

D = +4.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.85
(3H, d, J = 6.4 Hz), 0.84–0.90 (3H, m), 0.98–1.03 (1H, m), 1.25–1.42 (7H, m), 1.48–1.56 (2H,
m), 1.63–1.77 (2H, m), 1.82–1.90 (2H, m), 2.80 (2H, s), 3.37 (1H, d, J = 9.3 Hz), 3.53 (1H, d,
J = 9.3 Hz), 3.77 (2H, s), 4.07 (1H, s), 4.47 (1H, d, J = 11.9 Hz), 4.53 (1H, d, J = 11.9 Hz), 7.24–7.34
(10H, m). 13C NMR (125 MHz, CDCl3): δ = 20.4, 22.4, 26.0, 29.8, 35.3, 42.3, 46.8, 52.1, 54.2, 66.2,
73.4, 73.6, 75.0, 127.6, 127.9, 128.1, 128.5, 128.7, 128.8, 137.8, 138.6. Found: C, 75.20; H, 8.70; N,
3.63. Anal. Calcd for C24H33NO3: C, 75.16; H, 8.67; N, 3.65.

(1S,2R,5R)-2-((S)-1-(Benzyloxy)-3-(dibenzylamino)-2-hydroxypropan-2-yl)-5-
methylcyclohexanol (26a)

Prepared with 25a and dibenzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 88%, colorless oil. [α]20

D = +23.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.82
(3H, d, J = 6.4 Hz), 0.76–0.89 (2H, m), 0.92–0.98 (1H, m), 1.19–1.45 (3H, m), 1.60–1.64 (1H, m),
1.77–1.83 (2H, m), 2.67 (1H, d, J = 14.0 Hz), 2.79 (1H, d, J = 14.0 Hz), 3.25 (1H, d, J = 9.0 Hz),
3.42 (1H, d, J = 9.0 Hz), 3.53 (2H, d, J = 13.5 Hz), 3.80 (2H, d, J = 13.5 Hz), 4.16 (1H, s), 4.33
(1H, d, J = 11.7 Hz), 4.39 (1H, d, J = 11.7 Hz), 7.21–7.33 (15H, m). 13C NMR (125 MHz, CDCl3):
δ = 20.2, 22.4, 25.9, 35.3, 42.1, 46.1, 56.1, 60.3, 66.2, 72.5, 73.5, 74.8, 127.5, 128.0, 128.5, 128.6,
129.5, 137.6, 138.6. Found: C, 78.63; H, 8.33; N, 2.98. Anal. Calcd for C31H39NO3: C, 78.61; H,
8.30; N, 2.96.

(1S,2R,5R)-2-((R)-1-(Benzyloxy)-3-(dibenzylamino)-2-hydroxypropan-2-yl)-5-
methylcyclohexanol (26b)

Prepared with 25b and dibenzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 88%, colorless oil. [α]20

D = +8.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.82
(3H, d, J = 6.3 Hz), 0.77–0.85 (1H, m), 0.88–0.94 (1H, m), 1.29–1.33 (1H, m), 1.39–1.42 (1H, m),
1.49–1.55 (3H, m), 1.64–1.67 (1H, m), 1.77–1.80 (2H, m), 2.82 (1H, d, J = 17.0 Hz), 2.83 (1H,
d, J = 16.9 Hz), 3.16 (1H, brs), 3.18 (1H, d, J = 9.1 Hz), 3.34 (1H, d, J = 9.1 Hz), 3.61 (2H, d,
J = 13.5 Hz), 3.72 (2H, d, J = 13.5 Hz), 3.76 (1H, brs), 4.06 (1H, s), 4.36 (2H, s), 7.22–7.33 (15H,
m). 13C NMR (125 MHz, CDCl3): δ = 20.6, 22.4, 25.8, 35.4, 42.2, 44.6, 57.0, 60.6, 66.7, 71.7, 73.5,
75.4, 127.5, 128.0, 128.5, 128.7, 129.4, 137.8, 139.1. Found: C, 78.57; H, 8.35; N, 2.93. Anal. Calcd
for C31H39NO3: C, 78.61; H, 8.30; N, 2.96.

(S)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(dibenzylamino)propan-2-ol (30b)

Prepared with 29 and dibenzylamine at reflux for 20 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 47%, colorless oil. [α]20

D = −40.0 (c 0.255, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.45–
0.53 (1H, m), 0.84–0.90 (1H, m), 0.93 (3H, s), 0.96 (3H, d, J = 5.5 Hz), 1.04 (1H, q, J = 12.0 Hz),
1.23–1.43 (3H, m), 1.55 (3H, s), 2.03–2.08 (1H, m), 2.22–2.26 (1H, m), 2.31 (1H, d, J = 13.6 Hz),
2.45 (1H, d, J = 13.7 Hz), 3.23 (2H, d, J = 13.7 hz), 3.54 (1H, td, J = 10.6, 3.9 Hz), 4.18 (2H, d,
J = 13.6 Hz), 4.39 (1H, d, J = 11.0 Hz), 4.66 (1H, d, J = 11.0 Hz), 5.25 (1H, s), 7.18–7.35 (15H, m).
13C NMR (125 MHz, CDCl3): δ = 22.3, 23.6, 26.6, 31.8, 35.8, 40.0, 47.9, 59.8, 61.4, 70.2, 76.8, 81.2,
126.7, 128.1, 128.3, 128.7, 129.5, 137.6, 140.4. Found: C, 81.37; H, 8.35; N, 2.93. Anal. Calcd for
C31H39NO2: C, 81.36; H, 8.33; N, 2.94.

(S)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(dibenzylamino)propane-1,2-diol
(34a)

Prepared with 33 and dibenzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 76%, colorless oil. [α]20

D = −126.0 (c 0.30, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.55–
0.64 (1H, m), 0.77–0.86 (1H, m), 0.87–0.94 (1H, m), 0.90 (3H, d, J = 6.5 Hz), 1.22–1.32 (1H, m),
1.51–1.61 (5H, m), 2.22 (1H, d, J = 12.1 Hz), 2.43 (1H, d, J = 13.6 Hz), 3.13 (2H, d, J = 13.3 Hz),
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3.38 (1H, d, J = 11.5 Hz), 3.46 (1H td, J = 10.5, 3.95 Hz), 3.60 (1H, d, J = 11.4 Hz), 4.14 (2H, d,
J = 13.3 Hz), 4.39 (1H, d, J = 11.1 Hz), 4.68 (1H, d, J = 11.1 Hz), 7.21–7.38 (15H, m). 13C NMR
(125 MHz, CDCl3): δ = 22.2, 26.0, 31.2, 34.4, 40.0, 49.8, 57.2, 60.6, 67.8, 70.1, 76.7, 80.0, 127.2,
128.2, 128.3, 128.5, 128.8, 129.3, 137.7, 139.2. Found: C, 78.58; H, 8.33; N, 2.94. Anal. Calcd for
C31H39NO3: C, 78.61; H, 8.30; N, 2.96.

(S)-1-(Benzyloxy)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-
(dibenzylamino)propan-2-ol (38a)

Prepared with 37a and dibenzylamine at reflux for 6 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 80%, colorless oil. [α]20

D = −68.0 (c 0.27, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.52–
0.60 (1H, m), 0.79–0.87 (1H, m), 0.89 (3H, d, J = 6.5 Hz), 0.89–0.96 (1H, m), 1.20–1.35 (H,
m), 1.45–1.55 (3H, m), 1.86 (1H, td, J = 12.2, 3.2 Hz), 2.16 (1H, d, J = 12.2 Hz), 2.43 (1H, d,
J = 13.6 Hz), 2.61 (1H, d, J = 13.6 Hz), 3.13 (1H, d, J = 10.6 Hz), 3.19 (2H, d, J = 13.6 Hz),
3.45 (1H, td, J = 10.6, 3.9 Hz), 3.71 (1H, d, J = 10.6 Hz), 4.04 (2H, d, J = 13.6 Hz), 4.34 (1H, d,
J = 11.2 Hz), 4.42 (1H, d, J = 12.1 Hz), 4.63 (1H, d, J = 12.2 Hz), 4.64 (1H, d, J = 11.2 Hz), 4.77
(1H, brs), 7.16–7.34 (20H, m). 13C NMR (125 MHz, CDCl3): δ = 22.2, 26.5, 31.5, 34.6, 40.2, 48.6,
57.7, 60.2, 70.0, 73.8, 74.3, 77.7, 80.1, 126.8, 127.4, 127.9, 128.1, 128.2, 128.3, 128.6, 129.2, 138.1,
139.0, 140.0. Found: C, 80.93; H, 8.07; N, 2.50. Anal. Calcd for C38H45NO3: C, 80.96; H, 8.05;
N, 2.48.

(R)-1-(Benzyloxy)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-
(dibenzylamino)propan-2-ol (38b)

Prepared with 37a and dibenzylamine at reflux for 6 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 67%, colorless oil. [α]20

D = −37.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.82–
0.99 (3H, m), 0.93 (3H, d, J = 6.5 Hz), 1.29–1.35 (1H, m), 1.44–1.50 (1H, m), 1.55 (1H, brs),
2.00–2.04 (1H, m), 2.17 (1H, dd, J = 12.1, 1.4 Hz), 2.39 (1H, d, J = 13.7 Hz), 2.62 (1H, d,
J = 13.7 Hz), 3.29 (2H, s), 3.33 (2H, d, J = 13.7 Hz), 3.68 (1H, td, J = 10.7, 3.9 Hz), 4.08 (2H, d,
J = 13.7 Hz), 4.19 (1H, d, J = 10.9 Hz), 4.41 (2H, q, J = 12.1 Hz), 4.51 (1H, d, J = 10.9 Hz), 5.35
(1H, brs), 7.18–7.33 (20H, m). 13C NMR (125 MHz, CDCl3): δ = 22.3, 26.3, 31.7, 35.1, 40.5, 47.7,
58.0, 59.9, 70.1, 73.7, 74.8, 77.9, 81.6, 126.7, 127.6, 127.9, 128.1, 128.4, 128.6, 129.5, 138.0, 138.7,
140.2. Found: C, 80.95; H, 8.07; N, 2.52. Anal. Calcd for C38H45NO3: C, 80.96; H, 8.05; N, 2.48.

(1R,2R,5R)-2-((S)-1-(Benzyloxy)-3-(dibenzylamino)-2-hydroxypropan-2-yl)-5-
methylcyclohexanol (41a)

Prepared with 37b and dibenzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 88%, colorless oil. [α]20

D = −5.0 (c 0.285, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.60–0.69
(1H, m), 0.74–0.83 (1H, m), 0.85–0.95 (1H, m), 0.86 (3H, d, J = 6.5 Hz), 1.22–1.32 (1H, m), 1.45–1.55
(2H, m), 1.55 (1H, s), 1.64–1.69 (1H, m), 1.86–1.89 (1H, m), 2.62 (1H, d, J = 14.1 Hz), 2.83 (1H,
d, J = 14.1 Hz), 3.16 (1H, d, J = 9.9 Hz), 3.41–3.47 (2H, m), 3.58 (2H, d, J = 13.4 Hz), 3.75 (2H,
d, J = 13.4 Hz), 3.88 (1H, brs), 4.41 (1H, d, J = 12.0 Hz), 4.52 (1H, d, J = 12.0 Hz), 4.77 (1H, brs),
7.24–7.32 (15H, m). 13C NMR (125 MHz, CDCl3): δ = 22.1, 25.6, 31.2, 34.7, 44.4, 49.3, 54.9, 60.4,
71.0, 73.6, 74.8, 77.5, 127.4, 127.8, 128.0, 128.5, 128.6, 129.4, 138.2, 139.1. Found: C, 78.58; H, 8.27;
N, 2.95. Anal. Calcd for C31H39NO3: C, 78.61; H, 8.30; N, 2.96.

(1R,2R,5R)-2-((R)-1-(Benzyloxy)-3-(dibenzylamino)-2-hydroxypropan-2-yl)-5-
methylcyclohexanol (41b)

Prepared with 37b and dibenzylamine at reflux for 8 h and eluted by n-hexane:EtOAc = 9:1.
Yield: 76%, colorless oil. [α]20

D = −22.0 (c 0.28, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.64–
0.72 (1H, m), 0.87 (3H, d, J = 6.4 Hz), 0.86–0.95 (2H, m), 1.26–1.49 (5H, m), 1.59 (1H, brs), 1.92
(1H, d, J = 12.4 Hz), 2.62 (1H, d, J = 13.9 Hz), 2.87 (1H, d, J = 13.9 Hz), 3.39 (2H, s), 3.51 (1H, d,
J = 13.4 Hz), 3.70 (1H, td, J = 10.3, 4.3 Hz), 3.87 (1H, d, J = 13.4 Hz), 4.43 (2H, t, J = 12.3 Hz),
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7.24–7.32 (15H, m). 13C NMR (125 MHz, CDCl3): δ = 22.1, 24.5, 31.3, 34.9, 44.7, 50.5, 58.1, 60.1,
71.8, 73.2, 73.7, 76.3, 127.4, 127.8, 128.5, 128.6, 129.4, 138.1, 139.0. Found: C, 78.64; H, 8.33; N,
2.99. Anal. Calcd for C31H39NO3: C, 78.61; H, 8.30; N, 2.96.

4.2.6. General Procedure for Ring-Opening of Epoxide with Azoles

A solution of epoxides (2.9 mmol) in dry DMF (30 mL) was added to the triazole
or imidazole (8.7 mmol) in dry DMF (10 mL) and K2CO3 (14.5 mmol). The mixture was
kept at reflux temperature for 12–96 h. When the reaction completed (indicated by TLC),
the mixture was dissolved in water (15 mL) and extracted with EtOAc (3 × 50 mL). The
combined organic phase was again extracted with saturated NaCl solution (3 × 50 mL)
then dried (Na2SO4), filtered, and concentrated. The crude product was purified by column
chromatography on silica gel with CHCl3:MeOH = 19:1, resulting in O-benzyl derivatives,
respectively.

(R)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-imidazol-1-yl)propan-2-ol (7a)

Prepared with 4a and imidazole at reflux for 24 h. Yield: 42%, colorless oil. [α]20
D = +27.0

(c 0.27, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86–0.97 (3H, m), 0.91 (3H, d, J = 6.5 Hz),
0.94 (3H, s), 1.23–1.42 (7H, m), 1.68–1.85 (4H, m), 2.22 (1H, dd, J = 14.4, 2.2 Hz), 3.82 (2H, d,
J = 2.8 Hz), 4.07 (1H, s), 4.33 (1H, d, J = 11.4 Hz), 4.70 (1H, d, J = 11.4 Hz), 6.85 (1H, s), 7.00
(1H, s), 7.25–7.39 (6H, m). 13C NMR (125 MHz, CDCl3): δ = 21.4, 22.2, 23.3, 26.0, 29.8, 34.8,
36.9, 47.3, 56.2, 69.8, 74.0, 74.6, 120.7, 128.4, 128.5, 128.8, 128.9, 137.6, 138.5. Found: C, 73.10;
H, 8.57; N, 8.55. Anal. Calcd for C20H28N2O2: C, 73.14; H, 8.59; N, 8.53.

(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-imidazol-1-yl)propan-2-ol (7b)

Prepared with 4b and imidazole at reflux for 24 h. Yield: 67%, colorless oil. [α]20
D = +30.0

(c 0.26, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86–0.94 (1H, m), 0.91 (3H, d, J = 6.6 Hz),
0.96–1.02 (1H, m), 1.07 (3H, s), 1.25–1.31 (2H, m), 1.69–1.98 (6H, m), 2.16–2.22 (1H, m),
3.82 (1H, d, J = 14.1 Hz), 3.96 (1H, d, J = 14.1 Hz), 4.06 (1H, d, J = 1.7 Hz), 4.33 (1H, d,
J = 11.1 Hz), 4.65 (1H, d, J = 11.1 Hz), 6.90 (1H, s), 7.02 (1H, s), 7.25–7.26 (5H, m), 7.43 (1H,
s). 13C NMR (125 MHz, CDCl3): δ = 21.3, 22.2, 24.7, 26.0, 34.6, 37.0, 46.4, 55.1, 70.0, 73.8,
75.7, 120.7, 128.1, 128.2, 128.8, 129.0, 137.8, 138.5. Found: C, 73.17; H, 8.62; N, 8.50. Anal.
Calcd for C20H28N2O2: C, 73.14; H, 8.59; N, 8.53.

(R)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-1,2,4-triazol-1-yl)propan-2-ol
(8a)

Prepared with 4a and 1,2,4-triazole at reflux for 24 h. Yield: 67%, colorless oil.
[α]20

D = +42.0 (c 0.275, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.91 (3H, d, J = 6.5 Hz), 0.94
(3H, s), 0.90–0.98 (2H, m), 1.39–1.43 (1H, m), 1.61 (1H, brs), 1.71–1.84 (4H, m), 2.19–2.23 (1H,
m), 4.00 (1H, d, J = 13.9 Hz), 4.21 (3H, t, J = 14.0 Hz), 4.34 (1H, d, J = 11.3 Hz), 4.71 (1H, d,
J = 11.3 Hz), 7.26 (1H, s), 7.31–7.40 (5H, m), 7.89 (1H, d, J = 2.8 Hz). 13C NMR (125 MHz,
CDCl3): δ = 21.2, 22.3, 23.6, 26.0, 34.8, 36.9, 47.0, 57.9, 69.9, 74.0, 75.0, 128.4, 128.9, 137.9,
144.4, 151.6. Found: C, 69.30; H, 8.24; N, 12.80. Anal. Calcd for C20H28N2O2: C19H27N3O2:
C, 69.27; H, 8.26; N, 12.76.

(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-1,2,4-triazol-1-yl)propan-2-ol
(8b)

Prepared with 4b and 1,2,4-triazole at reflux for 24 h. Yield: 67%, colorless oil.
[α]20

D = +73.0 (c 0.28, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86–1.03 (2H, m), 0.91
(3H, d, J = 6.5 Hz), 1.06 (3H, s), 1.37–1.41 (1H, m), 1.56 (1H, s), 1.71–1.90 (4H, m), 2.16–2.21
(1H, m), 3.86 (1H, s), 4.10 (1H, d, J = 1.8 Hz), 4.11 (1H, d, J = 13.9 Hz), 4.21 (1H, d, J = 14.0 Hz),
4.34 (1H, d, J = 11.2 Hz), 4.64 (1H, d, J = 11.2 Hz), 7.25–7.35 (5H, m), 7.89 (1H, s), 8.06 (1H,
s). 13C NMR (125 MHz, CDCl3): δ = 21.4, 22.3, 24.7, 26.0, 47.0, 57.2, 70.0, 73.7, 75.4, 128.1,
128.7, 137.9, 144.6, 151.5. Found: C, 69.24; H, 8.30; N, 12.73. Anal. Calcd for C20H28N2O2:
C19H27N3O2: C, 69.27; H, 8.26; N, 12.76.
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(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-imidazol-1-yl)propane-1,2-
diol (14a)

Prepared with 11a and 1,2,4-triazole at reflux for 12 h. Yield: 58%, colorless oil.
[α]20

D = +44.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.91 (3H, d, J = 6.6 Hz),
0.94–1.03 (2H, m), 1.65–1.71 (2H, m), 1.77–1.80 (1H, m), 1.85–1.95 (2H, m), 2.10–2.20 (1H, m),
3.05 (1H, d, J = 10.9 Hz), 3.32 (1H, d, J = 10.9 Hz), 3.45 (1H, s), 4.00 (1H, d, J = 14.0 Hz), 4.06
(1H, d, J = 14.0 Hz), 4.33 (1H, d, J = 11.1 Hz), 4.63 (1H, d, J = 11.1 Hz), 6.92 (1H, s), 6.96 (1H,
s), 7.25–7.33 (5H, m), 7.46 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 20.8, 22.3, 26.0, 34.7,
36.8, 42.7, 50.7, 62.4, 69.9, 75.6, 75.8, 120.9, 128.1, 128.7, 137.7, 138.7. Found: C, 69.77; H, 8.16;
N, 8.10. Anal. Calcd for C20H28N2O3: C, 69.74; H, 8.19; N, 8.13.

(S)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-1,2,4-triazol-1-yl)propane-1,2-
diol (15a)

Prepared with 11a and 1,2,4-triazole at reflux for 12 h. Yield: 46%, colorless oil.
[α]20

D = +50.0 (c 0.26, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86–0.93 (1H, m), 0.91 (3H,
d, J = 6.6 Hz), 0.95–1.05 (2H, m), 1.25–1.29 (1H, m), 1.55 (2H, s), 1.65–1.70 (1H, m), 1.73–1.85
(1H, m), 1.84–1.93 (2H, m), 2.15–2.23 (1H, m), 2.99 (1H, t, J = 7.6 Hz), 3.07 (1H, dd, J = 12.0,
4.4 Hz), 3.36 (1H, dd, J = 11.9, 7.9 Hz), 4.12 (2H, s), 4.28 (1H, d, J = 6.9 Hz), 4.32 (1H, d,
J = 11.2 Hz), 4.64 (1H, d, J = 11.1 Hz), 7.25–7.34 (5H, m), 7.92 (1H, s), 8.05 (1H, s). 13C NMR
(125 MHz, CDCl3): δ = 20.8, 22.2, 26.0, 34.6, 36.7, 42.5, 53.7, 64.3, 69.9, 75.2, 75.9, 128.2, 128.8,
137.5, 151.9. Found: C, 66.10; H, 7.83; N, 12.11. Anal. Calcd for C19H27N3O3: C, 66.06; H,
7.88; N, 12.16.

(S)-1-(Benzyloxy)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-imidazol-1-
yl)propan-2-ol (22a)

Prepared with 19a and imidazole at reflux for 48 h. Yield: 50%, colorless oil. [α]20
D = +47.0

(c 0.20, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.92 (3H, d, J = 6.4 Hz), 0.91–0.97 (2H, m),
1.52–1.81 (8H, m), 2.21 (1H, dd, J = 14.3, 2.4 Hz), 2.65 (1H, d, J = 9.3 Hz), 3.17 (1H, d, J = 9.3 Hz),
3.81 (1H, d, J = 13.8 Hz), 4.02 (1H, d, J = 13.8 Hz), 4.02 (1H, brs), 4.11 (1H, brs), 4.27 (1H, d,
J = 11.7 Hz), 4.31 (1H, d, J = 11.4 Hz), 4.40 (1H, d, J = 11.7 Hz), 4.69 (1H, d, J = 11.3 Hz), 6.84
(1H, s), 6.98 (1H, s), 7.25–7.40 (11H, m). 13C NMR (125 MHz, CDCl3): δ = 20.7, 22.3, 25.9, 34.6,
36.8, 42.7, 52.5, 69.1, 69.8, 73.2, 75.0, 75.4, 120.8, 127.9, 128.5, 128.6, 128.9, 137.4, 137.9, 138.6.
Found: C, 74.63; H, 7.93; N, 6.47. Anal. Calcd for C27H34N2O3: C, 74.62; H, 7.89; N, 6.45.

(R)-1-(Benzyloxy)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-imidazol-1-
yl)propan-2-ol (22b)

Prepared with 19b and imidazole at reflux for 48 h. Yield: 42%, colorless oil. [α]20
D = +71.0

(c 0.20, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87–0.92 (1H, m), 0.95–1.03 (1H, m), 1.57–
1.68 (6H, m), 1.73–1.76 (1H, m), 1.82–1.87 (1H, m), 1.90–1.94 (1H, m), 2.09–1.13 (1H, m), 2.74
(1H, d, J = 9.4 Hz), 3.06 (1H, d, J = 9.4 Hz), 3.82 (1H, s), 3.93 (1H, d, J = 14.0 Hz), 3.95 (1H,
d, J = 14.1 Hz), 4.04 (1H, d, J = 11.1 Hz), 4.08 (1H, d, J = 13.9 Hz), 4.19 (1H, d, J = 11.7 Hz),
4.53 (1H, d, J = 11.7 Hz), 4.50 (1H, d, J = 11.1 Hz), 6.90 (1H, s), 6.99 (1H, s), 7.19–7.42 (11H,
m). 13C NMR (125 MHz, CDCl3): δ = 20.6, 22.3, 25.9, 34.5, 36.6, 42.4, 51.6, 69.7, 69.9, 73.2, 75.0,
75.5, 120.9, 128.2, 128.3, 128.6, 128.7, 137.5. Found: C, 74.59; H, 7.87; N, 6.43. Anal. Calcd for
C27H34N2O3: C, 74.62; H, 7.89; N, 6.45.

(S)-1-(Benzyloxy)-2-((1R,2S,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-1,2,4-triazol-1-
yl)propan-2-ol (23a)

Prepared with 19a and 1,2,4-triazole at reflux for 48 h. Yield: 67%, colorless oil.
[α]20

D = +52.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.89–0.98 (2H, m), 0.90 (3H,
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d, J = 6.4 Hz), 1.54–1.65 (3H, m), 1.71–7.79 (3H, m), 2.18 (1H, dd, J = 14.4, 2.2 Hz), 3.05 (1H,
d, J = 9.7 Hz), 3.15 (1H, d, J = 9.7 Hz), 4.22 (2H, d, J = 14.1 Hz), 4.31–4.39 (4H, m), 4.46 (1H,
d, J = 11.7 Hz), 4.65 (1H, d, J = 11.2 Hz), 7.25–7.36 (10H, m), 7.88 (1H, s), 7.94 (1H, s). 13C
NMR (125 MHz, CDCl3): δ = 20.8, 22.3, 26.0, 34.7, 36.8, 43.4, 53.7, 69.9, 71.3, 73.6, 75.1, 75.6,
128.0, 128.1, 128.2, 128.3, 128.5, 128.8, 137.8, 137.9, 144.8, 151.4. Found: C, 71.67; H, 7.69; N,
9.63. Anal. Calcd for C26H33N3O3: C, 71.70; H, 7.64; N, 9.65.

(R)-1-(Benzyloxy)-2-((1R,2S,4R)-2-(benzyloxy)-4-methylcyclohexyl)-3-(1H-1,2,4-triazol-1-
yl)propan-2-ol (23b)

Prepared with 19b and 1,2,4-triazole at reflux for 48 h. Yield: 67%, colorless oil.
[α]20

D = +60.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.88–0.94 (2H, m), 0.90 (3H,
d, J = 6.6 Hz), 0.98–1.02 (1H, m), 1.56 (3H, s), 1.63–1.89 (5H, m), 2.09–2.13 (1H, m), 2.94 (1H,
d, J = 9.6 Hz), 3.11 (1H, d, J = 9.6 Hz), 3.90 (1H, s), 4.00 (1H, s), 4.09 (1H, d, J = 11.1 Hz),
4.27 (1H, d, J = 11.7 Hz), 4.28 (1H, d, J = 15.9 Hz), 4.35 (1H, d, J = 14.0 Hz), 4.49 (1H, d,
J = 11.8 Hz), 4.52 (1H, d, J = 11.1 Hz), 7.21–7.37 (10H, m), 7.89 (1H, s), 8.04 (1H, s). 13C NMR
(125 MHz, CDCl3): δ = 20.7, 22.3, 26.0, 34.6, 36.7, 42.6, 53.4, 69.8, 70.8, 73.4, 74.9, 75.3, 128.0,
128.1, 128.2, 128.3, 128.5, 128.7, 137.7, 144.9, 151.3. Found: C, 71.73; H, 7.60; N, 9.68. Anal.
Calcd for C26H33N3O3: C, 71.70; H, 7.64; N, 9.65.

(1S,2R,5R)-2-((S)-1-(Benzyloxy)-2-hydroxy-3-(1H-imidazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (27a)

Prepared with 25a and imidazole at reflux for 12 h. Yield: 67%, white crystal,
m.p. = 118–119 ◦C. [α]20

D = +11.0 (c 0.30, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.89 (3H,
d, J = 6.2 Hz), 0.92–1.02 (1H, m), 1.12 (1H, t, J = 12.2 Hz), 1.56–1.64 (2H, m), 1.74–1.90 (4H,
m), 2.95 (1H, d, J = 9.4 Hz), 3.40 (1H, d, J = 9.4 Hz), 4.00 (1H, d, J = 13.9 Hz), 4.11 (1H, d,
J = 13.9 Hz), 4.21 (1H, s), 4.37 (1H, d, J = 11.7 Hz), 4.48 (1H, d, J = 11.7 Hz), 6.90 (1H, s), 6.96
(1H, s), 7.25–7.37 (1H, s), 7.43 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 20.0, 22.2, 25.8, 34.7,
42.5, 42.9, 51.4, 68.1, 70.3, 73.5, 75.5, 120.8, 128.1, 128.2, 128.6, 128.7, 137.7, 138.7. Found: C,
69.77; H, 8.15; N, 8.12. Anal. Calcd for C20H28N2O3: C, 69.74; H, 8.19; N, 8.13.

(1S,2R,5R)-2-((R)-1-(Benzyloxy)-2-hydroxy-3-(1H-imidazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (27b)

Prepared with 25b and imidazole at reflux for 12 h. Yield: 83%, white crystal,
m.p. = 149–150 ◦C. [α]20

D = +20.0 (c 0.275, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.89 (3H,
d, J = 6.2 Hz), 0.90–0.95 (1H, m), 1.15 (1H, td, J = 12.7, 2.0 Hz), 1.46–1.50 (1H, m), 1.62–1.65
(1H, m), 1.69–1.85 (4H, m), 2.81 (1H, d, J = 9.3 Hz), 3.24 (1H, d, J = 9.2 Hz), 4.17 (2H, q,
J = 14.0 Hz), 4.35 (1H, d, J = 11.7 Hz), 4.37 (1H, d, J = 1.5 Hz), 4.46 (1H, d, J = 11.7 Hz), 6.94
(1H, s), 6.97 (1H, s), 7.29–7.37 (5H, m), 747 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 20.3,
22.2, 25.8, 34.7, 42.6, 42.9, 52.4, 67.9, 69.3, 73.4, 75.8, 120.9, 128.0, 128.1, 128.5, 128.6, 137.7,
138.6. Found: C, 69.79; H, 8.22; N, 8.17. Anal. Calcd for C20H28N2O3: C, 69.74; H, 8.19; N,
8.13.

(1S,2R,5R)-2-((S)-1-(Benzyloxy)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (28a)

Prepared with 25a and 1,2,4-triazole at reflux for 12 h. Yield: 83%, colorless oil.
[α]20

D = +12.0 (c 0.30, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.88 (3H, d, J = 6.4 Hz),
0.92–0.99 (1H, m), 1.07 (1H, td, J = 12.0, 1.7 Hz), 1.61–1.66 (2H, m), 1.78–1.91 (4H, m), 0.86
(1H, d, J = 9.5 Hz), 2.87 (1H, s), 2.94 (1H, s), 3.46 (1H, d, J = 9.6 Hz), 4.22 (1H, s), 4.35–4.46
(4H, m), 7.25–7.37 (5H, m), 7.92 (1H, s), 8.02 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 20.0,
22.2, 25.8, 34.9, 42.5, 43.4, 53.2, 67.5, 70.5, 73.7, 75.9, 128.1, 128.2, 1287, 137.5, 151.9. Found:
C, 66.03; H, 7.90; N, 12.20. Anal. Calcd for C19H27N3O3: C, 66.06; H, 7.88; N, 12.16.
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(1S,2R,5R)-2-((R)-1-(Benzyloxy)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (28b)

Prepared with 25b and 1,2,4-triazole at reflux for 12 h. Yield: 83%, colorless oil.
[α]20

D = +15.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.88 (3H, d, J = 6.3 Hz),
0.87–0.95 (1H, m), 1.10 (1H, td, J = 12.6, 1.6 Hz), 1.22–1.29 (1H, m), 1.49–1.52 (1H, m),
1.60–1.64 (1H, m), 1.70–1.81 (2H, m), 1.81–1.87 (2H, m), 2.81 (1H, d, J = 9.6 Hz), 3.28 (1H,
d, J = 9.6 Hz), 4.35–4.52 (5H, m), 7.25–7.36 (5H, m), 7.93 (1H, s), 8.05 (1H, s). 13C NMR
(125 MHz, CDCl3): δ = 20.3, 22.2, 25.8, 34.9, 42.6, 43.6, 53.7, 67.6, 70.4, 73.7, 76.3, 128.1, 128.3,
128.7, 137.5. Found: C, 66.10; H, 7.85; N, 12.14. Anal. Calcd for C19H27N3O3: C, 66.06; H,
7.88; N, 12.16.

(R)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-imidazol-1-yl)propan-2-ol
(31a)

Prepared with 29 and imidazole at reflux for 96 h. Yield: 38%, colorless oil. [α]20
D = −34.0

(c 0.20, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.80–1.01 (2H, m), 0.96 (3H, d, J = 6.1 Hz), 1.01
(3H, s), 1.10–1.20 (1H, m), 1.40–1.55 (1H, m), 1.72 (1H, d, J = 12.7 Hz), 1.97 (1H, d, J = 10.7 Hz),
2.30 (1H, d, J = 11.9 Hz), 3.46 (1H, t, J = 7.8 Hz), 4.18 (1H, s), 4.35 (1H, d, J = 10.9 Hz), 4.50 (1H,
s), 4.76 (1H, d, J = 10.8 Hz), 7.02 (1H, s), 7.16 (1H, s), 7.31–7.39 (5H, m), 9.26 (1H, s). 13C NMR
(125 MHz, CDCl3): δ = 22.1, 26.0, 31.6, 34.5, 40.1, 49.7, 57.6, 70.6, 73.4, 80.3, 118.2, 122.9, 128.6,
128.7, 129.0, 137.7. Found: C, 73.17; H, 8.60; N, 8.55. Anal. Calcd for C20H28N2O2: C, 73.14; H,
8.59; N, 8.53.

(S)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-imidazol-1-yl)propan-2-ol
(31b)

Prepared with 29 and imidazole at reflux for 96 h. Yield: 58%, white crystal, m.p = 170–
172 ◦C. [α]20

D = −48.0 (c 0.21, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87–1.00 (2H, m),
0.95 (3H, d, J = 5.4 Hz), 1.05–1.16 (4H, m), 1.32 (1H, s), 1.43 (1H, s), 1.70–1.90 (2H, m),
2.29 (1H, d, J = 11.2 Hz), 3.62 (1H, s), 4.19 (1H, brs), 4.39 (1H, d, J = 10.9 Hz), 4.70 (1H, d,
J = 10.9 Hz), 5.65 (1H, s), 7.28–7.38 (7H, m). 13C NMR (125 MHz, CDCl3): δ = 22.0, 27.5,
31.3, 34.2, 39.5, 48.2, 70.4, 74.4, 80.2, 128.5, 128.6, 128.9. Found: C, 73.10; H, 8.55; N, 8.57.
Anal. Calcd for C20H28N2O2: C, 73.14; H, 8.59; N, 8.53.

(R)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-1,2,4-triazol-1-yl)propan-2-ol
(32a)

Prepared with 29 and 1,2,4-triazole at reflux for 24 h. Yield: 67%, colorless oil.
[α]20

D = −40.0 (c 0.265, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.85–0.94 (1H, m), 0.96
(3H, d, J = 6.6 Hz), 0.97 (3H, s), 1.05–1.13 (1H, m), 1.40–1.45 (1H, m), 1.50 (1H, td, J = 9.7,
3.1 Hz), 1.63 (1H, brs), 1.72 (1H, d, J = 13.0 Hz), 1.93 (1H, dd, J = 13.2, 3.2 Hz), 2.28 (1H, d,
J = 12.1 Hz), 3.39 (1H, td, J = 10.5, 3.8 Hz), 4.12 (2H, q, J = 13.8 Hz), 4.26 (1H, d, J = 11.0 Hz),
4.72 (1H, d, J = 10.9 Hz), 4.98 (1H, s), 7.26–7.40 (5H, m), 7.88 (1H, s), 7.91 (1H, s). 13C NMR
(125 MHz, CDCl3): δ = 22.1, 23.4, 26.5, 31.5, 34.6, 39.9, 50.8, 57.1, 70.3, 74.4, 80.3, 128.5, 128.6,
129.0, 137.5, 144.8, 151.1. Found: C, 69.32; H, 8.24; N, 12.80. Anal. Calcd for C19H27N3O2:
C, 69.27; H, 8.26; N, 12.76.

(S)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-1-(1H-1,2,4-triazol-1-yl)propan-2-ol
(32b)

Prepared with 29 and 1,2,4-triazole at reflux for 24 h. Yield: 83%, colorless oil.
[α]20

D = −41.0 (c 0.285, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.78–0.87 (1H, m), 0.89–0.96
(1H, m), 0.93 (3H, d, J = 6.5 Hz), 0.97–1.04 (1H, m), 1.13 (3H, s), 1.15–1.21 (1H, m), 1.35–1.45
(1H, m), 1.62 (1H, s), 1.66 (1H, d, J = 13.1 Hz), 2.09 (1H, dd, J = 12.8, 3.1 Hz), 2.23 (1H, d,
J = 12.1 Hz), 3.59 (1H, td, J = 10.4, 3.8 Hz), 3.99 (1H, d, J = 14.2 Hz), 4.26 (1H, d, J = 14.1 Hz),
4.39 (1H, d, J = 11.0 Hz), 4.67 (1H, d, J = 11.0 Hz), 5.46 (1H, s), 7.29–7.35 (5H, m), 7.87 (1H,
s), 8.31 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 21.5, 22.1, 27.0, 31.4, 34.0, 39.5, 47.4, 58.0,
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70.2, 74.8, 80.4, 128.3, 128.4, 128.8, 137.2, 145.2, 150.7. Found: C, 69.25; H, 8.28; N, 12.73.
Anal. Calcd for C19H27N3O2: C, 69.27; H, 8.26; N, 12.76.

(S)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-imidazol-1-yl)propane-1,2-
diol (35a)

Prepared with 33 and imidazole at reflux for 12 h. Yield: 67%, white crystal, m.p. = 135–
136 ◦C. [α]20

D = −42.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.92–1.02 (2H, m),
0.96 (3H, d, J = 6.5 Hz), 1.03–1.09 (1H, m), 1.35–1.43 (1H, m), 1.69–1.72 (1H, m), 1.83–1.92
(3H, m), 2.27 (1H, d, J = 10.9 Hz), 3.21 (1H, d, J = 11.3 Hz), 3.32 (1H, td, J = 10.6, 4.0 Hz), 3.39
(1H, d, J = 11.2 Hz), 3.90 (2H, s), 4.21 (1H, d, J = 11.0 Hz), 4.64 (1H, d, J = 11.0 Hz), 6.93 (1H,
s), 7.02 (1H, s), 7.30–7.39 (5H, m), 7.44 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 22.1, 26.5,
31.3, 34.4, 40.1, 46.7, 50.5, 65.8, 70.0, 76.3, 79.7, 121.0, 128.5, 128.6, 128.9, 129.0, 137.2, 138.5.
Found: C, 69.77; H, 8.17; N, 8.10. Anal. Calcd for C20H28N2O3: C, 69.74; H, 8.19; N, 8.13.

(R)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-imidazol-1-yl)propane-1,2-
diol (35b)

Prepared with 33 and imidazole at reflux for 12 h. Yield: 50%, colorless oil. [α]20
D = −45.0

(c 0.185, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.78–0.87 (1H, m), 0.88–0.96 (1H, m), 0.92
(3H, d, J = 6.5 Hz), 1.13–1.19 (1H, m), 1.35–1.41 (2H, m), 1.67 (1H, d, J = 13.2 Hz), 1.75 (1H,
dd, J = 13.1, 2.9 Hz), 1.85–2.10 (2H, m), 2.22 (1H, d, J = 12.3 Hz), 3.40 (1H, d, J = 11.2 Hz),
3.50 (1H, t, J = 11.1 Hz), 3.70 (1H, td, J = 10.5, 3.8 Hz), 3.90 (1H, d, J = 14.4 Hz), 4.06 (1H, d,
J = 14.5 Hz), 4.37 (1H, d, J = 11.1 Hz), 4.66 (1H, d, J = 11.1 Hz), 7.01 (2H, s), 7.25–7.37 (5H,
m), 7.54 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 22.0, 26.7, 31.4, 34.2, 39.9, 45.6, 51.6, 64.7,
70.2, 76.5, 80.0, 121.0, 128.4, 128.5, 128.6, 128.9, 137.1, 138.7. Found: C, 69.73; H, 8.22; N, 8.17.
Anal. Calcd for C20H28N2O3: C, 69.74; H, 8.19; N, 8.13.

(S)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-1,2,4-triazol-1-yl)propane-1,2-
diol (36a)

Prepared with 33 and 1,2,4-triazole at reflux for 12 h. Yield: 58%, colorless oil.
[α]20

D = −32.0 (c 0.26, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.88–1.01 (2H, m), 0.97
(3H, d, J = 6.5 Hz), 1.07–1.15 (1H, m), 1.39–1.46 (1H, m), 1.70–1.80 (2H, m), 1.95–2.00 (1H,
m), 2.30 (1H, dd, J = 12.3, 1.5 Hz), 3.28 (2H, dd, J = 13.5, 12.2 Hz), 3.46 (1H, td, J = 10.5,
4.0 Hz), 4.03 (1H, d, J = 14.1 Hz), 4.27 (1H, d, J = 11.1 Hz), 4.28 (1H, d, J = 14.1 Hz), 4.70 (1H,
d, J = 11.1 Hz), 7.33–7.42 (5H, m), 7.91 (1H, s), 7.92 (1H, s). 13C NMR (125 MHz, CDCl3):
δ = 22.1, 26.1, 31.2, 34.5, 40.0, 48.2, 52.9, 66.1, 70.0, 76.1, 79.5, 128.7, 129.0, 137.2, 151.2. Found:
C, 66.10; H, 7.89; N, 12.12. Anal. Calcd for C19H27N3O3: C, 66.06; H, 7.88; N, 12.16.

(R)-2-((1R,2R,4R)-2-(Benzyloxy)-4-methylcyclohexyl)-3-(1H-1,2,4-triazol-1-yl)propane-
1,2-diol (36b)

Prepared with 33 and 1,2,4-triazole at reflux for 12 h. Yield: 50%, colorless oil.
[α]20

D = −32.0 (c 0.24, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.79–0.97 (3H, m), 0.93 (3H,
d, J = 6.5 Hz), 1.07–1.17 (1H, m), 1.26 (2H, s), 1.28–1.43 (4H, m), 1.69 (1H, d, J = 13.2 Hz),
2.06–2.09 (1H, m), 2.23 (1H, d, J = 12.2 Hz), 3.43–3.49 (2H, m), 3.68 (1H, td, J = 10.5, 3.9 Hz),
4.23 (1H, d, J = 14.4 Hz), 4.35 (1H, d, J = 14.3 Hz), 4.36 (1H, d, J = 11.0 Hz), 4.66 (1H, d,
J = 11.1 Hz), 5.50 (1H, brs), 7.25–7.37 (5H, m), 7.91 (1H, s), 8.23 (1H, s). 13C NMR (125 MHz,
CDCl3): δ = 22.0, 26.4, 29.8, 31.3, 34.3, 39.9, 46.2, 54.3, 64.4, 70.2, 76.4, 80.0, 128.4, 128.5, 128.9,
137.1, 150.6. Found: C, 66.03; H, 7.92; N, 12.18. Anal. Calcd for C19H27N3O3: C, 66.06; H,
7.88; N, 12.16.
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(S)-1-(Benzyloxy)-2-((1R,2R,4R)-2-(benzyloxy)-4-methylcyclohexyl)-3-(1H-imidazol-1-
yl)propan-2-ol (39a)

Prepared with 35a and imidazole at reflux for 48 h. Yield: 67%, colorless oil. [α]20
D = −72.0

(c 0.28, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86–1.10 (3H, m), 0.96 (3H, d, J = 6.5 Hz),
1.37–1.42 (1H, m), 1.69 (1H, d, J = 12.6 Hz), 1.79 (1H, td, J = 12.6, 3.2 Hz), 2.00–2.04 (2H, m),
2.28 (1H, d, J = 12.1 Hz), 3.13 (2H, d, J = 8.9 Hz), 3.39 (1H, td, J = 10.6, 3.9 Hz), 3.83 (1H, d,
J = 13.9 Hz), 4.07 (1H, d, J = 14.0 Hz), 4.24 (1H, d, J = 11.0 Hz), 4.33 (1H, d, J = 11.8 Hz), 4.43
(1H, d, J = 11.8 Hz), 4.70 (1H, d, J = 11.1 Hz), 4.82 (1H, brs), 6.90 (1H, s), 7.00 (1H, s), 7.25–7.37
(10H, m), 7.47 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 22.1, 26.4, 31.4, 34.6, 40.0, 49.0, 51.4,
70.2, 73.6, 75.6, 79.8, 121.4, 127.9, 128.6, 128.9, 137.3, 137.9. Found: C, 74.65; H, 7.93; N, 6.48.
Anal. Calcd for C27H34N2O3: C, 74.62; H, 7.89; N, 6.45.

(R)-1-(Benzyloxy)-2-((1R,2R,4R)-2-(benzyloxy)-4-methylcyclohexyl)-3-(1H-imidazol-1-
yl)propan-2-ol (39b)

Prepared with 35a and imidazole at reflux for 48 h. Yield: 83%, colorless oil. [α]20
D = −48.0

(c 0.285, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.76–0.95 (3H, m), 0.93 (1H, d, J = 6.5 Hz),
1.38–1.50 (3H, m), 1.65 (1H, d, J = 13.2 Hz), 1.73 (1H, d, J = 10.2 Hz), 1.96 (2H, brs), 2.20 (1H, d,
J = 12.3 Hz), 3.11 (1H, d, J = 9.7 Hz), 3.32 (1H, d, J = 9.7 Hz), 3.54 (1H, td, J = 10.2, 3.8 Hz), 3.96
(1H, d, J = 14.0 Hz), 4.12 (1H, d, J = 14.1 Hz), 4.16 (1H, d, J = 11.0 Hz), 4.34 (1H, d, J = 11.9 Hz),
4.49 (1H, d, J = 11.9 Hz), 4.56 (1H, d, J = 11.0 Hz), 5.17 (1H, s), 7.00 (1H, s), 7.01 (1H, s), 7.21–7.38
(10H, m), 7.55 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 22.1, 26.7, 31.4, 34.6, 39.8, 48.1, 52.2,
70.1, 72.1, 73.7, 75.3, 80.5, 121.3, 128.2, 128.6, 128.8, 137.2, 137.9, 138.7. Found: C, 74.60; H, 7.87;
N, 6.50. Anal. Calcd for C27H34N2O3: C, 74.62; H, 7.89; N, 6.45.

(S)-1-(Benzyloxy)-2-((1R,2R,4R)-2-(benzyloxy)-4-methylcyclohexyl)-3-(1H-1,2,4-triazol-1-
yl)propan-2-ol (40a)

Prepared with 35a and 1,2,4-triazole at reflux for 48 h. Yield: 83%, colorless oil.
[α]20

D = −58.0 (c 0.265, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84–0.97 (2H, m), 0.94
(3H, d, J = 6.5 Hz), 1.04–1.13 (1H, m), 1.38–1.45 (1H, m), 1.67 (1H, d, J = 12.8 Hz), 1.78 (1H,
td, J = 12.5, 3.2 Hz), 1.90–1.94 (1H, m), 2.25 (1H, d, J =12.3 Hz), 2.59 (2H, s), 3.18 (1H, d,
J = 10.0 Hz), 3.32 (1H, d, J = 10.0 Hz), 3.43 (1H, td, J = 10.6, 3.9 Hz), 4.18 (1H, d, J = 14.1 Hz),
4.20 (1H, d, J = 10.9 Hz), 4.33 (1H, d, J = 14.0 Hz), 4.40 (1H, d, J = 11.9 Hz), 4.50 (1H, d,
J = 11.9 Hz), 4.64 (1H, d, J = 10.9 Hz), 5.02 (1H, brs), 7.25–7.36 (10H, m), 7.88 (1H, s), 7.97
(1H, s). 13C NMR (125 MHz, CDCl3): δ = 22.1, 26.1, 31.4, 34.5, 40.1, 47.7, 54.3, 70.1, 73.1,
73.8, 75.9, 79.5, 127.9, 128.0, 128.4, 128.5, 128.6, 128.9, 137.5, 138.0, 150.5. Found: C, 71.69; H,
7.67; N, 9.66. Anal. Calcd for C26H33N3O3: C, 71.70; H, 7.64; N, 9.65.

(R)-1-(Benzyloxy)-2-((1R,2R,4R)-2-(benzyloxy)-4-methylcyclohexyl)-3-(1H-1,2,4-triazol-1-
yl)propan-2-ol (40b)

Prepared with 35a and 1,2,4-triazole at reflux for 48 h. Yield: 83%, colorless oil.
[α]20

D = −57.0 (c 0.265, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.74–0.95 (3H, m), 0.91 (3H,
d, J = 6.5 Hz), 1.17–1.42 (6H, m), 1.64 (1H, d, J = 13.7 Hz), 2.06 (1H, d, J = 10.1 Hz), 2.18
(1H, d, J = 12.2 Hz), 3.28 (1H, d, J = 9.8 Hz), 3.41 (1H, d, J = 9.7 Hz), 3.59 (1H, td, J = 10.2,
3.8 Hz), 4.19 (1H, d, J = 10.9 Hz), 4.27 (1H, d, J = 14.3 Hz), 4.40 (1H, d, J = 14.3 Hz), 4.41
(1H, d, J = 12.0 Hz), 4.55 (1H, d, J = 11.9 Hz), 456 (1H, d, J = 10.9 Hz), 5.35 (1H, s), 7.21–7.37
(10H, m), 7.89 (1H, s), 8.28 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 22.1, 26.6, 31.4, 34.5,
39.9, 47.4, 54.8, 70.1, 72.6, 73.8, 75.8, 80.4, 128.0, 128.1, 128.2, 128.4, 128.7, 137.3, 138.0, 150.7.
Found: C, 71.73; H, 7.60; N, 9.62. Anal. Calcd for C26H33N3O3: C, 71.70; H, 7.64; N, 9.65.
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(1R,2R,5R)-2-((S)-1-(Benzyloxy)-2-hydroxy-3-(1H-imidazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (42a)

Prepared with 35b and imidazole at reflux for 12 h. Yield: 58%, white crystal,
m.p. = 133–134 ◦C. [α]20

D = −22.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84–0.92
(1H, m), 0.92 (3H, d, J = 6.5 Hz), 0.97–1.07 (2H, m), 1.39–1.47 (1H, m), 1.65–1.77 (2H, m),
1.84–1.88 (1H, m), 1.94–1.97 (H, m), 3.16 (1H, d, J = 9.5 Hz), 3.28 (1H, d, J = 9.5 Hz), 3.64
(1H, td, J = 10.5, 4.2 Hz), 4.11 (1H, d, J = 14.3 Hz), 4.20 (1H, d, J = 14.2 Hz), 4.38 (1H, d,
J = 11.8 Hz), 4.48 (1H, d, J = 11.8 Hz), 7.00 (2H, s), 7.25–7.35 (5H, m), 7.53 (1H, s). 13C NMR
(125 MHz, CDCl3): δ = 21.9, 26.2, 31.4, 34.6, 45.5, 49.7, 50.6, 72.0, 73.3, 73.7, 76.5, 121.2,
127.9, 128.1, 128.6, 128.7, 137.7, 138.8. Found: C, 69.71; H, 8.16; N, 8.15. Anal. Calcd for
C20H28N2O3: C, 69.74; H, 8.19; N, 8.13.

(1R,2R,5R)-2-((R)-1-(Benzyloxy)-2-hydroxy-3-(1H-imidazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (42b)

Prepared with 35b and imidazole at reflux for 12 h. Yield: 58%, colorless oil. [α]20
D = −8.0

(c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.77 (1H, q, J = 11.6 Hz), 0.89 (3H, d,
J = 6.4 Hz), 0.99 (1H, d, J = 11.6 Hz), 1.26–1.42 (3H, m), 1.64 (1H, d, J = 13.3 Hz), 1.69 (1H, d,
J = 8.5 Hz), 1.91 (1H, d, J = 12.1 Hz), 3.38 (1H, d, J = 9.7 Hz), 3.57 (1H, d, J = 9.6 Hz), 3.80 (1H, t,
J = 7.4 Hz), 4.02 (1H, d, J = 14.2 Hz), 4.16 (1H, d, J = 14.2 Hz), 4.49 (1H, d, J = 11.9 Hz), 4.55 (1H,
d, J = 11.8 Hz), 6.98 (1H, s), 6.99 (1H, s), 7.25–7.38 (5H, m), 7.52 (1H, s). 13C NMR (125 MHz,
CDCl3): δ = 21.9, 26.4, 31.5, 34.5, 45.3, 48.3, 52.4, 72.2, 72.5, 73.9, 76.3, 121.1, 127.9, 128.1, 128.3,
128.7, 137.8, 138.7. Found: C, 69.77; H, 8.17; N, 8.10. Anal. Calcd for C20H28N2O3: C, 69.74; H,
8.19; N, 8.13.

(1R,2R,5R)-2-((S)-1-(Benzyloxy)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (43a)

Prepared with 35b and 1,2,4-triazole at reflux for 12 h. Yield: 67%, white crystal,
m.p. = 53–54 ◦C. [α]20

D = −16.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.80–0.89
(1H, m), 0.91 (1H, d, J = 6.5 Hz), 0.96–1.07 (2H, m), 1.21–1.46 (3H, m), 1.62–1.68 (2H, m),
181–1.85 (1H, m), 1.95–1.99 (1H, m), 3.27 (1H, d, J = 9.7 Hz), 3.34 (1H, d, J = 9.7 Hz), 3.58
(1H, td, J = 10.6, 4.1 Hz), 4.37–4.53 (4H, m), 7.25–7.36 (5H, m), 7.91 (1H, s), 8.17 (1H, s). 13C
NMR (125 MHz, CDCl3): δ = 22.0, 25.8, 31.4, 34.5, 45.4, 48.9, 53.6, 71.7, 72.8, 73.8, 76.5, 127.9,
128.1, 128.6, 137.5, 151.3. Found: C, 66.10; H, 7.85; N, 12.12. Anal. Calcd for C19H27N3O3:
C, 66.06; H, 7.88; N, 12.16.

(1R,2R,5R)-2-((R)-1-(Benzyloxy)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propan-2-yl)-5-
methylcyclohexanol (43b)

Prepared with 35b and 1,2,4-triazole at reflux for 12 h. Yield: 58%, colorless oil.
[α]20

D = −6.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.71–0.79 (1H, m), 0.88 (1H,
d, J = 6.5 Hz), 0.93 (1H, q, J = 12.0 Hz), 1.26–1.29 (2H, m), 1.36–1.43 (1H, m), 1.63 (1H, d,
J = 13.2 Hz), 1.88–1.94 (2H, m), 3.45 (1H, d, J = 9.8 Hz), 3.61 (1H, d, J = 9.8 Hz), 3.79 (1H, td,
J = 10.4, 4.1 Hz), 4.37 (1H, d, J = 14.3 Hz), 4.41 (1H, d, J = 14.3 Hz), 4.50 (1H, d, J = 11.9 Hz),
4.56 (1H, d, J = 11.9 Hz), 7.26–7.37 (5H, m), 7.89 (1H, s), 8.21 (1H, s). 13C NMR (125 MHz,
CDCl3): δ = 21.9, 26.2, 31.4, 34.5, 45.2, 48.2, 54.7, 72.2, 74.0, 127.9, 128.1, 128.6, 137.7, 145.0,
151.1. Found: C, 66.03; H, 7.90; N, 12.19. Anal. Calcd for C19H27N3O3: C, 66.06; H, 7.88; N,
12.16.

4.2.7. General Procedure for Debenzylation

A suspension of palladium-on-carbon (5% Pd/C, 0.22 g) in MeOH (50 mL) was added
to (+)-neoisopulegol-based O-benzyl derivatives (14.0 mmol) in MeOH (100 mL) and the
mixture was stirred under a H2 atmosphere (1 atm) at room temperature. After completion
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of the reaction (as monitored by TLC, 24 h), the mixture was filtered through a Celite pad
and the solution was evaporated to dryness. The crude products were recrystallized in
diethyl ether, resulting in primary aminodiols (9a–b) and aminotriols (16a–b).

(1S,2R,5R)-2-((R)-1-Amino-2-hydroxypropan-2-yl)-5-methylcyclohexanol (9a)

Prepared with 5a. Yield: 91%, white crystal, m.p. = 100–110 ◦C [α]20
D = +14.0 (c 0.25,

MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.75–0.85 (2H, m), 0.80 (3H, d, J = 5.3 Hz), 0.99
(1H, d, J = 12.1 Hz), 1.17 (3H, s), 1.31 (1H, d, J = 11.7 Hz), 1.45 (1H, q, J = 10.9 Hz), 1.58 (1H,
d, J = 10.4 Hz), 1.65–1.80 (3H, m), 2.70 (1H, d, J = 12.7 Hz), 2.89 (1H, d, J = 12.7 Hz), 4.04
(1H, s), 4.95 (1H, brs). 13C NMR (125 MHz, DMSO-d6): δ = 20.1, 22.2, 23.3, 25.4, 34.7, 42.8,
45.9, 49.0, 65.1, 71.3. Found: C, 64.09; H, 11.35; N, 7.50. Anal. Calcd for C10H21NO2: C,
64.13; H, 11.30; N, 7.48.

(1S,2R,5R)-2-((S)-1-Amino-2-hydroxypropan-2-yl)-5-methylcyclohexanol (9b)

Prepared with 5b. Yield: 91%, white crystal, m.p. = 138–140 ◦C. [α]20
D = +10.0 (c 0.25,

MeOH). 1H NMR (500 MHz, DMSO–d6): δ = 0.82 (3H, d, J = 5.7 Hz), 0.81–0.88 (1H, m), 1.02
(1H, t, J = 12.5 Hz), 1.17 (3H, s), 1.32 (1H, d, J = 10.2 Hz), 1.45–1.55 (2H, m), 1.65–1.80 (3H,
m), 2.62 (1H, d, J = 12.7 Hz), 2.91 (1H, d, J = 12.8 Hz), 4.12 (1H, s), 4.86 (1H, brs), 6.85 (3H,
brs). 13C NMR (125 MHz, DMSO-d6): δ = 20.7, 22.0, 25.1, 25.2, 34.7, 42.4, 45.2, 49.5, 64.3,
70.9. Found: C, 64.15; H, 11.27; N, 7.45. Anal. Calcd for C10H21NO2: C, 64.13; H, 11.30; N,
7.48.

(S)-3-Amino-2-((1R,2S,4R)-2-hydroxy-4-methylcyclohexyl)propane-1,2-diol (16a)

Prepared with 12a, 20a or 25a. Yield: 78% (12a), 94% (20a), 91% (25a), white crystal,
m.p. = 107–106 ◦C. [α]20

D = +18.0 (c 0.30, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.80
(3H, d, J = 6.6 Hz), 0.79–0.90 (1H, m), 0.93–1.00 (1H, m), 1.38–1.41 (1H, m), 1.45–1.54 (2H,
m), 1.60–1.70 (2H, m), 1.73–1.85 (1H, m), 2.60 (1H, d, J = 12.6 Hz), 3.30 (2H, q, J = 10.9 Hz),
4.07 (1H, s). 13C NMR (125 MHz, DMSO-d6): δ = 20.3, 22.4, 25.4, 35.1, 42.3, 44.1, 45.2, 64.4,
65.2, 74.9. Found: C, 59.10; H, 10.38; N, 6.93. Anal. Calcd for C10H21NO3: C, 59.08; H, 10.41;
N, 6.89.

(R)-3-Amino-2-((1R,2S,4R)-2-hydroxy-4-methylcyclohexyl)propane-1,2-diol (16b)

Prepared with 20b or 25b. Yield: 94% (20b), 91% (25b), white crystal, m.p. = 80–82 ◦C.
[α]20

D = +13.0 (c 0.30, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.80 (3H, d, J = 6.6 Hz),
0.82–0.88 (1H, m), 0.94–0.99 (1H, m), 1.44–1.57 (3H, m), 1.64–1.69 (2H, m), 1.73–1.77 (1H,
m), 2.57 (2H, q, J = 12.7 Hz), 3.32 (1H, d, J = 11.0 Hz), 3.39 (1H, d, J = 11.0 Hz), 4.00 (1H,
s). 13C NMR (125 MHz, DMSO-d6): δ = 19.8, 22.4, 25.4, 35.1, 42.4, 44.7, 45.3, 64.2, 64.8, 75.3.
Found: C, 59.05; H, 10.43; N, 6.87. Anal. Calcd for C10H21NO3: C, 59.08; H, 10.41; N, 6.89.

4.3. General Procedure for Antimicrobial Assays

For the antimicrobial analyses the pure compounds were first dissolved in MeOH
and diluted with H2O to two concentration levels (400 µg mL−1 and 40 µg mL−1) keeping
the final MeOH content at 10%. Then these solutions were investigated in microdilu-
tion assay with two Gram-positive bacteria including Bacillus subtilis SZMC 0209 and
Staphylococcus aureus SZMC 14611, two Gram-negative bacteria Escherichia coli SZMC 6271
and Pseudomonas aeruginosa SZMC 23290, as well as two yeast strains Candida albicans
SZMC 1533 and C. krusei SZMC 1352 according to the M07-A10 CLSI guideline [92] and
our previous work [93]. Suspensions of the test microbes were prepared from overnight
cultures cultivated in ferment broth (bacteria: 10 g L−1 peptone, 5 g L−1 NaCl, 5 g L−1

yeast extract; yeast: 20 g L−1 peptone, 10 g L−1 yeast extract, 20 g L−1 glucose) at 37 ◦C.
Then the concentrations of the suspensions were set to 2 × 105 cells mL−1 with sterile
media. For the assay, 96-well plates were prepared by dispensing into each well 100 µL
of suspension containing the bacterial or yeast cells and 50 µL of sterile broth as well as
50 µL of the test solutions and incubated for 24 h at 37 ◦C. The mixture of 150 µL broth
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and 50 µL of 10% methanol was used as the blank sample for the background correction,
while 100 µL of microbial suspension supplemented with 50 µL sterile broth and 50 µL of
10% methanol was applied as negative control. The positive control contained ampicillin
(Sigma) or nystatin (Sigma) for bacteria or fungi, respectively, at two final concentration lev-
els (100 µg mL−1 and 10 µg mL−1). The inhibitory effects of the derivatives were observed
spectrophotometrically at 620 nm after the incubation, and inhibition was calculated as the
percentage of the positive control after blank correction.

The MIC was also determined for certain compounds, which were based on the broth
microdilution method described above and in the M07-A10 CLSI guideline [92]. The com-
pounds were prepared in two-fold dilutions in 10% MeOH covering the final concentration
range of 0.78–100.00 µg/mL. The MIC was observed as the lowest concentration level of
the compound that completely inhibits the growth of the organism in microdilution wells
as detected by the unaided eye. All experiments were repeated three times.

5. Conclusions

The results of the present study establishing antimicrobial and antifungal behavior
of some synthetic derivatives are promising with respect to possible clinical application.
It is strongly believed that it will serve a suitable basis for future research on developing
alternative antibiotics focusing on the development of better antibiotics against infectious
organisms. The obtained results indicate that the di-O-benzyl derivatives may have con-
siderable potential for therapeutic application as novel drug candidates against bacterial
and fungal infections. Based on the results obtained, some of the studied compounds have
proved to be promising candidates for additional efficacy evaluation.

Furthermore, in vitro studies have clearly shown that the O-benzyl substituent on the
cyclohexyl ring in aminodiol and aminotriol derivatives is essential to have an antimicrobial
effect whereas the stereochemistry of the O-benzyl substituent on the cyclohexane ring in
the aminodiol and aminotriol function has no influence on the antimicrobial effect.

In addition, the antifungal activity was found to be affected by the stereochemistry
of the derivatives, namely the S-isomers were more potent than the corresponding R-
isomers against fungi while the antibacterial effect did not distinguish between the different
stereoisomers.

In the next stage of our project, we plan to obtain N-benzyl and imidazole O-benzyl
analogs, preferably different substitutions on N-benzyl and imidazole systems, to increase
their antimicrobial activities on various microorganisms. For the optimized compounds,
additionally, docking studies and molecular dynamics study will also be performed to get
an insight into the dynamics of ligand interaction.
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