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Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential therapeutic
modality for patients with hematological malignancies and other blood disorders.
Unfortunately, acute graft-versus-host disease (aGVHD) remains a major source of
morbidity and mortality following allo-HCT, which limits its use in a broader spectrum of
patients. Chronic graft-versus-host disease (cGVHD) also remains the most common
long-term complication of allo-HCT, occurring in reportedly 30-70% of patients surviving
more than 100 days. Chronic GVHD is also the leading cause of non-relapse mortality
(NRM) occurring more than 2 years after HCT for malignant disease. Graft versus tumor
(GVT) is a major component of the overall beneficial effects of allogeneic HCT in the
treatment of hematological malignancies. Better understanding of GVHD pathogenesis is
important to identify new therapeutic targets for GVHD prevention and therapy. Emerging
data suggest opposing roles for different T cell subsets, e.g., IFN-g producing CD4+ and
CD8+ T cells (Th1 and Tc1), IL-4 producing T cells (Th2 and Tc2), IL-17 producing T cells
(Th17 and Tc17), IL-9 producing T cells (Th9 and Tc9), IL-22 producing T cells (Th22), T
follicular helper cells (Tfh), regulatory T-cells (Treg) and tissue resident memory T cells
(Trm) in GVHD and GVT etiology. In this review, we first summarize the general description
of the cytokine signals that promote the differentiation of T cell subsets and the roles of
these T cell subsets in the pathogenesis of GVHD. Next, we extensively explore preclinical
findings of T cell subsets in both GVHD/GVT animal models and humans. Finally, we
address recent findings about the roles of T-cell subsets in clinical GVHD and current
strategies to modulate T-cell differentiation for treating and preventing GVHD in patients.
Further exploring and outlining the immune biology of T-cell differentiation in GVHD that will
provide more therapeutic options for maintaining success of allo-HCT.
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INTRODUCTION

Allogeneic hematopoietic cell transplant (allo-HCT) is a remarkably successful immunotherapy in
large part due to the graft-versus-tumor (GVT) effect. Unfortunately, GVT is tethered to the
pathogenesis of acute graft versus host disease (aGVHD). The detailed pathogenesis of acute GVHD
(aGVHD) has recently been reviewed in depth (1, 2). Overall, T cells are indispensable mediators of
org October 2021 | Volume 12 | Article 7614481
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aGVHD pathogenesis since GVHD rarely develops after
syngeneic or T cell-depleted transplants (3–7). Both aGVHD
and GVT have been found to be initiated by antigen presenting
cells (APCs) derived from the donor and from host activating
donor T cells (8, 9). Such activation leads to the release of
inflammatory cytokines, with subsequent proliferation of
alloreactive T cells, resulting in host damage and further
inflammation. Around 15-20% of hematopoietic cell transplant
patients develop severe refractory GVHD leading to mortality
(10, 11). Chronic GVHD (cGVHD) pathogenesis is a complex
process involving both B and T cells (12). The process was
reviewed recently in detail (1). Essentially, crosstalk between B
and T cells leading to the proliferation of germinal centers
allowing the production of allo-reactive antibodies appears to
be the overlying process of the disease. The mainstays of GVHD
prevention include anti-thymocyte globulin, calcineurin
inhibitors and post-transplant cyclophosphamide, and first line
therapies include corticosteroids in addition to calcineurin
inhibitors. However, treatment with these drugs negatively
affect desirable GVT (13). In addition, steroid-refractory
GVHD (SR-aGVHD) patients have dismal outcomes, thus
representing an urgent need for developing new treatment
strategies in the field of transplant medicine (14). That said,
recent breakthroughs have been made including the positive
result of the randomized phase III clinical trial evaluating
ruxolitinib versus best available treatment (BAT) in SR-
aGVHD (15). Similarly, positive results were seen in SR-
cGVHD comparing ruxolitinib versus BAT (16). The central
role of T cells in the pathogenesis of GVHD has also led to
extensive studies in manipulating T cell populations to reduce
GVHD severity. Specific T cell subsets have been found to either
exacerbate or alleviate GVHD/GVT, a finding that is currently
being exploited in novel treatment options in preclinical and/or
clinical studies.
T CELLS INDUCERS OF GVHD

T cells differentiation is initiated when naïve T cells are
stimulated by antigens in the presence of MHC molecules
under a particular milieu of cytokines their corresponding
signaling pathways to develop into different T cell subsets that
acquire specialized effector cell phenotypes (17). As shown in
Figure 1, these T cell subsets are characterized by the production
of signature cytokines and expression of specific transcription
factors (TFs). The specific cytokines and TFs are activated by
signal transducer and activator of transcription (STAT) family
members to confer specialized functions to the T cell subsets.
These cytokines and TFs that regulate T cells differentiation may
have effects on the development of multiple T cell subsets. For
example, interleukin 6 (IL-6) is essential for T follicular helper
(Tfh) and T helper type 17 (Th17) differentiation through the
STAT5 signaling pathway (18). Different T cell subsets have been
involved in several inflammatory diseases (19, 20), and may
allow the development of novel treatment strategies (21).
Frontiers in Immunology | www.frontiersin.org 2
Figure 2 summarizes T cells subsets demonstrated or putative
roles in GVHD/GVT. The gut and other tissues are damaged
during irradiation and/or chemotherapy, leading to the release of
various DAMPs/PAMPs, and inflammatory cytokines (22).
These DAMPs, PAMPs, and cytokines activate both host and
donor antigen-presenting cells (APCs), which then activate the
donor T cells. The APCs are also secreting various cytokines that
promotes T cell differentiation toward different T cell subsets
including T helper type 1 (Th1), T helper type 2 (Th2), T helper
type 17 (Th17), T helper type 9 (Th9), and regulatory T cells
(Tregs). Activated T cells are able to secrete various pro-
inflammatory cytokines including IFNg, IL-17, IL-22 leading to
cytolysis of cells in target tissues, mainly in the gut, liver, and
skin, which can be alleviated by anti-inflammatory cytokine
produced by Th2, Th9 and Treg cells, such as IL-33-producing
Th9 (23).

Naïve T Cells
T cell depletion previous to HCT and the use of T cell-depleting
antibodies have been used resulting in a significant reduction in
GVHD (24). Anti-T-lymphocyte Globulin (ATG) has been used
to prevent GVHD in the conditioning regimen but also as
treatment while the patient’s response is still unsatisfactory. In
the steroid-refractory GVHD therapeutic setting, the response rate
is reported to be 24%-41% using ATG and overall survival is poor
(25). A recent phase 3 clinical trial aimed to take advantage of the
benefits of T-cell depletion with respect to GVHD by using an
anti-CD25 antibody (inolimomab) versus ATG, which found no
difference in overall survival (26). Unfortunately, the experimental
group suffered from issues with infection and relapse, common to
T cell-depletion strategies leading to mortality in both arms of the
study. The differences between naïve T cells and memory T cells
have being investigated to determine which specific subsets of T
cells were particularly inductive of pathological immune
responses. Naïve T cells (TN) are CD45RA+CD62L+ antigen
inexperienced cells with a diverse TCR repertoire (27, 28).
Preclinical studies have supported the role of naïve T cells (TN)
in inducing GVHD as opposed to central memory T cells (TCM)
(29, 30). In allogeneic mouse models of HCT, it was determined
that TN caused more severe GVHD compared to that of TCM and
effector memory T cells (TEM) cells in isolation (29–35). It was also
found in in vitro studies that CD8+ TN were 5-20 times more likely
to be specific for a minor histocompatibility antigen than TM (36),
supporting the role of this subset in the pathogenesis of GVHD
disease. Concurrently, grafts in mice performed with memory cells
retained GVT activity when challenged with malignancy (29, 34,
37). A recent phase II clinical trial applied these findings to
humans. Naïve T cell depletion was used to reduce GVHD in
acute leukemia patients (38). Naïve T cells were depleted from
peripheral blood stem cells (PBSCs) using an iron-dextran bead
conjugated to a monoclonal anti-CD45RA antibody. Thirty-five
patients with acute leukemia or advanced myelodysplastic
syndrome received TN-depleted HCT after myeloablative
conditioning with 50 days of tacrolimus as immunosuppression.
Durable engraftment was achieved in 34 out of 35 patients. Acute
GVHD was not reduced in this trial. However, chronic GVHD,
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a secondary endpoint, was very low (9%) over the 2.5-year median
follow up time. This method had other advantages when
compared to historical controls, such as faster immune
reconstitution compared to T-Cell Depleted (TCD) HCT, a 2-
year disease free survival of 70% compared to 50% in TCD and
65% in T-cell-replete grafts, and a 28% relapse rate compared with
60% in TCD and 37% in T-cell replete grafts. These findings
require confirmation in future randomized clinical trials.

Th1 and Tc1
The early phase of aGVHD pathogenesis is predominantly
mediated by Th1/Tc1 cells, with hyperproliferation and high
cytotoxicity driving disease. These cells arise in response to the
transplant-conditioning-induced cytokine storm and resultant
Frontiers in Immunology | www.frontiersin.org 3
release of DAMPs and PAMPs, and they can often be targeted by
standard immunosuppression regimens, which focus on the
inhibition of proliferation and NFAT-driven T cell signaling
(39). CD4+ (Th) and CD8+ (Tc) T cells are stimulated to
differentiate into the Th1/Tc1 together type 1 subtype when
they receive T Cell Receptor (TCR) stimulation from their
specific antigen, here allo-antigen, as well as co-stimulation
from a variety of different pathways. IL-12, in its activation of
STAT4 has been found to be a critical component of the Th1
pathway (40, 41). In the same way, CD8+ T cells are encouraged
to differentiate into Tc1 cells by TCR activation, co-stimulation,
and the cytokines IL-2 and IL-12 (42–44). Interferon gamma
(IFNg), a primary mediator of inflammation and tissue damage,
is a primary product of activated Th1 cells (45). The defining Th1
FIGURE 1 | Overview of T Cells Differentiation Pathways. The cytokine and transcription factors (TFs) niche dictates T cell differentiation in spite of the stimulation of
T cell receptor signaling pathways. The prototypical cytokines and TFs that regulate each T cell subset differentiation fate are depicted. These cytokines and TFs that
influence T cell differentiation have effects on the development of multiple T cell subsets, such as interleukin-6 (IL-6) is essential for T helper type 22 (Th22), T follicular
helper (Tfh), and T helper 17 (Th17) cell development.
October 2021 | Volume 12 | Article 761448
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transcription factor is T-box expressed in T cells (T-bet or
Tbx21) (46). Similar to Th1’s, Tc1 cells also depend on T-bet
as a transcription factor and are also induced by concurrent
expression of eomesodermin (Eomes) (47).

Allogeneic donor Th1 and Tc1 cells have been shown in
multiple experiments to induce both GVT and GVHD in mouse
models and is classically thought to be the main propagator of
GVHD. The IFNg secreted by donor Th1 cells have been found
to both encourage further Th1 cell differentiation and direct
damage to the gut mucosa (48). Preclinical models have shown
elevation of Th1-derived cytokines including tumor necrosis
factor (TNF) and IFNg in association with GVHD. The
cytokines have also been implicated directly in target organ
damage (48–51). T-bet is a crucial regulator of Th1
differentiation and IFNg production, and T-bet-/- T cells
alleviate GVHD after adoptive transfer in both major and
minor MHC mismatched mouse model (52). Blockade of Th1
and Th17 differentiation by targeting T-bet and RORgammat in
mice ameliorates GVHD while surprisingly not decreasing GVT
activity (53). As a transcription factor, a promising strategy is to
target its downstream effectors for preventing GVHD instead of
directly inhibiting T-bet. In human patients suffering from acute
GVHD, Th1 cytokines are found in pathologic lesions,
Frontiers in Immunology | www.frontiersin.org 4
supporting the clinical relevance of this subset in the
pathogenesis of GVHD (54, 55).

The Janus Kinases (JAKs) family members (JAK-1, -2, -3,
Tyrosine kinase 2) and its downstream regulators signal
transducers and activators of transcription (STAT) are crucial
in the pathogenesis of GVHD (56). Different JAK inhibitors,
such as JAK1/2-inhibitor ruxolitinib and JAK1-inhibitor
itacitinib, have been developed and applied to prevent or treat
aGVHD and cGVHD with different clinical indications. JAK1/2
antagonists can suppress Th1 and Th17 cell function, activation
of antigen presenting cells (APCs), MHC expression and co-
stimulatory signals through inhibition of STAT1 and STAT3
signaling pathways (57). The regulatory T cell function is
retained by reserving IL-2-JAK3-STAT5 signaling pathway
followed JAK1/2 inhibition. In 2019, ruxolitinib (Jakafi), a
JAK1/2 inhibitor, was approved by the U.S. Food and Drug
Administration to treat steroid-refractory aGVHD in adults and
children age 12 years and older based on the randomized phase
III trial (15). It was also recently approved for steroid-refractory
cGVHD in the same population based on the randomized phase
III trial (16). In recently published preclinical work, the JAK1/2-
inhibitor baricitinib has shown to prevent GVHD by increasing
Tregs via the JAK3 pathway (58).
FIGURE 2 | Overview of GVHD Pathogenesis. The gut and other issues are damaged during irradiation or chemotherapy, leading to the release of various DAMPs,
PAMPs, and inflammatory cytokines. These DAMPs, PAMPs, and cytokines activate both host and donor antigen-presenting cells (APCs), which then activate the
donor T cells. The APCs are also secreting various cytokines that promotes T cell differentiation toward different T cell subsets including T helper type 1 (Th1), T
helper type 2 (Th2), T helper type 17 (Th17), T helper type 9 (Th9), and regulatory T cells (Tregs). Activated Th1 and Th17 T cells are able to secrete various pro-
inflammatory cytokines including IFNg, IL-17, IL-22 leading to apoptosis of cells in target tissues, mainly in the gut, liver, and skin, which can be alleviated by anti-
inflammatory cytokine producing Th2, Th9 and Treg cells, such as IL-33-producing Th9.
October 2021 | Volume 12 | Article 761448
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Th17 and Tc17
Th17 cells are the other major subtype of inflammatory T cell
implicated in the pathogenesis of GVHD. Cytokines TFG-b1 and
IL-6 ± IL-23 direct the differentiation of Th17 cells (59–63). The
cells are defined by their expression of IL-17 and lack of
expression of IL-4 and IFNg (64, 65). Retinoic acid receptor-
related orphan receptor gamma (RORgt) is the main transcription
factor of the Th17 lineage (66). The role Th17 in the pathogenesis
of aGVHD is complicated, but overall aGVHD appears to be
primarily a Th1 but not Th17 process (67) while cGVHD is both a
Th1 and Th17 process (68). Another Th17-like cytokine, IL-21
has also been shown in many preclinical models to induce
aGVHD, either via knockout of IL-21 or inhibition of the IL-21
receptor (68–72). The role of Th17 cells have also been
investigated in mouse models by way of their transcription
factors. Multiple studies have found that the absence of both
RORgt and Tbet greatly diminished the severity of aGVHD. In
addition, absence of critical Th17 transcription factors led to a
significant decrease in the frequency of IL-17A and TNF in
subjects’ serum and pathogenic lesions (73). A third method to
investigate the role of the Th17 subset in the pathogenesis of
GVHD has been to target the cytokines that produced Th17.
While likely not specific to Th17, IL-6 inhibition in mouse models
was shown to significantly decrease aGVHD severity (74, 75). In
addition, blockade of IL-23 was found to diminish aGVHD
severity (76–78). Finally, allogeneic donor Th17 cells have been
shown to be capable of inducing lethal GVHD in isolation, but
they have also been shown to be unnecessary in doing so, as the
Th1/Tc1 subset is also sufficient to do so in isolation (79, 80).

In patients suffering from aGVHD, the frequency of Th17
cells in peripheral blood was increased along with the frequency
of IL-17 (81). As time progresses after transplantation, Th17/
Tc17 cells may become a major driving force of GVHD, secreting
proinflammatory cytokines, providing a cellular reservoir for
effector alloimmune cells, and supporting the Tfh-driven
immune response that characterizes cGVHD (39). Indeed,
Th17 cells have been even more heavily implicated in cGVHD
in humans. They have been found to be present in increased
frequency in the blood of cGVHD patients (81) and mixed Th1/
Th17 cells were found in histological examination of cGVHD
skin lesions (82). In addition, CD146 and CCR5+CD146+ CD4 T
cells are present in increased frequencies in humans suffering
from aGVHD and cGVHD, and these cells have been shown to
be skewed toward a mixed Th1/Th17 phenotype (83, 84). In a
murine model experiment, the potential application of RORgt
inhibition has been studied with TMP778. Treatment resulted in
a significant decrease in the observed pathology, like a group
treated with an anti-IL-17 antibody (84). Furthermore, KD025,
was explored in a murine model of cGVHD, which demonstrated
a significant reduction in the symptoms of disease. The same
study also demonstrated that KD025 inhibition decreased the
production of IL-21, IL-17, and IFNg in the PBMCs of patients
suffering from GVHD (85). To follow up on these findings, a
phase II clinical trial investigating ROCK2 inhibition with
belumosudil (KD025) in the treatment of SR-cGVHD
(NCT02841995) showed overall response rates (ORR) (95%
Frontiers in Immunology | www.frontiersin.org 5
CI) with belumosudil 200 mg once daily, 200 mg twice daily,
and 400 mg once daily of 65% (38% to 86%), 69% (41% to 89%),
and 62% (38% to 82%), respectively. Responses were clinically
meaningful, with a median duration of response of 35 weeks, and
were associated with quality-of-life improvements and
corticosteroid (CS) dose reductions (86). Furthermore, the
ROCKstar study showed that belumosudil showed responses
for cGVHD after 2 or more prior lines of therapy (87). Based on
these findings, belumosudil was recently FDA approved for
patients 12 years and older who have received 2 or more prior
lines of therapy (88).

Th22
Recently defined as a separate lineage from Th17 cells, Th22 cells
were first described in the context of epidermis-infiltrating cells
in individuals with inflammatory skin conditions that produced
IL-22 and TNFa without producing IFNg, IL-4, or IL-17 (89).
Th22 cells have been shown to develop under the influence of IL-6,
IL-23, IL-1b, and 6-formylindolo[3,2-B] carbazole (FICZ) in vitro,
along with the tyrosine kinase inhibitor galunsertib. However,
ideal conditions for differentiation of Th22 in vitro and in vivo
have yet to be determined (90). RORgt has been established as the
critical transcription factor for Th22 differentiation, while Tbet is
an inhibitory transcription factor for this lineage (90). In contrast
to the relatively well-established roles of Th1 and Th17 cells in the
pathogenesis of GVHD, the role of Th22 cells and their trademark
cytokine, IL-22, remains controversial. In murine models of
aGVHD, approximately half the cytokine IL-22 was derived
from Th22 cells (91). However, IL-22 has been associated with a
protective effect on intestinal stem cells in an experiment that
showed recipient deficiency in IL-22 led to more severe immune-
mediated damage in the intestine (92). Simultaneously, it was
demonstrated in a murine allo-HCT model that deficiency of IL-
22 in donor T cells led to diminished aGVHD severity without
inhibiting GVT (93). In line with this latter finding, exogenous
injection of IL-22 into a murine model after allo-transplant was
associated with increased aGVHD severity secondary to Th1 and
Tc1 cell expansion, while diminishing Treg levels (94). However,
the tissue protective functions of IL-22 can be decoupled from pro-
inflammatory actions through structure-based design (95). Based
on these findings, a study of IL-22 IgG2-Fc (F-652) along with
corticosteroids for subjects with grade II-IV lower gastro-intestinal
(GI) aGVHD has been conducted (NCT02406651). Preliminary
results of the multicenter prospective phase 2 study showed the
combination with corticosteroids was well tolerated and met
primary efficacy endpoint (96). Based on these preliminary
results, Genentech has sponsored an ongoing clinical trial
investigating the use of IL-22Fc in addition to standard therapy
for prophylaxis of aGVHD in patients undergoing allogeneic HCT
(NCT04539470). Altogether, the action of IL-22 appears to
depend on its source and location with donor IL-22 leading to
increased aGVHD.

Tfh
Tfh cell differentiation is a multi-step process that is initiated by
dendritic cell priming of a naïve CD4+ cell (97). IL-6 is key to this
October 2021 | Volume 12 | Article 761448
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priming process, and its signaling will increase the key transcription
factor B-cell lymphoma 6 (Bcl6) in the maturing cell (98–101). Tfh
secrete IL-21 as its lead cytokine (102). IL-2 acts as an inhibitor of
the Tfh pathway (103, 104). While Tfh cells have not yet been
investigated for their roles in aGVHD, donor Tfh cells have been
shown to induce cGVHD via their secretion of IL-21. This cytokine
leads to the proliferation of germinal centers, differentiation of
plasma cells, and the production of auto-antibodies characteristic of
cGVHD (105–107). Patients with active cGVHD had a significantly
lower frequency of circulating Tfh compared with patients without
cGVHD which was associated with higher CXCL13 plasma levels
suggesting increased homing of Tfh to secondary lymphoid organs.
Further, cTfh were skewed toward a Th2/Th17 phenotype in turn
promoting B-cell immunoglobulin secretion and maturation (106).

Trm
It was previously thought that T cells were exclusively found in
the blood and secondary lymphoid organs at steady state. Recent
observations suggest that the majority of memory T cells reside
in human peripheral tissues, primarily located in the skin, gut,
liver and lung. Increasing studies unraveled that tissue resident
memory T (Trm) cells, representing a lineage of memory T cells,
are thought to be contributors in the pathogenesis of GVHD. The
Trm cells can be identified by specific markers like CD69 (108).
Contribution from host T cells has been recognized recently.
Pretransplant conditioning which typically consists of
chemoimmunotherapeutic drugs and/or total body irradiation
were thought to eliminate host T cells and therefore not play a
role in GVHD, but new studies indicate that host T cells resident
in peripheral tissues are highly resistant to depletion, even after
high-intensity conditioning (109). In humans, host-derived Trm
cells have been found in patients’ skin lesions before and after
allo-HCT and showed distinct transcriptomic program with
RUNX3 and galectin-3 as the phenotypic signatures for these
cells as compared to blood T cells (110). Similarly, host T cells
were found in all skin and colon from patients with aGVHD after
allo-HCT. A subset of host-derived Trm cells is highly proliferative
and can be directly activated by donor-derived monocytes. These
Trm cells promote the development of GVHD through production
of proinflammatory cytokines such as IFNg and IL-17 (109). Skin
Trm cells are HCT conditioning resistant and can be maintained
during a long period of time with replenishing T cells rapidly
acquiring Trm phenotype. The role of Trm cells in other GVHD
target organs is also being explored in preclinical models as well as
additional functional roles. For example, murine PSGL1loCD4+ T
cells from GVHD target tissues enhance B cell differentiation into
plasma cells and production of autoantibodies via their PD-1
interaction with PD-L2 on B cells. Similar evidence was found
from humanized GVHD target tissues. In addition, human
PSGL1loCD4+ T cells were apposed with memory B cells in the
liver tissues of humanized mice and cGVHD patients (111). By
creating three spatiotemporal T cell compartments in non-human
primates, development of pathogenic Trm into donor CD8+ T cells
after allo-HCT was observed. Results showed that by day 8 after
transplant, donorTcells infiltrated into theGI tract andexhibitTrm
hallmarks. The T cells displayed highly activated and cytotoxic
phenotype driven by IL-15 and IL-21 signaling (112).
Frontiers in Immunology | www.frontiersin.org 6
REGULATORY T CELLS IN GVHD

Th2
Th2 cells mainly produce IL-4, IL-5, IL-10, and IL-13 (113).
GATA-binding protein 3 (GATA3) was found to be the master
transcription factor for Th2 cells (114). Tc2 cells overlap with
Th2 cells in many ways, including their cytokine profile and
transcription factor. However, they express both less IL-4 and
GATA3 than Th2 cells (115, 116). While we placed Th2 cells
under the “regulatory” section due to their protective role when
adoptively transferred (117, 118), their overall role is still
controversial as they have also been shown to be involved in
the pathogenesis of GVHD of the skin and lungs at later stages
(48, 119). IL-10-producing Th2 subset has been associated with
decreased GVHD in animal models. Also, the natural protective
effect of Th2 cells on the gut may prove beneficial for preventing
severe gut GVHD (120), the most lethal location of the disease.
Additionally, Th2 and Tc2 cells have been described to mediate
significantly less severe GVHD compared to Th1 and Tc1 cells
after adoptive cell transfer (117, 118). However, these cells
concurrently have little to no ability to kill malignant leukemia
cells in vivo (117, 118). No conclusive results can be drawn for an
association between Th2/IL-4 and cGVHD.

Rapamycin resistant T cells (Trapa) hold promise in preventing
GVHD in adoptive cell transfer. Trapa cells have the advantage of
being more robust in vivo due to their increased frequency of the T
centralmemory phenotype (Tcm). Rapamycin resistant T cells also
have the advantage of proliferating to a greater degree compared to
rapamycin sensitive cells once removed from rapamycin (121).
These qualities have been exploited in both preclinical and clinical
studies.ExvivomurineTrapacells polarizedwith IL-4 toward aTh2
phenotype differentiated into the Th2-type cell and was more
effective at preventing GVHD and graft rejection than control
Th2 cells (122). Rapamycin-resistance in T cells has also been
shown to support Treg cell populations in vivo in the setting of
transplant, denoting another potential avenue of rapamycin and
rapamycin resistance to combat GVHD (123). A phase II clinical
trial investigated Th2-skewed Trapa cells used as donor leukocyte
infusion (DLI) after allo-HCT.Trapa cells showed amix ofTh2 and
Th1 phenotype and cumulative incidence probability of aGVHD
was 20% and 40% at days 100 and 180 post-HCT, respectively.
Safety was demonstrated, as none of the patients experienced
transplant-related mortality (124). However, there are no phase
III Trapa DLI clinical trials in process.

Th9
Th9 cells were shown to be a subset of CD4 cells unique from Th2
cells due to their significant IL-9 production and minimal IL-4
production (125). Characterization of this subset continued as
transforming growth factor-beta was found to induce IL-9
expression in Th2 cells (126). A concurrent study similarly
found that IL-4 along with TGF-beta led to an IL-9+ IL-10+

Foxp3- phenotype (127). Eventually, PU.1 was deciphered to be a
defining transcription factor of this unique subset (128). Recently,
it was described that CD8+ cells could also differentiate into this
IL-9-producing subset, representing Tc9 cells (129). Unlike the
relatively straightforward role of Tregs, the function of Th9 and
October 2021 | Volume 12 | Article 761448
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Tc9 cells in the context of immunomodulation is complicated, as
they have been implicated in both pro-inflammatory and anti-
inflammatory actions. It was suggested that Th9 cells may prevent
GVHD in an experiment that showed in a murine allogeneic
model, mice treated with a co-transfer of rapamycin resistant Th9
cells showed decreased donor CD8+ cell engraftment and
decreased donor IFN-g production (130). In addition, two
studies suggested the importance of IL-9 specifically to
immune-mediated limitation of tumor growth (131, 132).

Aside from the decreased IFN-g with Th9 cell transfer, it was
postulated that this subset may decrease GVHD through their
expression of membrane-bound Stimulation-2 (ST2), the IL-33
receptor (23, 133). The IL-33/ST2 pathway has been shown to
induce type 2 cytokine production, which is implicated in both
supporting tissue repair and maladaptive allergic responses (134).
Elevated levels of soluble ST2 (sST2), the decoy receptor, was found
to be a risk factor for severe GVHD (135). Using an anti-sST2
antibody GVHD severity could be reduced. This treatment also
simultaneouslymaintainedmembrane-bound ST2 expression onT
cells, increasing the ratio of ST2 to sST2, as well as maintaining
GVT. This combination of findings pointed to the inverse
relationship between the two related receptors (136).

It has previously been described that Th2 cells express ST2
(137, 138) and that its ST2 expression is increased upon exposure
to TGF-beta and IL-33. Further, it was found that IL-33 and
TGF-beta treatment increased the expression of IL-9 by Th2 cells
(139). With these existing data, it was hypothesized that cells
polarized under Th9/Tc9 conditions with the addition of IL-33
would exhibit even greater anti-GVHD effect with maintenance
of GVT (23). Indeed, this was found to be the case. Furthermore,
supporting evidence was found for the mechanism of the T9IL-33
subset’s mechanism of GVHD prevention in that this subset
expressed significantly more amphiregulin (AREG) on its surface
than other subsets. Further research on the new T9 cell subset
found that cholesterol blockade in Th9 cells with beta-
cyclodextrin led to significantly increased IL-9 production as
well as increased tumor killing in both a melanoma model and a
metastatic lung tumor model (140). The combination of IL-33
with an anti-cholesterol agent to further enhance the desirable
phenotypic characteristics of this subset is an exciting potential
avenue of research that could be applied in the near future to
combat GVHD while maintaining GVT. Of note, like aGVHD,
sST2 is elevated in patients with cGVHD (141). However, the
role of the ST2/IL-33 pathway in preclinical model of cGVHD is
still under study.

Amphiregulin (AREG)-Expressing T Cell
AREG, a member of Epidermal Growth Factor (EGF) family,
binds to EGF receptor and promote the proliferation of normal
and malignant epithelial cells, fibroblasts and keratinocytes.
Deficiency of AREG in mice showed slower clearance of
helminth parasite, Trichuris muris, which was driven by Th2-
biased responses (142). Recent study has revealed that IL-33 via its
receptor ST2 enhances the production of AREG from ST2hi

memory T helper 2 (Th2) subset, and directly involved in the
reprogramming eosinophils to an inflammatory state with a boost
production of osteopontin, a key profibrotic immunomodulatory
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protein which hence contribute to establishing of lung fibrosis
(143). As described above, T9IL-33 surface expressed amphiregulin
(AREG) contributes to its GVHD prevention. Furthermore,
AREG was found to be essential to the anti-GVHD effect of
T9IL-33 cells co-cultured with allogeneic colonic epithelial cells, as
AREG blockade significantly increased epithelial cell damage. It
was also found that AREG did not cause suppression of effector T
cell subsets, explaining the ability of T9IL-33 cells to simultaneously
inhibit GVHD and maintain GVT (23). In further support of
AREG’s lack of suppressive activity, AREG was previously found
to be inconsequential in the suppressive activity of Tregs via
genetic ablation (144). Another recent work has revealed that ex
vivo IL-33-stimulated Tregs (termed as TregIL-33) expressed higher
AREG and displayed stronger immunosuppression. Adoptive
transfer of TregIL-33 led to a marked improvement of GVHD
prevention compared to either naïve control Tregs or IL-23/IL-17-
stimulated TregIL-33. Consistently, blocking AREG with
neutralizing antibody in vivo abolished the immunosuppression
function of TregIL-33, which collectively suggest a critical role for
AREG in IL-33/Treg-mediated GVHD control (145).

Classical Regulatory T Cells (Tregs)
In vivo, Tregs have been shown to develop under the influence of
IL-2, IL-15, and TGF-b with FOXP3 as the most critical
transcription factor (146–149). Tregs have an extensive
experimental history with respect to GVHD, as recently
reviewed (150). As predicted by their inherent biology of
immunomodulation and self-tolerance, Treg populations have
been shown to be decreased during GVHD, allowing for
alloreactive T cells to exert their effect (151). Tregs that are
FOXP3 negative are known as Type 1 regulatory (Tr1) cells
(152). Tr1 cells were characterized as being generated due to
alloantigen stimulation by a recipient dendritic cell as well as
being stimulated by IL-27. The source of IL-27 is mainly donor
macrophages in the context of allo-HCT. In conjunction with
this finding, it was determined in this work that IL-6 inhibition
increases the proliferation of Tr1 by increasing T cell sensitivity
to IL-27 (153). Supporting the inhibitory role of Tregs in the
pathogenesis of aGVHD, Tr1 deficiency has been found to
exacerbate aGVHD in mouse models (153).

Naturally occurring Tregs (nTregs) have been studied for over
a decade in mouse models investigating their ability to prevent
aGVHD with nTreg transfer (154, 155). Recipient Treg
populations have been expanded before allo-transplant in mice
using tumor necrosis factor receptor-2 agonists, leading to
prolonged survival and decreased aGVHD (156). Chimeric
antigen receptor therapy has been applied to Tregs as well. An
alloantigen (HLA-A2) specific CAR was created and applied to
Tregs, thus creating an alloantigen-specific human Treg
phenotype. In murine models, these CAR-T cells demonstrated
superior xenogeneic GVHD prevention caused by HLA-A2+ T
cells compared to Treg cells expressing an irrelevant CAR (157).

In human studies, Treg cells have become the front-runner in
the use of cell transfer to treat GVHD. Naturally occurring Tregs
(nTregs) hold significant promise as a therapy, but nTreg use in
clinic has been hindered by a limited amount of Tregs in the
peripheral blood (1-2%) (158, 159) and contamination of nTregs
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with CD25+ T-effector or T memory cells (159–161). However,
good-manufacturing practice, large-scale ex-vivo expansion of
Tregs has been demonstrated (159). And despite these
limitations, human clinical trials using Tregs have shown
promising results. A phase one and dose escalation study with
umbilical cord-derived nTreg cells in the prevention of GVHD
was encouraging for this style of therapy in the future (162, 163).
Another trial investigated the effect of early infusion of freshly
sorted Tregs followed by conventional T cells (Tcons) on
immune reconstitution and GVHD after haplo-identical HCT.
Results of this trial showed promise for GVHD prevention,
immune reconstitution, preserved GVT, and resistance to
opportunistic infections (164). It is worth noticing that the role
of Tregs in cGVHD pathogenesis is controversial (165). Both
donor and recipient derived Tregs are known to use TGFb as
the effector of suppression in several models. In contrast to its
protective role in aGVHD, Treg-produced TGFbmay exacerbate
cGVHD since TGFb can result in fibrosis of organs such as the
skin and lung (120).

In the ALT-TEN trial, patients underwent haplo-identical T-
cell depleted HCT combined with IL-10 pretreated T cells. The
IL-10 treated cells contained Tr1 cells and T memory cells. The
results demonstrated the feasibility of using Tr1 cells as a
treatment for immune-mediated disorders such as aGVHD
(166). The inhibitory role of IL-6 on Treg and Tr1 expansion
has been explored in a phase I/II clinical trial as a potential
therapeutic target for aGVHD. Anti-IL-6 tocilizumab was used
in a single dose before allo-matched HCT, which showed low
incidence of aGVHD with treatment, and called for further study
of this method in GVHD prophylaxis (167). However, a more
recent randomized phase 3 trial evaluating the addition of
tocilizumab to cyclosporin and methotrexate for aGVHD
prophylaxis, did not show statistically significant reduction in
grade II-IV aGVHD or long-term survival (168).
T CELLS INDUCERS OF GVT

Donor grafts-derived allogeneic immune cells, particularly the T
cells, recognize and eradicate leukemic cells via GVT reactivity,
which hence could harness the power for high-risk hematological
malignancies such as acute myeloid leukemia (AML) and multiple
myeloma (MM). However, the normal tissues of the recipient will
also be recognized and attacked by these cells also attack host
normal tissues by GVHD (169). Separation of GVT reactivity from
GVHD reaction is a necessary step for improving allo-HCT
outcomes. Previous study indicated that Th9 cells, a unique
subset of CD4+ T cell that produce the pleiotropic cytokine IL-9
and boost antitumor immune responses in vivo via CD8+ CTL-
mediated antitumor immunity (131). Further study revealed that
IL-9–producedCD8+T (Tc9) cells generated various cytokines and
showed less cytolytic activity in vitro but surprisingly elicited
enhanced antitumor responses against advanced tumors in OT-I/
B16-OVA and Pmel-1/B16 melanoma models (170). As proof of
principle of better antitumoral activity, human chimeric antigen
receptor (CAR)Tcells polarized andexpandedunder aTh9-culture
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condition (T9CAR-T) showedenhanced antitumor activity against
established tumors compared to IL2-polarized (T1)cells.T9CAR-T
cells secrete IL9 but little IFN-g, express centralmemory phenotype
and lower levels of exhaustion markers and display robust
proliferative capacity (171). In allo-HCT settings, T9 cells
activated with IL-33 during in vitro differentiation boosted their
ST2 expression and IL-9 production. Adoptive cell transfer (ACT)
of IL-33 activated T9 cells (T9IL-33) decreased GVHD severity and
increased GVT activity via two distinct mechanisms: decrease of
fatal immunity by amphiregulin expression and increase of
antileukemic activity via CD8a expression (23).
NOVEL GVHD TREATMENTS BASED ON
FUNDAMENTAL T CELL BIOLOGY

Cellular Therapy
Recent reviews have summarized the scope of cellular therapies
to treat GVHD (172, 173). Table 1 list potential T-cells based
cellular therapies at different stages of development. Cellular
therapies are likely to expand their scope in patients with diverse
diseases (174), although delivery of such “live” drugs are not
easily scalable (175). Fortunately, in parallel strikes have been
made in GVHD treatment with classical drugs as summarized
below and in Table 2.
Small Molecules Inhibitors
ITK Inhibitors
Ibrutinib is an Interleukin-2-inducible T-cell kinase (ITK) and
Bruton tyrosine kinase (BTK) inhibitor that hinders the survival
of reactive T-cells, and B cells, respectively (176, 177). In mice,
transplant of bone marrow deficient in ITK and BTK showed the
importance of these molecules in the pathogenesis of cGVHD, as
the transplanted mice did not experience cGVHD (25).
Concurrently, mice treated with ibrutinib experienced less
severe cGVHD (178). In a phase I/II study for patients with
SR-cGVHD, ibrutinib was shown to significantly improve
symptoms in most patients, as well as decrease the frequency
of chemotactic and fibrotic factors in patients’ blood (179). A
significant number of adverse events (AEs) including grade ≥ 3
infectious complications were seen; however the safety profile
was deemed acceptable as the AEs were similar to those observed
in cGVHD patients treated with concomitant steroids (179).
These studies led to the first ever drug in cGVHD to obtain the
FDA breakthrough denomination.
TABLE 1 | Summary of Cellular Therapies for GVHD based on T cells subsets.

Treatment Status

Naïve T cell depletion Completed Phase II
Trapa DLI Completed Phase II
Th9/TC9 Preclinical
HLA-A2 CART Treg Preclinical
nTreg Completed Phase I
Tr1 Expansion Completed Phase II
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JAK Inhibitors
Janus kinases (JAKs) are tyrosine kinases that mediate cytokine-
signaling in T cells, propagating survival and differentiation
signals (180). The activation of a JAK leads to phosphorylation
of signal transducers and activators of transcription (STATs)
(181). JAK signaling has also been associated with dendritic cell
function, thus amplifying this pathway’s potential importance in
GVHD (182, 183).

In mouse models, JAK1/2 blockade with ruxolitinib has
displayed decreased IFNy Receptor (IFNyR) receptor signaling,
leading to reduced severity of GVHD and preserved GVT (184,
185). In addition, JAK1/2 inhibition in mouse models led to
increased frequency of Tregs and decreased frequency of
inflammatory cytokines in association with the decreased severity
of aGVHD (181).

Following up on findings in murine models, a preliminary trial
of 6 human patients with SR-GVHD treated with ruxolitinib
showed an improvement in symptoms and similar reduction of
the frequency of inflammatory cytokines in peripheral blood (181).
In addition, a largemulticenter retrospective survey of patientswho
had received ruxolitinib for steroid-refractory GVHD suggested
that ruxolitinib had significant efficacy (186). The results of the
phase III randomized clinical trials have recently been published
with an overall response of 62% in the ruxolitinib group vs. 39% in
the control group (P<0.001) in steroid-refractory aGVHD (15), and
an overall response of 50% in the ruxolitinib group vs. 26% in the
control group (P<0.001) in steroid refractory cGVHD (16),
respectively. Ruxolitinib is now the second drug to get the FDA
breakthrough denomination for both cGVHD and aGVHD.

A specific blockade of JAK1 was explored in a phase I trial
with itacitinib (INCB039110), which showed responses rates of
64.7% and 88.3% for steroid refractory and treatment naïve
disease, respectively (187). Similar AEs were seen with this
drug as with ruxolininib, including cytopenia and CMV
reactivations. However, itacitinib missed the mark in phase III
when given in combination with corticosteroids in patients with
treatment-naïve aGVHD.

RORgt Inhibitors
TMP778
As mentioned above, one of the RORgt transcription factor small
molecule inhibitors, TMP778, has showed promise in a GVHD
murine model similar to an anti-IL-17 antibody (84). However,
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global inhibition of a transcription factor is generally too toxic to
implement in clinic ad alternative have been found such as
ROCK2 inhibitors upstream of transcription factors.

ROCK2 Inhibitors
Belumosudil (KD025) is a serine-threonine kinase inhibiting
ROCK2 that rebalances the immune system in GVHD by
downregulating pro-inflammatory Th17 cells and increasing
Tregs, also acting on JAK2/JAK3 and STAT3 (85). Further,
ROCK2 is an intracellular integrator of profibrotic signals.
Excellent responses were seen in the phase II clinical trials (86)
(87) and belumosudil was FDA approved for cGVHDpatients who
are received 2 prior lines of therapy as mentioned above (88).

Anti-Cytokines
Anti- IL6
The addition of a humanized anti-IL-6R mAb (Tocilizumab) to
standard GVHD prophylaxis has shown in promise in reducing
the incidence of aGVHD in a prospective phase I/II clinical study
(167). The phase III double-blinded study of the addition of
Tocilizumab vs. Placebo to cyclosporin/methotrexate GVHD
Prophylaxis after HLA-Matched allo-HCT failed to meet the
primary endpoint (168).

Conjugated Antibodies (Ab)
Anti-CD30 Ab
Higher frequency of CD30+ CD8 T cells, plasma soluble CD30,
and CD30+ lymphocytes have been demonstrated in the
intestinal lesions of aGVHD patients (188). This led to the
proposal of using the anti-CD30 monomethyl auristatin E
(MMAE) conjugate for use in GVHD. A phase I trial for
patients with SR-aGVHD showed significant toxicity associated
with this drug, including neutropenic sepsis leading to death
along with other grade III toxicities of headache, hypoxia, ileus,
and elevated bilirubin (189).

Anti-Integrins Abs
Blockade of alpha4beta7 in the gut has been used effectively for
inflammatory bowel disease as it disallows effector T cells from
being trafficked to the area of inflammation. Natalizumab is one
such example that has been used for autoimmune diseases such
as Crohn’s, however, its lack of specificity gives it the associated
risk of progressive multifocal leukoencephalopathy (PML) (190).
TABLE 2 | Summary of recent novel small molecule treatments for GVHD.

Treatment Mechanism Status Trials (examples)

Ibrutinib BTK/ITK inhibition Completed Phase I/II
Phase III ongoing

Ruxolitinib JAK inhibition Completed Phase II/III for steroid-refractory aGVHD & cGVHD
Itacitinib JAK inhibition Completed Phase I,

Phase III for steroid naïve patients
INCB039110

TMP778 RORgt inhibition Preclinical
KD025 RORgt inhibition Phase II NCT02841995
Tocilizumab Anti-IL-6 Completed Phase I/II/III
Brentuximab Vedotin CD30 conjugated Ab Completed Phase I
Vedolizumab Integrin inhibition Halted Phase II NCT02993783
Natalizumab Integrin inhibition Phase II NCT02176031, NCT02133924
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Two phase II clinical trials are currently investigating the
effectiveness of natalizumab for GVHD (NCT02176031 and
NCT02133924) (14). Vedolizumab represents an example of a
monoclonal antibody that is specific to the gut, as it inhibits
alpha4beta7 integrin’s interaction with MAdCAM-1 and
therefore carries significantly lower risk for the serious adverse
outcome of PML (191–193). Similarly, this integrin has been
shown to be important in the pathogenesis of intestinal GVHD
(184). A recent case series of 6 patients explored the use of
vedolizumab for the treatment of steroid-refractory intestinal
GVHD. Patients treated with vedolizumab almost universally
achieved remarkable improvement in gastrointestinal GVHD
symptoms, in some cases having symptoms reduced from
grade IV to grade I or absent (194). However, a phase II
clinical trial, NCT02993783, to evaluate the safety and efficacy
of this treatment was recently terminated due to lack of efficacy.
Indeed, ORR at day 28 was 50% in patients treated at 300 mg
(n = 8) and 22% in patients treated at 600 mg (n = 9); 12% and
0% of patients, respectively, achieved complete response (CR).
Thus, higher the dose the less efficacious vedolizumab was. Due
to its mechanism of action of blocking T cell migration to the
intestine, it is likely that there cannot be an effect when GVHD is
already full-blown and T cells in the gut. However, it is possible
that preventing effector T cells migration to the GI tract may be
beneficial at early stages of GVHD or as GVHD prophylaxis.
CONCLUSION

Acute and chronic GVHD remain severe and common
complications of hematopoietic stem cell transplant. Prevention
Frontiers in Immunology | www.frontiersin.org 10
and treatment of these diseases remain a critical frontier in
transplant medicine. New understandings of T cell biology have led
to novel treatments with a variety of targets and fundamental
mechanisms. The plethora of recent human clinical trials as well as
theexcitingpreclinical experimentshave suggested the realpossibility
of a significant breakthrough for HSCT patients in the near future.
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