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Abstract: Verticillium dahliae is a soil-borne hemibiotrophic fungus that can lead to plant vascular
disease and significant economic loss worldwide. Its hosts include over 400 dicotyledon plant
species, such as annual herbs, perennials, and woody plants. The average yield loss of cotton crop
caused by Verticillium wilt is approximately 10–35%. As the control of this disease is an urgent
task for many countries, further understanding of the interaction between plants and V. dahliae is
essential. Fungi can promote or inhibit plant growth, which is important; however, the most important
relationship between plants and fungi is the host–pathogen relationship. Plants can become resistant
to V. dahliae through diverse mechanisms such as cell wall modifications, extracellular enzymes,
pattern recognition receptors, transcription factors, and salicylic acid (SA)/jasmonic acid (JA)/ethylene
(ET)-related signal transduction pathways. Over the last decade, several studies on the physiological
and molecular mechanisms of plant resistance to V. dahliae have been undertaken. In this review,
many resistance-related genes are summarised to provide a theoretical basis for better understanding
of the molecular genetic mechanisms of plant resistance to V. dahliae. Moreover, it is intended to serve
as a resource for research focused on the development of genetic resistance mechanisms to combat
Verticillium wilt.
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1. Introduction

The soil-borne hemibiotrophic phytopathogenic fungus Verticillium dahliae can cause refractory
vascular Verticillium wilt in a wide range of crops worldwide due to its highly aggressive pathogenicity
and production of melanised dormant structures called microsclerotia, which can survive for several
years in the soil [1]. It produces cell wall-degrading enzymes and phytotoxins, which cause signs
of the disease. The fungus infects more than 200 dicotyledon plant species, such as annual herbs,
perennials, and woody plants. The average yield loss of cotton crop caused by Verticillium wilt is
approximately 10–35% in many countries. It generally causes plant dysplasia, leaf wilt, and yellowing
and browning of vascular bundles, eventually leading to early death in some plants. At present,
there are no fungicides available to control the infected plants [2], and thus Verticillium wilt results in
extensive economic losses [3].

V. dahliae can infect a variety of dicotyledonous species including cotton, tobacco, tomatoes,
Arabidopsis, and others. It usually invades and colonises the roots of plants, and then spreads
throughout the plant [4]. V. dahliae begins to infect the roots of the plant through the soil, and hyphae
penetrate the surface of the plant roots to colonise the vascular bundles, leading to plant death [5,6].
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The main mechanism of its pathogenesis is xylem vessel blockage and toxin production. When
the fungus invades the plant body, the mycelium blocks the xylem vessel, affecting the transport of
water and nutrients in the plant [1,7]. However, transpiration and respiration of the aerial part are
strong, causing water imbalance in the plant and signs such as leaf wilting and yellowing, which
eventually leads to plant death [8]. However, catheter blockage is not the primary cause of plant
wilting [7,9]. In the toxin theory, histological evidence indicates that leaf necrosis is caused by the
action of mycotoxins [10]. The toxin produced by V. dahliae is an acidic protein–lipopolysaccharide
complex [11]. It can seriously damage the metabolism of the plant body, fix carbon dioxide, decompose
H3PO4, and eventually lead to plant death [12]. Current research indicates that toxin production is the
main cause of plant wilting [2,13].

Plants have evolved numerous defence mechanisms to protect themselves from invading
pathogens [14], and plant extracellular enzymes and the cell wall are the first defence barriers.
Subsequently, plants induce pathogen-associated molecular pattern (PAMP)-triggered immunity by
recognizing pathogens using cell-surface pattern recognition receptors (PRRs). In turn, pathogens
have evolved mechanisms such as effectors to overcome these PAMP-induced defence mechanisms.
The effector is recognised by plants to activate effector-triggered immunity (Figure 1). The plant
immune defences have been described as a ‘zigzag’ model, in which many genes are involved in this
‘zigzag’ procedure [15].

Figure 1. Regulation of intracellular signalling-related genes and signal transduction-related genes
in response to Verticillium dahliae in plants. Plants have developed a sophisticated immune system to
defend against V. dahliae. Plant cells immediately trigger signal transduction, leading to a rapid defence
response including large-scale transcription reprogramming, while they recognise microbial-related

molecular patterns or internal effectors from V. dahliae.
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domain; GSH, phi-class glutathione; HDTF1: homeodomain transcription factor gene 1; JA, jasmonic
acid; JAZ1, Jasmonate Zim-domain1; NBS-LRR, nucleotide-binding site leucine-rich repeat; PevD1,
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Functional analysis of the key genes involved in growth and pathogenicity is the molecular genetic
basis of revealing plant resistance to V. dahliae. Currently, several studies focusing on plant resistance
to V. dahliae have been reported. In this review, some key findings and resistance-related genes are
summarised to provide a theoretical basis to further understand the molecular genetic mechanisms of
plant resistance to V. dahliae.

2. Defence-Related Proteins

In plants, defence-related proteins play a significant role in plant resistance to fungal pathogens.
Polygalacturonase, which digests pectin in plant cell walls, contributes to fungal pathogenicity and
plays a considerable role in the pathogenicity of V. dahliae [23]. A class of plant defence proteins,
polygalacturonase-inhibiting proteins (PGIPs), can specifically inhibit endo-polygalacturonases.
Further, the overexpression of CkPGIP1 from Cynanchum komarovii and GhPGIP1 from Gossypium
hirsutum in cotton can improve cotton resistance to V. dahliae, which is associated with the
upregulated expression of pathogenesis-related proteins (PRs), enhanced disease susceptibility 1
(EDS1), phytoalexin-deficient 4 (PAD4), and isochorismate synthase 1 (ICS1) genes that enhance xylem
lignification [24,25].

NaD1, a plant defensin from Nicotiana alata with strong antifungal activity against many
filamentous fungi, is associated with significant resistance to V. dahliae after transgenic expression in
cotton plants [26]. GbNRX1 gene codes an apoplastic thioredoxin protein from Verticillium wilt-resistant
island cotton (G. hirsutum cv Hai 7124), which is associated with an increase in abundance in response to
V. dahliae infection. The observed increase in apoplastic reactive oxygen species (ROS) accumulation and
reduced V. dahliae resistance in GbNRX1-silenced plants suggest that GbNRX1 can scavenge apoplastic
ROS and is pivotal for the apoplastic immune response [27]. Hydroxyproline-rich proteins (HyPRPs)
comprise a plant cell wall glycoprotein subfamily enriched in proline. The GbHyPRP1 protein from
Gossypium barbadense contains proline-rich repetitive and Pollen Ole e I domains and negatively
regulates the resistance of cotton plants to V. dahliae. GbHyPRP1 silencing was shown to markedly
enhance cotton plant resistance to V. dahliae via cell wall thickening and ROS accumulation [28].

Non-expressor of pathogenesis-related protein 1 (NPR1) is a key regulator of systemic acquired
resistance (SAR) in plants. When plants lack functional NPR1, their ability to express the PR gene is
impaired and they show a near-total lack of an SAR response to pathogen infection [29]. Constitutive
expression of the Arabidopsis NPR1 (AtNPR1) gene in cotton significantly increases the resistance
of transgenic plants to non-defoliating V. dahliae [30]. StoNPR1, a Solanum torvum NPR1 gene, was
previously expressed in V. dahliae-sensitive potato, which increased the resistance of transgenic plants to
V. dahliae. Further, ICS1 and PR1a expression was also evidently enhanced in the StoNPR1 overexpression
lines and was significantly induced by V. dahliae infection [31]. GhMLP28, a defence-related major latex
protein (MLP) from G. hirsutum, is induced by V. dahliae, jasmonic acid (JA), salicylic acid (SA), and
ethylene (ET). GhMLP28 silencing enhances the susceptibility of cotton plants to V. dahliae infection,
whereas GhMLP28 ectopic overexpression in tobacco increases disease resistance. A further assay
demonstrated that GhMLP28 activates the transcription factor activity of ET response factor 6 (GhERF6),
which augmented the expression of some GCC-box (AGCCGCC element) genes, contributing to defence
against V. dahliae [32].

Sulphur plays a considerable role in tomato disease resistance against V. dahliae. The expression
of genes related to sulphur uptake and assimilation, sulphur-containing defence compounds, and
high-affinity sulphate transporter genes are increased in V. dahliae-infected tomatoes during companion
cropping [33]. The haumatin-like protein (TLP) gene is related to plant biotic and abiotic stress regulation.
Transgenic plants with higher expression of the cotton TLP gene (GbTLP1) show enhanced resistance
to different stress factors including V. dahliae infection [34]. A synthetic non-cyclic 0200-defensin
derivative, BTD-S, shows robust antimicrobial activity to V. dahliae in vitro [35]. Further, the expression
of BTD-S in Arabidopsis thaliana increases resistance to V. dahliae [36].
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StoCYP77A2 is a wild eggplant cytochrome P450 gene and is induced by V. dahliae. Constitutive
expression of StoCYP77A2 in tobacco enhances plant resistance to V. dahliae infection. Protein
extraction from StoCYP77A2-transgenic tobacco indicated strong antifungal activity, which implies that
StoCYP77A2 should participate in the synthesis of some antifungal compounds [37]. GhDIR1 encodes a
putative dirigent protein and its overexpression leads to increases in lignin content in transgenic cotton
plants, which display enhanced tolerance to V. dahliae infection [38]. GhUMC1, an umecyanin-like
gene in cotton, is involved in the resistance of cotton plants to V. dahliae through regulation of the JA
signalling pathway and lignin metabolism [39].

3. Enzymes

In plants, extracellular enzymes are often the first line of defence against fungal pathogens.
Increasing evidence shows that chitinase is a key hydrolytic enzyme, which degrades the fungal cell
wall [40], and its expression can be initiated in response to biotic and abiotic stress [41]. Chi28 belongs
to the class IV chitinase subfamily, and Chi28 silencing significantly impairs cotton plant resistance
to V. dahliae. VdSSEP1, a secretory serine protease, was shown to hydrolyse Chi28; however, cotton
apoplastic protein CRR1 protects Chi28 from VdSSEP1-induced cleavage [42].

Pectins as the main element of the primary plant cell wall play a key role in defence mechanisms
against plant pathogens. Pectin methylesterases (PMEs) catalyse dimethyl esterification of the
homogalacturonan domains of pectin in the plant cell wall. GhPMEI3 silencing in cotton leads
to enhanced susceptibility to V. dahliae. Moreover, GhPMEI3 and GhPMEs might participate in
protein–protein interactions and are important for plant evolution to resist fungal pathogens [43].

Lignification in the plant cell wall is a plant innate immune defence response and the lignification
of lignin in resistant cotton stems contributes to the resistance of cotton to disease [44]. GhLAC15, a
laccase gene, was demonstrated to be strongly induced by pathogens. Moreover, its overexpression
increases Verticillium wilt resistance via increased defence-induced lignification and arabinose and
xylose accumulation in the upland cotton cell wall [45].

The expression of GbSBT1 in G. babardense, which encodes a subtilase that is mainly localised to
the cell membrane, is induced by V. dahliae, JA, and ET, as it translocates to the cytoplasm following JA
and ET treatment. GbSBT1 gene silencing reduces the tolerance of Pima-90 (resistant genotype) to V.
dahliae infection. Moreover, the overexpression of GbSBT1 activates the expression of defence-related
genes and increases Arabidopsis resistance to Fusarium oxysporum and V. dahliae [46].

Enoyl-CoA reductase (ECR) plays a crucial role in very-long-chain fatty acid formation.
GhECR-silenced cotton plants are susceptible to V. dahliae infection, indicating that the GhECR
gene is related to cotton resistance to different V. dahliae strains [47]. Cotton GbANS contributes to
anthocyanin biosynthesis, and GbANS silencing significantly reduces anthocyanin production and
cotton plant resistance to V. dahliae [48]. A U-box E3 ubiquitin ligase, GhPUB17, which can interact
with and is inhibited by the antifungal protein GhCyP3, negatively regulates cotton resistance to
Verticillium wilt pathogen [49]. The production of gossypol is sufficient to influence the resistance of
cotton plants to V. dahliae. As such, silencing GbCAD1, encoding a key enzyme involved in gossypol
biosynthesis, compromises cotton plant resistance to V. dahliae [50].

4. Receptor-Like Proteins

Lysin motif (LysM)-containing proteins are important PRRs in plants, which function in chitin
recognition and the activation of defence responses against fungal pathogen attacks [51–53]. GhLYK1
and GhLYK2, two LysM-containing proteins, are induced after V. dahliae infection. However, GhLYK1
and GhLYK2 silencing compromises cotton plant resistance to V. dahliae. GhLYK2, but not GhLYK1,
can induce ROS bursts in plants. Therefore, GhLYK2 and GhLYK1 might be distinctively dedicated to
cotton defence [54]. In addition, in cotton, three important PRRs (Lyp1, Lyk7, and LysMe3) play an
important role in activating downstream defence processes and inducing the defence response to V.
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dahliae via the recognition of chitin signals. The three PRR proteins are induced in response to V. dahliae,
and their silencing greatly impairs SA, JA, and ROS generation, as well as resistance to V. dahliae [53].

In tomato (Solanum lycopersicum), Ve encodes receptor-like proteins containing extracellular
leucine-rich repeats, and the Ve R-gene locus contributes to Verticillium resistance [25]. Ve1 is involved
in the race-specific resistance to Verticillium wilt pathogen infection [55]. The Ve locus includes two
closely-linked inverted genes, Ve1 and Ve2, encoding the extracellular leucine-rich repeat receptor-like
protein (eLRR-RLP) and cell surface receptors [16]. Furthermore, it was shown that Ve genes encode
a class of cell-surface glycoproteins with leucine zipper and receptor-mediated endocytosis-like
signals [56]. Antagonistic relationships exist between Ve1 and Ve2 proteins, in which Ve1 modulates
the induction of defence/stress proteins by Ve2 [25]. However, Ve1 transgene introduction does not
alter the endogenous Ve2 expression [57].

Ve1 mediates plant resistance by monitoring the presence of the Ave1 effector in V. dahliae [58].
Some results suggested that H2O2, peroxidase, lignins, phenylalanine-ammonia lyase (PAL) gene
expression, and JA are required for Ve1-mediated resistance to V. dahliae [59,60]. Ve1-transgenic
Arabidopsis is only resistant to race 1, but not to race 2, strains of V. dahliae, V. albo-atrum, and
V. longisporum. Importantly, the critical elements for resistance signalling are conserved, and the
signalling components ACIF, MEK2, SERK3/BAK1, and SERK1 play a role in Ve1-positive regulation [61].
The defence signalling cascade downstream of Ve1 is required by ACIF, EDS1, NRC1, NDR1, MEK2,
and SERK3/BAK1. Ve1-mediated plant defence requires the basal defence signalling elements EDS1,
NRC1, and NDR1 [61,62]. The constitutive expression of tomato Ve1 in Arabidopsis, cotton, and tobacco
plants results in increased resistance to Verticillium wilt [63]. As a consequence of Ve1/Ave1-induced
immune signalling, the immune receptor Ve1 recognises the V. dahliae effector protein Ave1 and
then triggers a hypersensitive response in tobacco and tomato [64], but it is not entirely required for
Verticillium resistance [65].

Phylogenetic analysis also indicates that Ve1 homologues are extensively scattered in land plants,
and that Ve1 homologues in hop (Humulus lupulus), potato (S. tuberosum), tobacco (Nicotiana glutinosa),
and wild eggplant (S. torvum) have been cloned and characterised [66]. Gbve1, a tomato Ve homolog,
was cloned from an island cotton cultivar with resistance to Verticillium wilt and it can be induced by
V. dahliae infection via SA, JA, and ET. Gbve1 silencing in resistant cotton decreases the resistance to
V. dahliae. Conversely, the overexpression of Gbve1 in Arabidopsis and upland cotton plants enhances
resistance to V. dahliae [67].

Ve homologous genes, Gbvdr3 and Gbvdr6, encode plasma membrane receptor-like protein in the
Verticillium wilt-resistant cotton cultivar G. barbadense Hai7124 [68,69]. Silencing and overexpression
experiments suggested their involvement in cotton resistance against V. dahliae and that they can
enhance transgenic cotton or Arabidopsis resistance to V. dahliae. Their expression is activated by SA,
methyl jasmonate, abscisic acid, and ET, and is induced by V. dahliae. In transgenic Arabidopsis, the
overexpression of Gbvdr3 and Gbvdr6 enhances the expression of JA/ET signalling pathway-related genes
ethylene-responsive factor 1 (ERF1), PR3, and PDF 1.2; SA-related genes PR1 and PR2; the ET-regulated
gene GST2; and ROS and callose accumulation in the early stage after V. dahliae infection [68–70].

A Ve1 homologous gene, VvVe, was identified in Vitis vinifera, and its overexpression in tobacco
significantly increased resistance to V. dahliae and upregulated defence-related gene expression,
including the SA-regulated pathogenesis-related protein gene (PR1), ET- and JA-regulated genes
(ERF1), and lipoxygenase (LOX), and enhanced the accumulation of ROS, callose, and PAL [71]. StoVe1
is a Ve1 homolog from S. torvum, and StoVe1-overexpressing potato lines show increased resistance
to V. dahliae [72]. StVe, a potential Verticillium wilt disease resistance gene, from S. torvum and SlVe1
from S. lycopersicoides are homologous to Ve1 and Ve2, respectively, and StVe and SlVe1 encode cell
surface-like receptor proteins [73,74].

Micro-RNAs (miRNAs) are indispensable regulators of plant responses to biotic and abiotic
stresses [75]. RNA silencing has an important role in plant defence against fungal pathogens and
exerts specific defence functions against V. dahliae [76]. Upland cotton KV-1 displays multi-level
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resistance against Verticillium wilt, and some novel small RNAs have been identified after infection
by V. dahliae strains with different virulence, V991 and D07038 [77]. Variants 3444a-5p and miR5562
showed the highest expression level in virulent conditions, whereas miR1423a-5p showed low-level
expression [78]. Members of the potato miR482 superfamily and their variants were shown to target a
class of disease-resistance proteins with nucleotide-binding sites and leucine-rich repeat (LRR) motifs,
and miR482e-overexpressing transgenic potato plants show hypersensitivity to V. dahliae infection [79].
GhlncNAT-ANX2 and GhlncNAT-RLP7 are two species-conserved long noncoding RNAs, and their
silencing in cotton significantly increases resistance to V. dahliae, which is possibly related to the
upregulated expression of lipoxygenase 1 and lipoxygenase 2 [80]. Expression of GbRLK, a receptor-like
kinase gene from the disease-resistant cotton G. barbadense Hai7124, is induced by V. dahliae. Moreover,
transgenic cotton and the overexpression of GbRLK in Arabidopsis plants result in resistance against
V. dahliae infection [17].

5. Transcription Factors

The MYB family of proteins is both large and diverse, with many members functioning as
transcription factors. Increasing evidence shows that plant MYB transcription factors partake in
defence against pathogen infection. Infection by V. dahliae stimulates Ca2+ influx into the cytosol and
enhances GhMYB108 expression in cotton root cells. GhMYB108 was demonstrated as interacting with
the calmodulin-like protein GhCML11 in a calcium-dependent manner; thus, GhCML11 and GhMYB108
silencing enhances cotton susceptibility to V. dahliae [81]. A stress-responsive HD-ZIP I transcription
factor in cotton, GhHB12, negatively regulates the resistance of cotton plants by suppressing JA
response genes [82]. CBP60g and SARD1 are two related plant-specific transcription factors involved
in SA signalling. The secretory protein VdSCP41 in V. dahliae directly targets CBP60g to inhibit plant
immunity, and mutations in Arabidopsis CBP60g and SARD1 compromise resistance to V. dahliae [83].
A homeodomain transcription factor gene (HDTF1) was isolated from cotton, and silencing HDTF1
was found to significantly enhance cotton plant resistance to V. dahliae and Botrytis cinerea, resulting
in activation of JA-mediated signalling and JA accumulation [84]. Further, a basic helix-loop-helix
(bHLH) transcription factor, GbbHLH171, interacts with and is phosphorylated by a defence-related
receptor-like kinase in G. barbadense, namely, GbSOBIR1, in vitro and in vivo, and has a positive effect
on cotton resistance to V. dahliae [85].

6. Signal Transduction

The ribosomal protein L18 (GaRPL18) gene from G.arboreum mediates plant resistance to V. dahliae
via an SA-related signalling pathway. Silencing GaRPL18 impairs cotton plants resistance to V. dahliae,
whereas GaRPL18 overexpression enhances Arabidopsis resistance to V. dahliae [86]. The phi-class
glutathione (GSH) S-transferase gene (GaGSTF9) in Gossypium arboreum was found to be induced by
V. dahliae via SA-related signalling pathway. GaGSTF9 silencing in cotton enhances its susceptibility.
Conversely, the overexpression of GaGSTF9 increases Arabidopsis resistance to V. dahliae and the
accumulation of endogenous SA and GST, indicating that GST might adjust ROS content via catalytic
reduction of the tripeptide GSH, which in turn affects SA content [87].

Spermine (Spm) signalling is correlated with plant resistance to abiotic and biotic stresses. Two key
rate-limiting enzymes in Spm biosynthesis are Spm synthase (GhSPMS) and S-adenosylmethionine
decarboxylase (GhSAMDC), and GhSAMDC and GhSPMS silencing in cotton impairs plant resistance
to V. dahliae infection. Enhanced resistance and the higher accumulation of Spm, SA, and leucine in
transgenic A. thaliana overexpressing GhSAMDC suggest that GhSAMDC mediates Spm biosynthesis
and contributes to plant resistance to V. dahliae via SA- and leucine-related signalling pathways [88].
The overexpression of cotton GhACL5 in Arabidopsis increases both plant height and T-Spm levels.
Moreover, GhACL5 silencing in cotton results in a dwarf phenotype and also reduces resistance to
V. dahliae. These results suggest that GhACL5 expression is related to in planta levels of T-Spm and
contributes to stem elongation and defence responses to V. dahliae [89]. A polyamine oxidase gene
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(PAO), which can catalyse the conversion of Spm to spermidine (Spd), is induced early and strongly
via plant hormone application and inoculation with V. dahliae. The constitutive expression of GhPAO
in A. thaliana enhances resistance against V. dahliae and results in the accumulation of high levels of
hydrogen peroxide, SA, and camalexin (a phytoalexin). These results suggest that GhPAO contributes
to plant resistance to V. dahliae by activating Spm and camalexin signalling pathways [90].

Cotton cyclin-dependent kinase E (GhCDKE) is induced in cotton via V. dahliae infection and MeJA
treatment. GhCDKE increases plant resistance to V. dahliae, which is mediated by the JA response
pathway. GhCDKE silencing in cotton enhances susceptibility to Verticillium wilt pathogen, whereas
GhCDKE overexpression in A. thaliana increases resistance to the pathogen [91]. GbWRKY1, a negative
regulator of the JA-mediated defence pathway, contributes to plant resistance against B. cinerea and
V. dahliae. During plant infection by V. dahliae, GbWRKY1 is also a key regulator that mediates the plant
defence-to-development transition by activating JAZ1 expression [92]. GhCPK33 from G. hirsutum
negatively regulates cotton resistance to V. dahliae by directly controlling JA biosynthesis. GhCPK33
silencing was shown to constitutively activate JA biosynthesis and JA mediated-defence responses
and enhance resistance to V. dahliae infection [93]. GbSSI2 is an important regulator of the crosstalk
between SA and JA signalling pathways. Moreover, the exogenous application of brassinolide can
activate brassinosteroids and JA and enhance the resistance of cotton plants to V. dahliae [50].

Further, one study found that ET signalling in cotton roots infected with V. dahliae is significantly
activated, which resulted in the high expression of ET biosynthesis and signal components [94].
The etr1-1 (ET receptor mutant) Arabidopsis strain shows enhanced resistance to V. dahliae, as well
as enhanced activation and increased accumulation of CHI-1, CHI-2, GSTF12, GSTU16, Myb75,
PR-1, PR-2, and PR-5 [95]. Ethylene-responsive factors (ERFs) commonly play an important role in
pathogen defence responses. GbERFb, a new AP2/ERF transcription factor, can improve plant disease
resistance [96]. GbERF1-like, ET response-related factor derived from G. barbadense, contributes to
plant resistance against V. dahliae by positively regulating lignin synthesis. This resistance depends on
the activation of GhHCT1 and AtPAL3 promoters by GbERF1-like proteins [97]. GbABR1 is an ERF
subfamily B4 member and a new member of the AP2 family from G. barbadense. GbABR1-silenced plants
show a higher disease index, indicating that this gene positively regulates resistance to Verticillium
wilt [98].

Nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins play a key role in plant defence
against pathogens. A genome-wide association study indicated that CG02-containing TIR-NBS-LRR
domains are the most likely candidate underlying cotton resistance to V. dahliae [99]. The island cotton
NBS-LRR gene GbaNA1 can be induced by the pathogen V. dahliae and by the phytohormones ET, JA,
and SA, contributing to island cotton resistance to V. dahliae isolate Vd991 [100]. The overexpression
of GbaNA1 in A. thaliana enhances ROS content and the expression of genes related to the ethylene
signalling pathway [101].

Serine/threonine-protein kinase (STK) is involved in responses to pathogen infection and oxidative
stress via phosphorylation. The overexpression of G. barbadense GbSTK in Arabidopsis enhances resistance
to V. dahliae and elevates PR-4, PR-5, and EREBP expression [102]. Moreover, the mitogen-activated
protein kinase (MAPK) cascade plays key roles in plant defence against pathogen attack. MKK
members in MAPK signalling cascades play dual roles in subtly regulating the resistance of cotton
plants to Verticillium wilt; GhMKK4, GhMKK6, and GhMKK9 positively regulate, whereas GhMKK10
negatively regulates, cotton resistance [103]. As such, GhMKK2 and GhNDR1 silencing compromises
the resistance of cotton plants to V. dahliae infection [104].

7. Concluding Remarks

Currently, numerous genes related to V. dahliae resistance have been identified in plants (Table 1).
However, Verticillium wilt is still an enormous threat to agricultural production. Due to the presence of
microsclerotia in V. dahliae, it can survive in the soil for many years, and it rapidly spreads; thus, it is
difficult to control once infection occurs. Moreover, there is no fungicide available for plants, further
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limiting efficient control. Currently, the most effective control measures are genetic resistance. Therefore,
it is necessary to further explore the genes related to V. dahliae resistance in plants. Resistance-related
genes can be explored from various perspectives such as extracellular enzymes, the cell wall, PRRs,
transcription factors, and SA/JA/ET-related signal transduction pathways. The further development of
new technology such as host-induced gene silencing can aid in plant protection. At present, many
genes remain unidentified, and there are few known genes related to resistance. Therefore, the
technology available for genetic research is also extremely limited. In this paper, we summarised
the genes related to V. dahliae resistance in plants on the basis of extracellular enzymes, cell walls,
PRRs, transcription factors, and SA/JA/ET-related signal transduction pathways. This report provides
a good theoretical resource for researchers and could aid in the discovery of additional genes related to
resistance by providing a theoretical basis to further understand the molecular genetic mechanisms of
plant resistance to V. dahliae. With the development of molecular biology technology and the application
of multi-omics integrative analyses to the study plant disease resistance mechanisms, it is possible to
study interactions between plants and Verticillium wilt, which will contribute to the discovery of plant
disease resistance genes. At the same time, with the in-depth analysis of the molecular mechanisms
underlying plant resistance to Verticillium wilt, it will be possible to obtain crops varieties that are
resistant to Verticillium wilt through genetic engineering and breeding technology.
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Table 1. Genes related to plant resistance to V. dahlia and their regulatory mechanisms.

Classification Protein (Gene) Name Annotation Host Resistance Mechanism References

Defence-related
proteins

PGIP plant defence protein Ck, Gh inhibit fungal polygalacturonase activity [24]
NaD1 plant defensin Na antifungal activity [26]
GbNRX1 apoplastic thioredoxin protein Gb apoplastic immune response and scavenge ROS [27]
GbHyPRP1 proline-rich protein Gb thickening cell walls and ROS accumulation [28]
AtNPR1 non-expressor of Pr1 At upregulating expression of ICS1 and PR1a [30]
GhMLP28 defence-related major latex protein St enhance GhERF6 activity [32]
GbTLP1 thaumatin-like protein Gb secondary cell wall development [34]
BTD-S synthetic defensin derivative Synthetic antifungal activity [35,36]
StoCYP77A2 cytochrome P450 Nt synthesis of antimicrobial compounds [37]

Enzymes

Chi28 class IV chitinase subfamily Gh, Gb degrade the fungal cell wall [42]
GhPMEI3 pectin methylesterases Gh degrade the fungal cell wall [43]
GhLAC15 laccase Gh lignification of the cell wall [45]
GbSBT1 a subtilase gene Gb activating defence-related genes expressionn [46]
GhECR enoyl-CoA reductase Gh production of very long chain fatty acids [47]
GbANS anthocyanidin synthase Gb regulating biosynthesis of anthocyanins [48]
GhPUB17 U-box E3 ubiquitin ligase Gh negatively regulating immunity [49]

Receptor-like
proteins

GhDIR1 putative dirigent protein Gh lignification of the cell wall [38]
GhUMC1 umecyanin-like protein Gh [39]
Lyp1, Lyk7,LysMe3 lysin-motif receptor kinases Gb recognize chitin, receptor-mediated

endocytosis-like signals and leucine zipper,
enhance the expression of the JA/ET signalling
pathway-related genes, increase the expressions of
defence-related genes

[53]
Gh-LYK1,Gh-LYK2 Gh [54]
Ve1 and Ve2 cell-surface glycoproteins Sl [16,25]

GbSOBIR1 defence-related receptor-like
kinases Gb [85]

Gbvdr3, Gbvdr6
Gbve1, VvVe, StVe
StoVe1,SlVe1, GbRLK

Ve1 homologues Gb, Vv
St, Sl [17,64,68–74]

miR482e miR482 superfamily St target disease-resistance proteins with NBS and
LRR motifs [79]

Transcription
factors

GhHB12 HD-ZIP I transcription factor Gh suppressing JA-response genes [82]
GhMYB108 plant MYB transcription factors Gh enhance defence signalling molecules [81]
CBP60g and SARD1 plant-specific transcription factors At regulating SA signalling [83]
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Table 1. Cont.

Classification Protein (Gene) Name Annotation Host Resistance Mechanism References

Signal
transduction

GaRPL18 ribosomal protein L18 Ga mediate resistance by SA-signalling [86]

GaGSTF9 phi-class glutathione S-transferase Ga regulating ROS via catalytic reduction of
glutathione [87]

GhSAMDC,GhSPMS S-adenosylmethionine
decarboxylase Gh regulating Spm biosynthesis by SA-signalling [88]

GhPAO polyamine oxidase Gh regulating Spm and camalexin signalling [90]
GhCDKE cyclin-dependent kinase Gh enhance plant resistance by JA pathway [91]
HDTF1 homeodomain transcription factor Gh activation of JA-mediated signalling [84]
GbWRKY1 regulator mediating Gb activating JAZ1 expression [92]
GbSSI2,GbCAD1 regulating signal pathways Gb activating JA-mediated signalling [50]
GbaNA1 NBS-LRR protein Gb regulating ROS and ET signalling pathway [100,101]

ETR1 ET receptor At activation and increased accumulation of defence
proteins [95]

GbERF1-like ET response-related factor Gb positive regulator in lignin synthesis [97]

Notes: At, Arabidopsis thaliana; Ck, Cynanchum komarovii; ET, ethylene; Ga, Gossypium arboreum; Gb, Gossypium barbadense; Gh, Gossypium hirsutum; ICS, isochorismate synthase; JA, jasmonic
acid; LncRNAs, long noncoding RNAs; Na, Nicotiana alata; Nt, Nicotiana tabacum; Pr, pathogenesis-related protein; ROS, reactive oxygen species; SA, salicylic acid; Spm, spermine; Sl,
Solanum lycopersicum; St, Solanum torvum; T, threonine; Vv, Vitis vinifera.
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