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Abstract

Background: Saccharomyces yeasts are an important model system in many areas of biological research. Very little is known
about their ecology and evolution in the wild, but interest in this natural history is growing. Extensive work with lab strains
in the last century uncovered the Saccharomyces life cycle. When nutrient limited, a diploid yeast cell will form four haploid
spores encased in a protective outer layer called the ascus. Confinement within the ascus is thought to enforce mating
between products of the same meiotic division, minimizing outcrossing in this stage of the life cycle.

Methodology/Principal Findings: Using a set of S. cerevisiae and S. paradoxus strains isolated from woodlands in North
America, we set up trials in which pairs of asci were placed in contact with one another and allowed to germinate. We
observed outcrossing in ,40% of the trials, and multiple outcrossing events in trials with three asci in contact with each
other. When entire populations of densely crowded asci germinated, ,10–25% of the resulting colonies were outcrossed.
There were differences between the species with S. cerevisiae having an increased tendency to outcross in mass mating
conditions.

Conclusions/Significance: Our results highlight the potential for random mating between spores in natural strains, even in
the presence of asci. If this type of mating does occur in nature and it is between close relatives, then a great deal of mating
behavior may be undetectable from genome sequences.
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Introduction

Since the dawn of yeast research, the life cycle (Figure 1) has

surprised and fascinated biologists. Early observations of germi-

nating spores mating within an ascus gave yeast the reputation of

being a highly inbred organism (for a review of early work, see [1]).

That reputation is now supported by population genetic (e.g., [2]),

genomic [3,4], and experimental data [5]. Models of the effects of

intra-ascus mating on genetic diversity [6] have lead to suggestions

that this form of reproduction purges deleterious mutations while

maintaining variation [7]. During meiosis I of spore formation

when homologous chromosomes segregate, one copy of the

genome becomes associated with each of the mating type alleles

(MATa and MATa). Therefore, when spores of the opposite

mating type from one ascus mate with each other (forming a

MATa/MATa diploid), heterozygosity is maintained only at loci

linked to the MAT locus or to a centromere. Genomic

observations such as an enrichment of essential genes linked to

centromeres seem to support the idea that an advantage of

heterozygosity despite intra-ascus mating could be an important

force shaping genome organization [5]. However, the frequency of

intra-ascus mating in natural populations, and whether outcrossing

is even possible in the presence of an ascus, are unknown.

S. cerevisiae is found in vineyards [8], as well as alongside S.

paradoxus in temperate, deciduous woodlands [9]. These two

species are strongly genetically post-zygotically isolated [10] and

estimated to have diverged over five million years ago [11]. It is

thought that these yeasts usually exist in the diploid state [7] and

that most mating occurs between germinating spores rather than

between vegetative cells [5,12]. Enzymes produced by flies

[13,14], snails, and mushrooms [15] can digest asci and separate

the spores from one another. After a dispersal event, likely via an

insect [16–18], if compatible partners are present, free spores may

mate (Figure 1e) or the diploid state may be restored through

mating-type switching (Figure 1b). Without dispersal and ascal

digestion, mating should occur in the presence of an ascus

(Figures 1c, and as we propose, 1d). While the life cycle allows for

various modes of reproduction that can lead to both outcrossing

(mating between unrelated spores/cells) and inbreeding (mating

between closely related spores/cells), the population genetic

structure may still be either recombining or clonal depending

on what actually occurs in nature and whether or not there

are opportunities for matings among spores from different

lineages.

Genomic and population genetic studies of populations of S.

paradoxus suggest that both inbreeding and outcrossing occur, as

signatures of both clonal and recombining population genetic

structures have been detected [2,19–21]. Using genomic data from

two populations of S. paradoxus, Tsai et al. (2008) estimated that

when mating occurs, 94% of the time it is intratetrad mating, 5%
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of the time it is mating type switching, and the remaining 1% of

the time it is outcrossing.

Large-scale global studies of S. cerevisiae have identified

uncultivated genetic lineages, as well as domesticated lineages

associated with humans; recombination between these lineages has

been detected [21–23]. In a comparative genomic study of a

clinical, vineyard and lab isolate, recombination was estimated to

occur in 1 of every 50,000 cell divisions [3]. However, these studies

do not address the frequency of recombination within populations

(genetic lineages). There have been two studies of woodland

populations of S. cerevisiae; in one clonality was observed [24] and

in the other, moderate outcrossing was detected in the diploid

isolates [25]. In a study of a vineyard population of S. cerevisiae in

New Zealand, 20% of matings were estimated to be outcrossed

[16].

In both species, outcrossing has been detected within popula-

tions; however, the stage of the life cycle in which it occurs is

unknown. Since direct observations of mating in the wild are not

possible, we assayed the frequency of outcrossing in individual

trials in which two or three asci were placed in contact with one

another, and in mass mating assays of dense sporulated

populations using natural strains.

Materials and Methods

Yeast Strains
We analyzed six S. cerevisiae and six S. paradoxus from sympatric

woodland populations in eastern North America [24]. Isolates

were transformed [26] to create heterothallic strains marked with

an antibiotic resistance. Three sets of strains were derived using

ho::KANMX4 [27], ho::NATMX4, and ho::HYGMX4 [28] cassettes.

Haploid a and a strains were isolated by tetrad dissection and

subsequently mated to create diploids homozygous for the

resistance. Due to the deletion of HO, these strains were unable

to mating-type switch. In order to determine whether the loss of

this ability had an effect on the rate of outcrossing, five of the six

original S. cerevisiae strains were transformed again, but the

antibiotic resistance gene was targeted to an intergenic region

near the MAT locus (chr III, 205550–206550). Once transformed,

the strains were sporulated and dissected. All spores autodiploi-

dized, confirming the ability to switch mating-type and allowing

for the isolation of diploids homozygous for the antibiotic

resistance. Table 1 lists the strains used in this study.

Media
Growth occurred in YPD liquid (2% dextrose, 1% yeast extract,

2% peptone) and for the individual trials, sporulation was on solid

medium (1% potassium acetate, 0.005% zinc acetate, 2% agar)

[29]. Mating assays were performed on SOE plates (1% sucrose,

0.5% dextrose, 0.5% fructose, 0.1% yeast extract, 0.15% peptone,

2% agar) [30]. Media were supplemented with 150 mg/ml G418,

50 mg/ml CloNat, or 400 mg/ml hygromycin, as appropriate.

Individual Outcrossing Trials
Using a micromanipulator and Zeiss Axioskop FS microscope,

two asci from different strains with different antibiotic resistances

were placed in pairs in contact with one another on agar plates; 32

pairs (trials) were set up on each plate. Once colonies formed, the

mating plates were replica plated to single antibiotic plates to

verify the viability of at least one spore in each ascus and then to

double antibiotic plates to ascertain outcrossing. Only colonies

with viable spores from both asci were included for analysis. At

least 25 trials were performed for each pair-wise combination of

the twelve heterothallic strains (average 37). All combinations of

the five homothallic strains were assayed with at least 32 trials for

each (average 56). The frequency of outcrossing for a strain

combination was estimated from these multiple trials and

considered to be one observation in the statistical analysis. For

the three-way outcrossing trials, the same procedure was used, but

mating plates were replica plated to three single antibiotic plates,

then to three double antibiotic plates. Randomly chosen strain

combinations were performed (average 20 trials per combination):

fifteen containing 2 S. cerevisiae and 1 S. paradoxus strains, and 16

containing 1 S. cerevisiae and 2 S. paradoxus strains.

Figure 1. Saccharomyces life cycle. A) When nutrient limited, diploid cells form four meiotic products, each surrounded by a spore wall, connected
via bridges and all encased in one ascus [32]. When conditions permit, spores germinate and bud or mate. Mating occurs between opposite mating
types (a and a) and is either inbreeding (B–C) or outcrossing (D–E). B) Mating-type switching: after budding once, a haploid cell can switch its mating
type through a highly coordinated gene conversion event [33], then mate with its daughter cell. C) Intratetrad mating: spores mate within an ascus.
D) Intertetrad mating: spores from different asci mate. E) Free spores mate with one another at random.
doi:10.1371/journal.pone.0010461.g001
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Mass Mating
Strains were grown in 3ml of YPD with vigorous shaking for 2–

3 days, which led to high rates of sporulation, as measured using a

haemocytometer. 300 ml of each of two cultures with different

antibiotic resistances were combined, washed, resuspended in

500ml of water, and plated on 60mm SOE plates, which created a

dense lawn of asci on the mating plate. Samples were taken to

estimate the starting ratio of the strains. S. paradoxus strains grew to

a slightly lower density; therefore, for interspecies combinations,

350 ml of S. paradoxus were combined with 300 ml of S. cerevisiae.

24 h later, 3 samples from each mating plate were plated on

permissive medium and subsequently replica plated to double

antibiotic plates to estimate outcrossing frequency. Mass mating

assays were performed once for each of all the pair-wise

combinations of the twelve heterothallic strains, as well as for all

combinations of the five homothallic S. cerevisiae strains.

If outcrossing occurs randomly with a rate of m, then 2mpaqa

double antibiotic colonies are expected, where pa and qa are the

frequency of asci of each strain in the combined culture (we

assume that all unsporulated cells are diploid and incapable of

mating). The starting ratio of the strains, as well as the proportion

of asci in a culture, were used to estimate pa and qa.

Statistical Analysis
We performed a two-way ANOVA in JMP with species and

assay as the main effects; both were considered fixed. For each

strain combination, outcrossing frequency was measured once per

assay and treated as one observation in the statistical analysis;

therefore strain effects could not be tested. To test whether

homothallism had an effect on the frequency of outcrossing, we

performed a two-way ANOVA with planned comparisons and

considered both mating ability (homo/heterothallism) and assay to

be fixed effects.

Results

In individual ascus-to-ascus trials, we found high frequencies of

outcrossing and no significant differences between intra- and inter-

species trials (within S. cerevisiae- 40%, within S. paradoxus- 43%,

interspecies- 42%; see Figure 2). In these trials, since there were 8

spores in total, there were four possible mating events. Our assay

could only determine whether or not outcrossing occurred, not the

number of times. Therefore, when we observed outcrossing, it

meant that at least one and up to four matings were between asci.

An observation of 40% of trials exhibiting outcrossing can be

interpreted as anywhere from 10–40% of possible matings being

between spores from different asci. Since we were unable to

determine the actual number of matings, we used the most

conservative estimate of each outcrossed colony (only one mating)

in our statistical analyses. Using this assumption, the observed rate

of outcrossing in the individual trials were S. cerevisiae- 10%, S.

paradoxus- 11%, and interspecies- 10.5%.

Next, we conducted individual trials with trios of asci. In these

trials, at least one outcrossing event occurred in 73% of the trials,

demonstrating an extremely high rate of outcrossing in yeast when

the opportunity is available. We observed one, two and three

outcrossing events in 44%, 25% and 4% of the trials, respectively

(Figure 3). In these trials, there are 12 spores and 6 possible

matings. Using the same logic as above for all three types of

observations, this should correspond to 18–50% of possible

matings being between spores from different asci.

In entire populations of asci, outcrossing occurred at a relatively

high frequency and was significantly more frequent than in

individual trials. S. cerevisiae outcrossed significantly more than did

S. paradoxus and interspecies combinations (Sc- 26%, Sp- 13%,

interspecies- 9%; see Figure 2). Since we were sampling individuals

from an entire population, these values should reflect the

percentage of outcrossed matings (or matings between spores

from different asci) and can be compared to the conservative

estimates from the individual trials.

Overall, we found a significant difference between the

outcrossing rates of the species (F = 18.48, p,0.0001), significant

variation among assay type (F = 22.84, p,0.0001) and a significant

assay*species interaction (F = 20.28, p,0.0001). Using a Tukey’s

Honestly Significant Difference test, we found that the outcrossing

rate of S. cerevisiae in mass mating assays was significantly greater

than all other assay and species combinations.

To be sure that the high rate of outcrossing we observed was not

inflated due to the absence of the ability to switch mating-types, we

constructed a second set of S. cerevisiae strains that were antibiotic

resistant, but still able to switch mating-types, and repeated the

assays (Figure 2). We found a decrease in the frequency of

Table 1. Strain table.

Heterothallic Homothallic

Species Woodland Strain Kanr Natr Hghr Kanr Hghr

S. cerevisiae YPS681 MZ30 MZ31 MZ57 MZ137 MZ227

YPS670 MZ32 MZ33 MZ51 MZ373 MZ367

YPS615 MZ34 MZ35 MZ49

YPS133 MZ36 MZ37 MZ55 MZ371 MZ368

YPS623 MZ38 MZ50 MZ372 MZ369

YPS630 MZ39 MZ56 MZ370

S. paradoxus YPS664 MZ11 MZ12

YPS646 MZ14 MZ13

YPS668 MZ73 MZ15

YPS642 MZ16 MZ17

YPS644 MZ29 MZ28

YPS744 MZ18 MZ19

doi:10.1371/journal.pone.0010461.t001
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outcrossing in the individual ascus-to-ascus trials (homothallic-

33% vs. heterothallic- 40%; with a conservative estimate of

matings, homothallic-8% vs. heterothallic-10%) and a slight

increase in the mass mating assays of dense populations

(homothallic- 27% vs. heterothallic- 26%); however, neither of

the differences was significant (planned contrasts, p = 0.7774 and

p = 0.7083, respectively). As in the case with the heterothallic

strains, there was more outcrossing in the mass mating assays,

(p = 0.004). Overall, there were no significant effects due to mating

ability (F = 0.2126, p = 0.6463) or the interaction between mating

ability and assay (F = 0.0011, p = 0.9736).

Discussion

Our results clearly demonstrate that the ascus does not

physically enforce inbreeding. When environmental conditions

become favorable, free yeast spores germinate and then either bud

or mate [31]; the same is true when the ascus is still intact (Figure

S1; Text S1). Mating may proceed with an ascus mate, or with a

germinating spore from a neighboring ascus (Figures 4 and S1).

When two asci are placed in contact with each other, at least one

outcrossing event occurs ,10–40% of the time, and when three

Figure 2. Outcrossing in Saccharomyces yeasts. Outcrossing frequency in individual ascus-to-ascus trials (I) and mass mating assays of dense
cultures (M); black- assays with heterothallic strains; gray- assays with homothallic strains. Bars represent the overall average; diamonds represent the
outcrossing frequency for a given strain combination. For the individual ascus-to-ascus trials, on average, 37 pairs of asci were assayed for each strain
combination (one data point on graph); the conservative estimate, which assumes one mating per outcrossed colony, is plotted. In the mass mating
assay, for each strain combination, one plate densely covered in asci was allowed to germinate and grow. This plate was sampled and an average of
,300 resulting colonies were assayed to estimate the outcrossing frequency.
doi:10.1371/journal.pone.0010461.g002

Figure 3. Outcrossing in individual three-way trials. In each trial,
three asci, each with a different antibiotic resistance, were placed in
contact with one another. After germination and growth, outcrossing
was assayed by replica plating to plates with different combinations of
antibiotics. In total, 632 trials were conducted. The graph shows the
proportion of those trials that contained the number of outcrossing
events listed on the x-axis.
doi:10.1371/journal.pone.0010461.g003

Figure 4. Photos of outcrossing between asci. A–H: Representa-
tive photos of sporulated yeast responding to growth medium in a
mass-mating assay. Arrows indicate instances of outcrossing. A)
Sporulated yeast (two asci); B) ascus with germinating spores; C) four
vegetative cells, previously spores from one ascus, two are mating; D–
E) mating between germinating spores from two different asci; F–H)
outcrossing and mating in a mass of germinating spores and asci.
doi:10.1371/journal.pone.0010461.g004

Outcrossing between Yeast Asci
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asci are placed in contact, at least one outcrossing event occurs

,20–50% of the time. When an entire dense population of

sporulated yeast germinate, outcrossing occurs ,10–25% of the

time. The higher rate of outcrossing in mass mating may be due to

the density of spores and/or the difference in the availability of

nutrients. Since so little is known about the ecology of Saccharomyces

yeasts, it is uncertain which of the two assays more closely mimics

natural conditions. Because intact asci probably don’t migrate, and

therefore neighboring asci are likely to be closely related

(potentially descendants from the same mother cell), it is unclear

whether this form of mating would impact the frequency of

random mating in a population and therefore have an effect on the

population genetic structure. This may be a reason why inter-ascus

mating has been overlooked in other studies investigating the

frequency of intratetrad mating [4,5].

Tsai et al. used genomic data from 8 and 12 strains from a Far

Eastern and a European population of Saccharomyces paradoxus,

respectively, to estimate the frequency of asexual and sexual

reproduction by comparing the genetic diversity presumably

contributed by mutation and recombination. They used their

estimates of rho to calculate the frequency of each type of sexual

event: mating-type switching, intra-ascus mating, and random

mating. By comparing diversity surrounding the MAT locus to the

rest of chromosome III, they estimated the frequency of intra-ascus

mating (at all loci other than MAT, each form of mating has a

different effect on heterozygosity). Once they estimated the

frequency of intra-ascus mating to be 94%, they added 1% for

outcrossing/random mating (using a previous estimate based on

observed heterozygosity in a population survey) and presumed the

last 5% of the time mating-type switching occurred. They did not

consider the possibility of inter-ascus mating. If two asci were

closely related (descendants from the same mother cell), inter-ascus

mating would be another form of inbreeding that could have

contributed to the decrease in diversity on chromosome III, and

would not be differentiated from intra-ascus mating in their

analysis. Conversely, if two asci were unrelated and inter-ascus

mating occurred, then it would be counted as part of the estimate

of random mating (outcrossing).

In another study that investigated intra-ascus mating, Taxis et

al. conducted a series of experiments to show that based on

nutrient availability the number of spores produced in an ascus is a

self-organizing system and may be optimized so that yeast can

return to the diploid state without intervening mitotic divisions.

One experiment in their study is particulary relevant to the

discussion here. Since all centromeres are in effect linked to the

MAT locus, when intra-ascus mating occurs, heterozygosity is also

preserved at sequences closely linked to centromeres (see Figure

7A in their paper). To assay intra-ascus mating, Taxis et al.

constructed a yeast strain that was heterozygous (hphr/kanr) at a

locus near a centromere, and heterozygous (+/natr) at a locus for

an essential mitosis gene on a different chromosome. A culture of

asci was exposed to growth medium and subsequently sampled to

determine the antibiotic resistances of the sample colonies. The

authors found that 75%–80% of the sampled colonies contained

all three markers, which they interpreted as resulting from intra-

ascus mating between non-sister spores; the remaining 20–25% of

the diploid colonies did not contain all three antibiotic markers.

Some of these remaining colonies had clonat resistance (which by

definition means they were heterozygous because natr/natr could

not divide mitotically) and had only one of the other markers

(hphr/hphr or kanr/kanr). These colonies were interpreted as

being the result of ‘‘mating upon germination but not between

sister spores’’. They also observed colonies that lacked clonat

resistance (+/+) and had any combination of the other two

markers. They interpreted these colonies as deriving from ‘‘other

types of mating’’. All of the matings they observed that did not

have all three markers are consistent with inter-ascus mating

(although colonies that had only kan or hph resistance are

consistent with mating-type switching as well). If one lists all the

different mating combinations possible in the previously described

experiment (two loci on different chromosomes, with two alleles

per locus), there are 16 possibilities, four of which cannot grow and

survive because they lack an essential mitotic gene. Another four of

the sixteen should contain all three antibiotic markers. The final

eight constitute the combinations lumped into the two ‘‘other’’

categories in their analysis. If inter-ascus mating did occur in their

experiment, and when it did, it occurred randomly with respect to

their antibiotic markers, then the 20–25% that they observed that

did not contain all three markers could potentially represent half of

the inter-ascus mating events. If that were true, then the estimate

of inter-ascus mating would be similar to the frequency we

observed in our experiments (up to 40%).

Although some studies of yeast populations have found evidence

for outcrossing and recombination, others have not. We see three

ways to reconcile our observation of frequent mating between

spores from different asci with the apparent rarity of outcrossing

among the genome sequences of natural isolates. The first is that the

estimates based on comparative genomics may either underestimate

the frequency of inter-ascus mating (as explained above) or may not

be relevant to within population dynamics. The estimate of 1

recombination event in 50,000 cell divisions provided by Ruderfer

et al. is based on comparing strains from different global and

ecological lineages (clinical, vineyard, lab) and may accurately

reflect inter-lineage dynamics; however, it may not reflect

outcrossing and mating dynamics within lineages and populations

in vineyards and woodlands. The second possibility is that although

the ascus structure does not prevent matings between asci, due to

ecological circumstances in some populations, ascus density is low

enough that they are rarely in contact. The final possibility is that,

because of intervening clonal growth between sexual events,

neighboring asci are usually closely related, so mating between

them has little or no detectable effect on population genetic

structure. While much of the population and genomic data have

supported yeast’s reputation as an inbred organism, the ascus should

no longer be considered the chief cause.

Supporting Information

Figure S1 Photos of the time course in a mass-mating assay with

S. cerevisiae. A) 0 hours: intact asci that are being placed in permissive

medium. B) 3 hours later, the asci appear flat and the spores begin

to swell. C) 4 hours after being placed into permissive medium, the

spores are germinating out of the ascus. D) 5 hours after initial

exposure, budding cells are visible, as are masses of cells that were

once asci. E–H) In the center of each photo are examples of

outcrossing between two asci, all were taken at 5 hours.

Found at: doi:10.1371/journal.pone.0010461.s001 (0.27 MB TIF)

Text S1

Found at: doi:10.1371/journal.pone.0010461.s002 (0.05 MB

DOC)
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