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Simple Summary: Esophageal cancer (EC) is the eighth most frequent cancer worldwide, with a
poor prognosis. Current imaging modalities for staging and follow-up mainly include computed
tomography (CT), positron emission tomography (PET)/CT, and endoscopic ultrasound. Magnetic
resonance imaging (MRI), which is a non-irradiating and non-invasive modality, can provide identifi-
cation of the esophageal wall and esophagogastric junction. MRI has shown encouraging capabilities
in regional and local staging of EC as well as in the assessment of treatment response to therapy.
Technical refinements in MRI technique and sequences overtime have contributed to its increasing
diagnostic performance as well as its generalizability. MRI could become a routine imaging technique
for EC management in the future, alone or in combination with other modalities.

Abstract: Esophageal cancer (EC) is the eighth more frequent cancer worldwide, with a poor progno-
sis. Initial staging is critical to decide on the best individual treatment approach. Current modalities
for the assessment of EC are irradiating techniques, such as computed tomography (CT) and positron
emission tomography/CT, or invasive techniques, such as digestive endoscopy and endoscopic ultra-
sound. Magnetic resonance imaging (MRI) is a non-invasive and non-irradiating imaging technique
that provides high degrees of soft tissue contrast, with good depiction of the esophageal wall and
the esophagogastric junction. Various sequences of MRI have shown good performance in initial
tumor and lymph node staging in EC. Diffusion-weighted MRI has also demonstrated capabilities
in the evaluation of tumor response to chemoradiotherapy. To date, there is not enough data to
consider whole body MRI as a routine investigation for the detection of initial metastases or for
prediction of distant recurrence. This narrative review summarizes the current knowledge on MRI
for the management of EC.

Keywords: esophageal cancer; magnetic resonance imaging; staging

1. Introduction

According to the global cancer observatory, esophageal cancer (EC) is currently the
eighth most common cancer worldwide and the sixth most common cause of death by
cancer (https://gco.iarc.fr/, accessed on 17 December 2021). About 600,000 cases were
diagnosed in 2020, with more than 540,000 deaths. Both incidence and mortality rates vary
greatly across countries [1]. Until recently, surgery and the combination of chemoradiother-
apy have been the main treatments for EC in the localized setting. The recent CheckMate
577 trial has shown improved disease-free survival for patients treated with nivolumab,
an immune checkpoint inhibitor, in the adjuvant setting of operated EC after neoadjuvant
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chemoradiotherapy [2]. In the metastatic setting, chemotherapy and immune checkpoint
inhibitors are the main available treatments [3,4].

Upon diagnosis, clinical and radiological staging is crucial to propose the optimal
treatment strategy to patients. Several imaging techniques, including computed tomog-
raphy (CT), positron emission tomography (PET)/CT, endoscopic ultrasound (EUS), as
well as esophagogastroduodenoscopy, are recommended by European guidelines in the
management of EC [5,6]. A preoperative CT classification has been proposed by Bosset et al.
(cTNM) [7]. The TNM staging system, provided by the American Joint Committee on
Cancer (AJCC) and the International Union Against Cancer (UICC), is used for pathologic
tumor classification of the disease [8]. Contrary to other modalities, magnetic resonance
imaging (MRI) is a non-irradiating and non-invasive technique. It also provides excellent
soft-tissue contrast. It is not currently a routine examination for the management of EC
because of its relatively low availability and its technical limitations. Nevertheless, it
seems a promising technique for tumoral staging, delineation of target volumes before
chemoradiotherapy, response to treatment and prediction of recurrence. Improvement of
MRI modalities over the years, and the development of a larger choice of sequences, have
contributed to enhancing MRI performance in EC.

The purpose of this narrative review was to sum up the current evidence on the role
of MRI in the management of EC.

2. MRI Modalities for the Esophagus
2.1. Major Technical Developments in MRI of the Esophagus Overtime

Measurements and description of the normal esophagus in the sagittal view were first
assessed in 78 patients using electrocardiogram (ECG)-gated MRI. In 2004, Manabe et al.
compared T1-weighted ultrafast gradient echo (TFE) MRI and T1-weighted fast field echo
(FFE) MRI in 20 healthy volunteers, with the aim to delineate the esophageal passage under
dynamic conditions [9]: The fast field echo images proved superior in terms of signal to
noise ratio and overall quality [9]. The use of an external surface coil and cardiac gating
with T2-weighted fast spin-echo (FSE) sequences was shown in 2006 to further improve
the signal of the quality of esophageal MRI, and the speed of acquisition [10]. Later, an ex
vivo study using high field MRI with a similar protocol helped precisely define the MRI
anatomy of the posterior mediastinum [11]. Similarly, in a study on 33 operated patients
with EC, preoperative high-resolution T2-weighted FSE sequence provided detailed images
and comparison with histology findings showed good correlation between the degree
of esophageal wall infiltration and pathological T-staging [12]. Furthermore, ultra-high-
resolution T2-weighted MRI at 7.0-T provided clear definition of the esophageal wall and
excellent accuracy for the T staging [13]. In 2017, pre-treatment motion-triggered MRI was
used to improve the description of the periesophageal tissue [14].

Dynamic MRI of the esophagus, using oral administration of various contrast agents,
has been proposed to assess the esophageal peristalsis on sagittal images [15]. Gadopente-
tate dimeglumine mixed with barium [16], ferric ammonium citrate-cellulose paste [17],
buttermilk spiked with gadolinium chelate [15], concentrated pineapple juice mixed with
potato starch [18] were tested with satisfactory results, allowing to describe the esophagus
in the sagittal plane over a mean of 16 cm, and define normal values for the esophageal
transit time [19,20]. Noticeably, the latter intraluminal agent provided a similar image
quality to those obtained with paramagnetic contrast agents.

2.2. How We Do It in Our Center

In our center, we obtain T1-weighted images in the coronal and axial planes before
and after intravenous administration of a gadolinium chelate; then T2-weighted single shot
spine echo sequences in the axial and coronal plane, and dynamic kinematic acquisition of
steady-states sequences are obtained in the oblique plane, parallel to the esophagogastric
junction. Patients are asked to swallow water through a straw during the dynamic acquisi-
tion phase. This is repeated several times in order to visualize the esophageal contractions.
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The sequences parameters are presented in the Table 1. The correct placement of sagittal
oblique kinematic sequences is of paramount importance to visualize the esophagus and
the esophagogastric junction. Indeed, the presence of the heart in the acquisition box will
lead to motion artifacts. Morphological signs are analyzed on T2 weighed images and
steady state cine sequences.

We present in Figures 1 and 2 the results of different modalities used for initial staging
of EC in two different patients.

Table 1. How we do it in our center: different magnetic resonance imaging sequence parameters at
1.5 T (Siemens Aera, vb20a).

Sequence Parameter T2-Single Shot TSE Steady States Diffusion
(EPI)

T1-Weighted before and
after Gadolinium Chelate

Plane Axial and coronal Oblique Axial Axial and coronal

TE/TR (ms) 93/100 1.71/433 80/7900 2.19/4.85

Flip angle (◦) 150 60 90 10

FOV (mm) 450 × 450 360 × 360 420 × 380 380 × 308

Matrix size 384 × 269 256 × 256 200 × 200 320 × 240

Slice thickness (mm) 6 10 7 2

Voxel size (mm3) 1.2 × 1.2 × 6 0.7 × 0.7 × 10 1.1 × 1.1 × 7 1.2 × 1.2 × 2

Number of slices 23 1 40 80

Inter-slices gap (%) 30 NA 20 20

TSE: turbo spin echo, EPI: echo planar imaging, TE: echo time, TR: repetition time, FOV: field of view, NA: not applicable.
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Figure 1. Initial staging for a 66-year-old woman with T2N0M0 esophageal adenocarcinoma: (A) 

endoscopic view of an elevated neoplastic lesion arising on a Barrett’s esophagus on the left poste-

rior side of the esophagus, 34 cm from the dental arch (arrow). (B) Endoscopic ultrasound showing 

the hypoechoic, well-limited neoplastic lesion in close contact with the muscularis propria without 

regional lymph nodes (arrow). (C) Contrast-enhanced computed tomography image obtained at 70 

s after intravenous administration of iodinated contrast material and without oral contract material 

in the axial plane shows irregular esophagus (arrow) but no definite lesion. (D) Axial T2-weighted 

single shot magnetic resonance (MR) images. after oral administration of water show a low signal 

irregular anterior lesion (arrow). (E) Coronal contrast-enhanced T1 weighted images confirm the 

lesion that demonstrates an early contrast uptake (arrow). (F) Sagittal steady-state MR images con-

firm the low signal lesion (arrow) and allow to precisely see its location. 
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doscopic view of an elevated neoplastic lesion arising on a Barrett’s esophagus on the left posterior
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side of the esophagus, 34 cm from the dental arch (arrow). (B) Endoscopic ultrasound showing
the hypoechoic, well-limited neoplastic lesion in close contact with the muscularis propria without
regional lymph nodes (arrow). (C) Contrast-enhanced computed tomography image obtained at 70 s
after intravenous administration of iodinated contrast material and without oral contract material
in the axial plane shows irregular esophagus (arrow) but no definite lesion. (D) Axial T2-weighted
single shot magnetic resonance (MR) images. after oral administration of water show a low signal
irregular anterior lesion (arrow). (E) Coronal contrast-enhanced T1 weighted images confirm the
lesion that demonstrates an early contrast uptake (arrow). (F) Sagittal steady-state MR images confirm
the low signal lesion (arrow) and allow to precisely see its location.
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Figure 2. Initial staging for a 77-year-old man with T3N1M0 esophageal adenocarcinoma. (A) 

Esophagram shows esophageal tumor of the lower third of the esophagus responsible for marked 

luminal narrowing (arrow). (B) T2-weighted HASTE MR image in the axial plane shows esophageal 

tumor (arrow) with luminal narrowing (arrowhead). (C) Diffusion-weighted MR image in the axial 

plane obtained with high b value (b = 800 s/mm2) shows restricted diffusion (arrow) consistent with 

malignant esophageal tumor. Additional hyperintense lymph node is present (arrowhead). (D) T1-

weighted VIBE image in the axial plane obtained 30 s after intravenous administration of a gadolin-

ium-based contrast agent (gadoterate meglumine, Dotarem® , Guerbet, Villepinte, France) shows 

heterogeneous esophageal tumor (arrow) and enhancing lymph node (arrowhead). (E) T1-weighted 

VIBE image in the axial plane obtained 60 s after intravenous administration of a gadolinium-based 

contrast agent (gadoterate meglumine, Dotarem® , Guerbet) shows that the tumor is well delineated 

without spreading outside the adventitia (arrow). (F) MR angiography image in the oblique plane 

shows intact interface (arrows) between esophageal tumor and aorta. 

3. MRI and Esophageal Cancer (EC) Diagnosis and Staging 

3.1. Initial Tumor (T) Staging 

One of the major challenges in EC is the evaluation of local staging in order to choose 

the best treatment approach. For low stage EC, the optimal treatment between upfront 

surgery or administration of neoadjuvant therapy is still unclear and will be influenced 

by robust staging. 

Tumor (T) staging is often done with EUS. In 2008, a meta-analysis on preoperative 

EC including 49 studies found pooled sensitivities ranging from 81.6 to 92.4% for differ-

entiation of different T-stages, with a better performance in advanced (T4) disease [21]. 

Pooled specificities were 99.4% and 97.4% for T1 and T4 cancers, respectively [21]. In a 

more recent meta-analysis on preoperative ESCC, the overall accuracy of EUS for T-stag-

ing was 79% (95% CI: 88–94) [19]. EUS is superior to CT for evaluation of T-staging since 

CT cannot distinguish the different histological layers [20,22,23]. CT can be reliable when 

it comes to determining resectability by excluding high T-stages tumors [24,25]. 18F-fluoro-

deoxyglucose (18F-FDG) PET/CT has a limited role for T-staging due to its low spatial res-

olution and is mainly useful for the diagnosis of distant metastases [24,26]. Although the 

local and regional staging accuracy of EUS is greater than those of CT and PET [27], EUS 

is invasive and operator dependent, and sometimes limited by tumor stenosis [28]. 

Figure 2. Initial staging for a 77-year-old man with T3N1M0 esophageal adenocarcinoma. (A) Esopha-
gram shows esophageal tumor of the lower third of the esophagus responsible for marked luminal
narrowing (arrow). (B) T2-weighted HASTE MR image in the axial plane shows esophageal tumor
(arrow) with luminal narrowing (arrowhead). (C) Diffusion-weighted MR image in the axial plane ob-
tained with high b value (b = 800 s/mm2) shows restricted diffusion (arrow) consistent with malignant
esophageal tumor. Additional hyperintense lymph node is present (arrowhead). (D) T1-weighted
VIBE image in the axial plane obtained 30 s after intravenous administration of a gadolinium-based
contrast agent (gadoterate meglumine, Dotarem®, Guerbet, Villepinte, France) shows heterogeneous
esophageal tumor (arrow) and enhancing lymph node (arrowhead). (E) T1-weighted VIBE image
in the axial plane obtained 60 s after intravenous administration of a gadolinium-based contrast
agent (gadoterate meglumine, Dotarem®, Guerbet) shows that the tumor is well delineated without
spreading outside the adventitia (arrow). (F) MR angiography image in the oblique plane shows
intact interface (arrows) between esophageal tumor and aorta.

3. MRI and Esophageal Cancer (EC) Diagnosis and Staging
3.1. Initial Tumor (T) Staging

One of the major challenges in EC is the evaluation of local staging in order to choose
the best treatment approach. For low stage EC, the optimal treatment between upfront
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surgery or administration of neoadjuvant therapy is still unclear and will be influenced by
robust staging.

Tumor (T) staging is often done with EUS. In 2008, a meta-analysis on preoperative EC
including 49 studies found pooled sensitivities ranging from 81.6 to 92.4% for differentiation
of different T-stages, with a better performance in advanced (T4) disease [21]. Pooled
specificities were 99.4% and 97.4% for T1 and T4 cancers, respectively [21]. In a more
recent meta-analysis on preoperative ESCC, the overall accuracy of EUS for T-staging
was 79% (95% CI: 88–94) [19]. EUS is superior to CT for evaluation of T-staging since CT
cannot distinguish the different histological layers [20,22,23]. CT can be reliable when
it comes to determining resectability by excluding high T-stages tumors [24,25]. 18F-
fluorodeoxyglucose (18F-FDG) PET/CT has a limited role for T-staging due to its low spatial
resolution and is mainly useful for the diagnosis of distant metastases [24,26]. Although
the local and regional staging accuracy of EUS is greater than those of CT and PET [27],
EUS is invasive and operator dependent, and sometimes limited by tumor stenosis [28].

With this in mind, MRI seems a promising tool for the evaluation of T-staging in EC.
Various in vitro studies found that MRI could clearly describe the different layers of the
esophageal wall and had a high diagnostic accuracy for evaluating mural invasion [29,30].
Similar results were found in the ex-vivo setting with both high-resolution T2-weighted and
diffusion-weighted MRI (DWI) [31–33], as well as in the in vivo setting [12,13]. Improve-
ment of MRI modalities over the years has contributed in increasing the performance of
MRI diagnosis and staging in EC [34,35]. Nevertheless, the heterogeneity of MRI modalities
and sequences used in different studies limits the generalizability of currently available
results. The T2-weighted FSE technique evaluated in 39 patients showed high accuracy in
differentiating between T2 and T3 disease but with a tendency to overstage T1 tumors [12].
One trial evaluating the influence of two different volumetric interpolated breath-hold
sequences (VIBE) on T-staging in EC, found that contrast-enhanced free-breathing radial
VIBE was superior to breath-hold Cartesian VIBE, especially for T1 and T2 stage EC [36].
MR esophagography with water swallowing was evaluated in 30 patients with thoracic
EC and 10 healthy volunteers [37]. By comparison with conventional MRI, it showed
better results for assessing the tumor’s length and exact localization, but lower accuracy
for T-staging [38]. T2*-weighted imaging had good accuracy for the evaluation of T-staging
in patients with ESCC, except for the differentiation between T0 and T1-stage tumors [39].
In a study by Wu et al., gross tumor volume (GTV) assessed on T2-weighted MRI, contrast-
enhanced T1-weighted and DWI in 60 patients with ESCC was associated with T-stage and
the presence of lymph node metastases [40]. They also reported that GTV diagnosed on
contrast-enhanced T1-weighted imaging better predicted T-stage [40]. Furthermore, one
work suggested that whole-tumor histogram analysis of some pharmacokinetic parameters
from dynamic contrast-enhanced (DCE)-MRI might be able to predict T-stage in ESCC [41].
In addition, MR angiography of the thorax in the same session provides very useful in-
formation about the invasiveness of the cancer in vessels, vascular anomalies, including
arterial and venous status.

A recently published meta-analysis on 20 trials addressed the issue of MRI diagnostic
performance for EC, including the question of precise T-staging [35]. With 11 trials pub-
lished between 2009 and 2019 addressing the question of differentiation between T0 and
T1 or more advanced disease, MRI had a pooled sensitivity of 92% (95% CI: 82–96) and
specificity of 67% (95% CI: 51–81). The administration of neoadjuvant chemoradiotherapy
did not significantly impact these results [35]. With 10 studies evaluating differentiation
between T2 or lower disease and T3 or higher disease, MRI had a pooled sensitivity of 86%
(95% CI: 76–92) and a specificity of 86% (95% CI; 75–93). Unfortunately, the authors did not
address the specific question of the diagnostic value of MRI to differentiate between T0 or
T1 tumor (amenable to endoscopic low morbidity resection) and ≥T2 tumors (requiring
chemoradiotherapy and/or surgical resection). Overall, MRI had a good sensitivity for
T-staging in EC.
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Evidence in favor of a high accuracy for T-staging by MRI in preoperative EC is
growing, even if there is heterogeneity between available studies in terms of MRI sequences,
study designs and histological subtypes of EC. MRI shows good sensitivity for low T-stages
and good sensitivity and specificity for higher T-stages. In the close future, MRI alone, or
in combination with other modalities, will probably be used in routine clinical practice for
early T-staging of EC.

3.2. Node (N) Staging

Upon diagnosis, regional staging with evaluation of node (N) staging is also crucial to
evaluate prognosis and choose the optimal treatment approach. Not only is survival corre-
lated with the T-stage, it is also clearly influenced by the N-stage [42]. Indeed, pathological
evidence of lymph node metastases is a major prognostic factor in operated EC [37,42]
with 5-year overall survival rates ranging between 70 and 92% in case of negative node
involvement versus 18% to 47% for patients with positive lymph node involvement [43,44].
Furthermore, the lymph node ratio, which is the number of infiltrated lymph nodes divided
by the total number of resected lymph nodes, is also an independent factor of survival for
operated patients [45].

Currently, baseline regional lymph node involvement in EC is also preferably evalu-
ated with EUS, followed by CT and 18F-FDG-PET/CT [24–26]. EUS can give access to fine
needle aspiration (FNA) for histologic evaluation of regional lymph nodes (mediastinum
and coeliac). In a 2008 meta-analysis, EUS showed a pooled sensitivity of 80% (95% CI:
75–84) and pooled specificity of 70% (95% CI: 65–75) for N-staging [46]. Several studies
have suggested that EUS-FNA had a greater accuracy than EUS alone for N-staging [47,48].
In the meta-analysis by Puli et al., pooled sensitivity of N-staging with EUS improved from
84.7 (95% CI: 82.9–86.4) to 96.7% (95% CI: 92.4–98.9) with FNA [21]. In the meta-analysis
by Van Vliet et al., both CT and 18F-FDG-PET/CT showed lower sensitivities for regional
N-staging in EC, 50% (95% CI: 41–60) and 57% (95% CI: 43–70), respectively [46]. Regarding
18F-FDG-PET/CT, this could partly be explained by the difficulty in the distinction of
lymph nodes adjacent to a highly avid primary tumor with a high standard uptake value.

Because of the previously described limitations of current techniques for N-staging,
MRI has also been evaluated in this setting. Early studies using conventional MRI at
0.35–1.5 T without fast sequences reported sensitivities, specificities and diagnostic ac-
curacies of 25–70%, 67–93% and 56–89% respectively [49–52]. More recent studies with
similar modalities support these findings and found similar sensitivities, specificities, and
accuracies of 38–62%, 68–85% and 64–77%, respectively [53,54]. Superparamagnetic iron
oxide (SPIO), which is phagocytized by macrophages after intravenous administration, has
enhanced the value of MRI in detecting lymph node metastases. Indeed, metastatic lymph
nodes show a marked reduction in the uptake of SPIO due to a reduction in the number
of phagocytes [55,56]. In a study on 16 patients by Nishimura et al., results were superior
with an ultrasmall SPIO-enhanced MRI with sensitivity, specificity and accuracy of 100%,
95% and 96% respectively [54]. Limits to these results were the small number of patients
included and the evaluation of differences between positive and negative lymph node
groups rather than node-positive versus node-negative patients [54]. Later, a feasibility
study on nine patients with EC and preoperative positive lymph node status, showed that
ultrasmall SPIO-enhanced MRI could identify the majority of these suspected lymph node
metastases [57]. In 2009, a study on 24 consecutive patients with EC showed that whole
body DWI with background body signal suppression did not result in major diagnostic im-
provements for N-staging [58]. Recent evidence from a 2020 study on 76 patients suggested
otherwise, with DWI showing higher sensitivity than 18F-FDG-PET/CT for the diagnosis of
metastatic lymph node in ESCC [59]. In 35 patients with EC, ECG-triggered 1.5 T MRI with
turbo spin-echo (TSE) and fast short tau inversion recovery (STIR) fat suppression yielded
81% sensitivity and 98% specificity for the diagnosis of lymph node involvement [60]. As
mentioned previously, in the study by Wu et al., GTV assessed on T2-weighted imaging,
contrast-enhanced T1-weighted and DWI in 60 patients with ESCC was associated with
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the presence of lymph node metastases [40]. Another study in 46 patients with EAC found
similar results [61]. Recently, a radiomic signature with nine MRI features developed in a
training cohort of 90 patients and confirmed in a validation cohort of 90 patients, showed
good discrimination between metastatic and non-metastatic lymph nodes [62]. As for
T-staging, one study suggested that whole-tumor histogram analysis of some pharmacoki-
netic parameters from dynamic contrast-enhanced MRI might be able to predict regional
lymph node metastases in ESCC [41].

Performance of MRI for lymph node assessment was also evaluated in the recently
published meta-analysis by Lee et al. [35]. With 10 trials published between 2007 and
2019 addressing the question of differentiation of N0 disease from N1 and more advanced
disease, MRI had a pooled sensitivity and specificity of 71% (95% CI: 60–80) and 72%
(95% CI: 64–79) respectively [35].

Again, here, improvement of MRI modalities over the years has positively influenced
its diagnostic performance for N-staging in EC. Even if recent evidence is also in favor
of good sensitivity and specificity of MRI for N-staging, it remains difficult to draw firm
conclusions due to the heterogeneity of MRI techniques used in the different existing
studies and their small sample sizes.

3.3. Metastases (M) Staging

Assessment of distant metastases in EC is currently done with CT and 18F-FDG-
PET/CT. As previously mentioned, a 2004 meta-analysis evaluating the performance of
18F-FDG-PET/CT for the diagnosis of distant metastases found a pooled sensitivity and
specificity of 67% (95% CI: 58–76) and 97% (95% CI: 90–100), respectively [26]. In the 2008
meta-analysis by Van Vliet at al., sensitivities and specificities for the diagnosis of distant
metastases were 71% (95% CI: 62–79) and 93% (95% CI: 89–97) for 18F-FDG-PET/CT, 52%
(95% CI: 33–71) and 91% (95% CI: 86–96) for CT [46]. In one study, restaging with 18F-FDG-
PET/CT after neoadjuvant treatment of EC resulted in the diagnosis of metastases in 8%
of patients, but also with false positive findings in 5% of patients [63]. Indeed, 18F-FDG-
PET/CT shows several limitations that can affect its performance, such as the unspecific
uptake of FDG, or the existence of low uptake tumors. Furthermore, 18F-FDG-PET/CT is
an expensive and irradiating technique. For all these reasons, the used of 18F-FDG-PET/CT
in EC is limited to the initial workup of ESCC, and this imaging modality is rarely used for
the dynamic monitoring of tumors, CT being the preferred investigation.

There is little data on the role of MRI in initial M-staging for EC. Two studies have
evaluated the performance of whole-body MRI in that setting, one specifically in EC, and a
second in a population with mixed gastrointestinal cancers including EC [64,65]. Compared
with 18F-FDG-PET/CT, whole-body MRI had similar accuracy in detecting the primary
tumor and lymph node metastases, and for excluding systemic metastatic disease [65]. In
49 patients with EC, both imaging modalities were able to identify distant metastases in
two patients [65]. To date, there is however not enough data to recommend the routine use
of whole-body MRI for M-staging in EC.

3.4. Target Volume Delineation before Irradiation

Accurate tumor delineation before radiotherapy, including accurate GTV, is important
to ensure adequate target coverage while limiting toxicity for surrounding organs at risks.
MRI is already used for tumor delineation before chemoradiotherapy in various tumor
sites. Currently, delineation of EC GTV is mainly based on the combined use of CT
and 18F-FDG-PET/CT. Nevertheless, studies suggest that the correlation between tumor
length assessment by CT and pathology is weak with a frequent overestimation of this
measurement by CT [66,67]. EUS has been proposed for evaluation of the longitudinal
extent of the tumor, but results are difficult to translate in the radiotherapy planning
process [68]. The excellent soft-tissue contrast of MRI could also substantially help increase
the accuracy of tumor delineation in this setting. One study evaluated GTV delineation by
10 observers in six EC patients with MRI compared with 18F-FDG-PET/CT [69]. The GTV
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appeared smaller on breath hold T2-weighted and DWI compared to 18F-FDG-PET/CT
acquired during free-breathing, and the main variation was seen in the cranial caudal
direction [69]. Combined DWI and T2-weighted MRI sequences in two tumors of the
gastrointestinal junction reduced decreased caudal border variation [69]. However, MRI
delineation did not reduce interobserver variability in this study, which could partly be
explained by a lack of experience of contouring GTV in EC with this imaging modality.
In another study including 42 patients with operated ESCC, DWI was the more accurate
modality for the measurement of GTV compared with CT and T2-weighted MRI [66]. The
difference in tumor length between CT and pathology was 3.6 mm, while the difference in
length between DWI and pathology was as low as 0.5 mm [66].

Finally, MRI-guided radiotherapy for EC remains under development but seems a
promising option for the future. The combination of improved GTV delineation, respiratory
gating, and online adaptive planning from daily non-irradiating MRI, could allow for
tighter target coverage while sparing the adjacent normal organs [70].

4. MRI in Assessment of Treatment Response and Prediction of Recurrence

Several studies have shown improved overall survival with neoadjuvant treatment
in patients with localized EC compared with upfront surgery [71–73]. Nevertheless, after
neoadjuvant treatment and surgery, about one third of patients with EC show complete
pathologic response and are possibly being unnecessarily exposed to the risks of esophagec-
tomy [73]. Moreover, some patients will not respond to neoadjuvant treatment but will be
exposed to its side effects. Overall, there is a double challenge of early identification of
non-responders to neoadjuvant treatment and precise restaging after chemoradiotherapy
to detect residual disease.

Previous studies and meta-analysis have shown that EUS, CT and 18F-FDG-PET/CT
are not always adequate for the detection of residual disease in EC after neoadjuvant
treatment, with poor overall accuracies [34,74–76]. A meta-analysis evaluating pathologic
complete response after neoadjuvant treatment with various imaging techniques found
pooled sensitivities of 35% (95% CI: 16–60), 62% (95% CI: 50–73), 1% (95% CI: 0–92), and
80% (95% CI: 46–95), and pooled specificities of 83% (95% CI: 71–91), 73% (95% CI: 64–81),
99% (95% CI: 81–100), and 83% (95% CI: 65–93) for CT, 18F-FDG-PET/CT, EUS, and MRI
respectively [77]. Indeed, three-dimensional-CT volumetry evolution is not associated with
histopathological tumor response [78]. EUS is limited by the difficulty of differentiating
residual tumor from inflammation and fibrosis [79,80]. Finally, non-specific glucose uptake
after inflammation, or the existence of low FDG uptake cancers limits the role of 18F-FDG-
PET/CT in treatment response monitoring.

DWI and the derived apparent diffusion coefficient (ADC) can help assess tumoral
metabolic activity and have shown promising results for response prediction in EC in
various studies [81–85]. Indeed, results suggest that changes observed between baseline
diffusion-weighted images and interim diffusion-weighted images (during treatment) are
good prognostic and predictive biomarkers. The relative change in ADC during the first two
weeks of chemoradiotherapy appears to be the most predictive for the detection of residual
cancer, with a sensitivity of 100% and specificity of 75% [83]. Moreover, various b values for
ADC have been evaluated in the different available studies overtime [86]. One study has
suggested promising results for the prediction of treatment response in EC with the use of
intravoxel incoherent motion diffusion-weighted images, which can simultaneously obtain
diffusion and perfusion information from tissues without administration of a contrast
agent [87]. In addition to DWI, dynamic contrast-enhanced-MRI can also be used to
predict response to chemoradiotherapy in EC [88,89]. Finally, weekly T2-weighted MRI in
29 patients undergoing neoadjuvant chemoradiotherapy was able to identify volumetric
changes with a significant decrease in tumor regression volume overtime [90].

In a recent meta-analysis including seven studies with EC patients treated by chemora-
diotherapy, the pooled sensitivity and specificity of DWI for predicting early response to
treatment were 93% (95% CI: 77–98%) and 85% (95% CI: 72–73) for the ∆ADC (difference
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in ADC values before and after chemoradiotherapy) and 75% (95% CI: 62–84) and 90%
(95% CI: 67–97) for the post ADC [91]. Even if included studies were heterogeneous with
small sample sizes, these results suggest a role for DWI in the assessment of treatment
response for EC.

The ongoing SANO-2 trial (NCT04886635) is currently evaluating the role of active
surveillance with 18F-FDG-PET/CT and endoscopic biopsies after neoadjuvant chemora-
diotherapy. Similarly, the randomized ESOSTRATE trial (NCT02551458) is comparing
active surveillance versus surgery in patients with compete pathological response after
chemoradiotherapy. Finally, the ongoing prospective study PRIDE (NCT03474341) is eval-
uating a multimodal prediction model including DWI and dynamic contrast-enhanced
MRI to predict patient’s individual probability of complete pathological response after
neoadjuvant chemoradiotherapy and identify early non-responders [92].

5. Discussion and Perspectives

Recent improvement in technical modalities of MRI has allowed to better assess the
morphology of the normal and pathologic esophagus. Available data in EC is still scarce
with small sample size studies and heterogeneity regarding clinical setting and MRI se-
quences and modalities. Nevertheless, currently used techniques for EC management (CT,
18F-FDG-PET/CT and EUS) show significant limitations, making MRI a promising tool in
both initial staging (T-staging and N-staging) and assessment of response to chemoradio-
therapy. There is still not enough data to conclude on the potential role of MRI in detection
of distant metastasis as well as follow-up.

High field (7 T) MRI of the esophagus, currently only studied ex vivo, demonstrates
an excellent sensitivity and specificity for esophageal cancer. Most importantly, it provides
a clear image of the tissue layers of the esophageal wall, comparable to that of endosonogra-
phy or pathology. The clinical use of this imaging modality—currently limited to the brain
and the joints—for the workup of EC could allow an accurate noninvasive tumor staging,
even distinguishing shallow T1 lesions potentially amenable to endoscopic resection from
T1 lesions with deep submucosal infiltration or T2 lesions requiring surgical resection. In
addition, its ability to discriminate fibrosis from neoplastic tissue makes of high-field MRI
a promising candidate to better assess tumor response to neoadjuvant therapy.

6. Conclusions

In EC, combinations of different diagnostic modalities might be the way to go for
optimal individual staging. In a study on 19 patients with resectable EC, PET-MRI demon-
strated acceptable accuracy for T-staging compared with EUS and, although not statistically
significant, higher accuracy than EUS and 18F-FDG-PET/CT for prediction of N-staging [93].
Furthermore, radiomics and the use of various artificial intelligence-based systems using
CT imaging have recently shown promising results in a variety of diseases, including the
diagnosis and monitoring of EC [94–96]. It may be assumed that radiomics and artificial
intelligence-centered studies in EC will probably consider data from MRI for even higher
performance and accuracy.
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