# A MECHANISM RESPONSIBLE FOR THE INDUCTION OF H-2 RESTRICTED SECOND ORDER SUPPRESSOR T CELLS\*

# BY ICHIRO AOKI, MUTSUHIKO MINAMI, AND MARTIN E. DORF

From the Harvard Medical School, Department of Pathology, Boston, Massachusetts 02115

A specialized antigen-presenting cell  $(APC)^1$  is required for the induction of at least one subset of suppressor T cells (1-3). Thus, we and others have recently provided evidence that such specialized APC are required for the induction of third order (Ts<sub>3</sub>) suppressor cells (1, 2). One feature that distinguishes this APC from the cell type that induces conventional helper T cell responses is the expression of I-J-encoded gene products on the APC population involved in suppression (1, 3). These I-J products are critical in imposing the subsequent H-2 (I-J) restrictions on the Ts<sub>3</sub> population (1).

This report describes the nature of the cells involved in the induction of a different suppressor T cell subset, second-order suppressor (Ts<sub>2</sub>) cells. In the 4-hydroxy-3nitrophenyl acetyl (NP) hapten system, Ts2 cells are generated in vivo by administration of soluble factors  $(TsF_1)$  from inducer  $(Ts_1)$  suppressor cells to nonimmune recipients (4-7). In addition,  $Ts_2$  cells can be generated in vitro by incubation of  $TsF_1$ with nonimmune spleen cells (8). TsF1 bears Igh-V-related idiotypic determinants that appear to be cross-reactive, but not identical with the predominant B cell idiotypes (9, 10). Since Ts<sub>2</sub> cells bind Igh-V related idiotypic determinants, it is likely that the specificity of the Ts<sub>2</sub> cells is at least in part controlled by the idiotype-related determinants present on the  $T_{sF_1}$ . Once  $T_{s_2}$  cells are generated, their ability to suppress is genetically restricted by genes encoded in the H-2 and Igh complexes (5, 6). The Igh genetic restrictions of Ts<sub>2</sub> cells are determined by the Igh genotype of the  $TsF_1$  donor, suggesting that the  $Ts_2$  cells are specific for the Igh-controlled idiotyperelated antigen-binding determinants present on the TsF1, not those expressed by the host (7). In contrast, the H-2 (I-J) restrictions of  $T_{s_2}$  cells are determined by the genotype of the host, not that of the  $TsF_1$  donor (7). Many of these observations have been independently confirmed in a different suppressor cell system in which strainrestricted idiotypic determinants can be identified (11). In view of these observations it was hypothesized that the H-2 restrictions imposed on Ts<sub>2</sub> cells may result from a process in which host cells present  $TsF_1$ . The major histocompatibility complex (MHC) determinants on the factor-presenting cell could then impose the MHC restrictions on the Ts<sub>2</sub> population. The present report presents data that supports this

1726

J. Exp. MED. © The Rockefeller University Press • 0022-1007/83/06/1726/10\$1.00 Volume 157 June 1983 1726-1735

<sup>\*</sup> Supported by grants AI-14732 and AI-16677 from the National Institutes of Health.

<sup>&</sup>lt;sup>1</sup> Abbreviations used in this paper: APC, antigen-presenting cells; B6, C57BL/6 mice; CS, contact sensitivity; DMSO, dimethylsulfoxide; DNFB, dinitrofluorobenzene; FPC, factor-presenting cell; HBSS, Hanks' balanced salt solution; MHC, major histocompatibility complex; NP, 4-hydroxy-3-nitrophenyl acetyl hapten; NP-O-Su, NP-O-succinimide ester; PBS, phosphate-buffered saline; Ts<sub>1</sub>, Ts<sub>2</sub>, and Ts<sub>3</sub>, first-, second-, and third-order suppressor T cells; TsF<sub>1</sub>, TsF<sub>2</sub>, and TsF<sub>3</sub>, suppressor factors derived from Ts<sub>1</sub>, Ts<sub>2</sub>, and Ts<sub>3</sub> cells.

hypothesis and generalizes the notion that specialized presenting cells are required to induce MHC restrictions on suppressor T cell populations.

### Materials and Methods

*Mice.* All mice were either purchased from The Jackson Laboratory, Bar Harbor, ME, or were bred in the animal facilities at Harvard Medical School, Boston, MA. Mice were used at 3-12 mo of age and were maintained on laboratory chow and acidified, chlorinated water ad lib.

Animals used in this study were maintained in accordance with the guidelines of the Committee on Animals of the Harvard Medical School and those prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (Dept. of Health, Education, and Welfare publication (National Institutes of Health) 78-23, revised 1978).

Antigens. NP-O-Succinimide (NP-O-Su) was purchased from Biosearch Co., San Rafael, CA. Dimethylsulfoxide (DMSO) was purchased from Fisher Scientific Co., Pittsburgh, PA. 2,4-Dinitro-1-fluorobenzene (DNFB) was obtained from Eastman Kodak Co., Rochester, NY.

Cell Preparation. Spleen cell suspensions were made in Hanks' balanced salt solution (HBSS), and the erythrocytes were lysed with 0.83% Tris ammonium chloride. The spleen cells were washed and then used for further separation or for pulsing with  $TsF_1$ .

Macrophage-enriched, glass-adherent spleen cells were purified by a 4-h adherence to glass petri dishes, followed by removal with EDTA, as previously described (12). Macrophage-depleted T and B spleen lymphocytes were prepared by passing  $1-2 \times 10^8$  splenic leukocytes over a 25-ml column of Sephadex G-10 in a 35-ml syringe barrel and collecting the first 15 ml of eluate as previously described (13). Cells prepared by glass adherence and by filtration through Sephadex G-10 have been extensively characterized in previous reports (13). Briefly, 4-h glass-adherent cells contained 40-70% phagocytic cells; the nonphagocytic cells were comprised of equal numbers of Thy-1<sup>+</sup>, sIg<sup>+</sup>, and Thy-1<sup>-</sup>, sIg<sup>-</sup> cells. Unfractionated spleen cells were 4-8% phagocytic and G-10 nonadherent cells were 0.1-0.8% phagocytic, while retaining the same T cell to B cell ratios as the input cells. Phagocytosis was assessed by latex ingestion, as previously described (12).

In Vitro Pulsing of Splenic Cells with  $TsF_1$ . Generally, ascites containing CKB-Ts<sub>1</sub>-39 hybridoma-derived TsF<sub>1</sub> was used for pulsing. In one experiment CKB-Ts<sub>1</sub>-17 hybridomaderived factor was substituted. To produce ascites, the CKB-Ts<sub>1</sub> and the BW5147 cells were grown in (AKR × CKB)F<sub>1</sub> or AKR mice. Spleen cells from normal mice were used as a source of cells for TsF<sub>1</sub> pulsing.  $2-4 \times 10^8$  splenic cells were cultured for 2 h in 10 ml RMPI 1640 with 10% fetal calf serum and 0.1 mM Hepes plus 50 µl ascitic fluid. After culture the pulsed splenic cells were washed vigorously with HBSS and resuspended.

Assay for Suppression of Contact Sensitivity (CS). To induce CS responses, mice were primed with NP-O-Su (2 g/100 ml) in DMSO (14). A total of 0.1 ml of antigen was divided equally between two sites on each ventral flank, followed by 0.1 ml of borate-buffered saline at pH 8.6 injected in the midline. In the experiments that did not involve adoptive transfers of Ts<sub>2</sub> cells, the mice received i.v.  $3-4 \times 10^7$  syngeneic splenic cells pulsed with TsF<sub>1</sub> or BW5147-derived control factor 1 h before priming with NP-O-Su. 6 d later, the mice were challenged in the left footpad with 0.025 ml PBS containing 30 µg NP-O-Su. Footpad swelling was measured 24 h after challenge. Swelling was determined as the difference, in units of  $10^{-3}$  cm, between the left and right footpad thickness.

Adoptive Transfer System for Assaying  $T_{s_2}$  Activity.  $T_{s_2}$  donor mice received  $2-4 \times 10^7$  i.v. splenic cells pulsed with  $TsF_1$  or BW5147-derived control factor, 6 d later, the mice were sacrificed and their spleens teased into single cell suspensions that were used as a source of  $T_{s_2}$  cells. Mice primed 5 d previously with 2 mg NP-O-Su received  $4 \times 10^7$  i.v. splenic cells from  $Ts_2$  or control donors. Immediately after transfer of control or  $Ts_2$  cells the mice were challenged with NP-O-Su and CS responses were measured 24 h thereafter.

DNFB Contact Sensitivity Responses. Contact sensitivity was induced by two daily paintings on the shaved abdomen with 25  $\mu$ l of 0.5% DNFB solution (Eastman Kodak Co., Rochester, NY) in acetone/olive oil (4:1). 6 d after the last painting, 20  $\mu$ l of 0.2% DNFB in the same vehicle was applied to the left ear, and the ear swelling was measured as the difference been the left and right ear thickness.

Antisera. Both B10.A (3R) anti-B10.A (5R) (anti-I-J<sup>k</sup>) and B10.A (5R) anti-B10.A (3R) (anti-I-J<sup>b</sup>) alloantisera were produced by immunization with spleen cells (7). Anti-Thy 1.2 and rabbit anti-mouse brain were prepared as described elsewhere (6).

To treat spleen cells with anti-I-J alloantisera,  $8-10 \times 10^7$  spleen cells were pelleted and incubated in 1.0 ml of 1:5 dilution of anti-I-J<sup>k</sup>, anti-I-J<sup>b</sup>, or normal mouse serum (NMS). After 30 min at room temperature, the cells were centrifuged and resuspended in 1.0 ml of selected rabbit complement diluted 1:5 in HBSS. After an additional 30 min, 37°C incubation, the cells were washed and then pulsed with TsF<sub>1</sub> as described above.

*Percent Suppression.* The percent suppression in the present study was calculated by the following formula: percent suppression =  $100 \times [(\text{swelling of BW5147 tumor supernatant injected group - swelling of TsF injected group)/(swelling of BW5147 tumor supernatant injected group - swelling of unprimed group)].$ 

Data Analysis. Statistical analysis of the experimental data with respect to controls was calculated using the two-tailed Student's *t*-test.

# Results

 $T_{5}F_{1}$ -Pulsed Cells Induce a  $T_{52}$  Population. The initial series of experiments evaluated whether TsF<sub>1</sub> factor that was pulsed onto spleen cells still retained its ability to induce antigen-specific suppression of NP-O-Su-induced CS responses. To pulse spleen cells with TsF<sub>1</sub>, 2–4 × 10<sup>8</sup> C57BL/6 spleen cells were cultured for 2 h in media containing hybridoma-derived ascitic fluid. After this 2-h incubation the cells were washed extensively to remove traces of unbound TsF<sub>1</sub>. As a control, ascitic fluid derived from the BW5147 tumor was used to pulse spleen cells. Control cells or cells pulsed with TsF<sub>1</sub> derived from CKB-Ts<sub>1</sub>-39 hybridoma cells were given intravenously to syngeneic recipients on the day of antigen priming. Additional control groups received the soluble factors directly. In confirmation of previous data, direct intravenous administration of TsF<sub>1</sub> caused significant reduction of the magnitude of the NP-O-Suinduced CS response, but did not affect the CS response to an irrelevant antigen, DNFB in the same mice (Table I). In addition TsF<sub>1</sub> that had been pulsed onto spleen cells also induced significant levels of NP specific nonresponsiveness.

One possible interpretation of these results is that the TsF<sub>1</sub> disassociated from the pulsed cell population and was reprocessed by host cells. To evaluate this possibility, soluble or pulsed TsF<sub>1</sub> was injected intravenously into  $(B6 \times C3H)F_1$   $(H-2^b/H-2^k)$ 

| TsF source | Cells used for TsF1 pulsing | NP-O-Su and DNFB priming | Swelling response + SE‡ |                |
|------------|-----------------------------|--------------------------|-------------------------|----------------|
|            |                             |                          | NP-O-Su                 | DNFB           |
| BW5147     | None                        | ÷                        | $33.5 \pm 1.9 (8)$      | 12.5 ± 1.6     |
| CKB-Ts1-39 | None                        | +                        | $17.1 \pm 1.5 (7)$ §    | $13.7 \pm 2.7$ |
| BW5147     | Spleen                      | +                        | $31.6 \pm 2.0 (9)$      | 10.7 ± 1.1     |
| CKB-Ts1-39 | Spleen                      | +                        | $19.4 \pm 1.1 \ (8)$ §  | 12.7 ± 1.1     |
| None       | None                        | -                        | $9.4 \pm 1.9 (8)$       | $0.9 \pm 0.5$  |

TABLE I
TsF1-Pulsed Spleen Cells Induce Antigen-specific Suppression\*

\* Groups of C57BL/6 mice were given soluble or pulsed  $TsF_1$  and control BW5147derived factors 1 h before double priming with NP-O-Su and DNFB. After 5 d the animals were challenged in one footpad with NP-O-Su and on one ear with DNFB.

‡ The swelling responses were recorded 24 h after challenge. The results of two experiments were pooled. The number of mice tested is indicated in parentheses. Significant suppression (P < 0.001) is indicated by §.

mice to generate  $T_{s_2}$  cells. 6 d after administration of  $T_sF_1$  these  $F_1$  donors were sacrificed and their spleen cells, which contained the Ts2 population, were adoptively transferred to NP-primed C57BL/6 (H-2<sup>b</sup>), B10.BR (H-2<sup>k</sup>), or B10.RIII (H-2<sup>r</sup>) recipients. 1 h after adoptive transfer of Ts2 cells the recipients were challenged with NP-O-Su. Under these conditions we could observe the H-2-restricted suppressive activity mediated by Ts<sub>2</sub> cells. (B6  $\times$  C3H)F<sub>1</sub>-derived Ts<sub>2</sub> cells generated by intravenous administration of soluble CKB-derived TsF1 would suppress NP-O-Su-induced CS responses of C57BL/6 or B10.BR mice that share one of the Ts<sub>2</sub> donor H-2 haplotypes, while the same population of cells failed to suppress H-2 incompatible B10.RIII congeneic mice (Table II). The failure to suppress H-2 mismatched B10.RIII recipients was probably not due to the rejection of the Ts2 cell population since the cells only remained in these recipients for 24 h before termination of the assay. Furthermore, the same population of F1 cells suppressed the CS responses of either C57BL/6 or B10.BR recipients that could also recognize allogeneic H-2 determinants on the  $F_1$  cells. These results verify the H-2 restrictions of  $Ts_2$  cells and demonstrate that  $Ts_2$  cells derived from  $F_1$  mice have the potential of suppressing recipients of either parental H-2 haplotype. When Ts<sub>2</sub> cells were induced by injecting hybridomaderived TsF<sub>1</sub> pulsed onto  $(B6 \times C3H)F_1$   $(H-2^b/H-2^k)$  spleen cells the resulting Ts<sub>2</sub> population also suppressed H-2 haploidentical C57BL/6 and B10.BR recipients (Table II). The critical observation that suggested that the H-2 phenotype of the TsF1-presenting cells controlled the H-2 restrictions of the F1-derived Ts2 cells, was the specificity of the  $F_1$ -derived  $T_{s_2}$  population that was induced by  $T_sF_1$  pulsed onto

| Ts <sub>2</sub> Induction in F <sub>1</sub> mice |                        | Recipient of F1-              | Normalized per-           |
|--------------------------------------------------|------------------------|-------------------------------|---------------------------|
| TsF source                                       | Cells for TsF1 pulsing | derived Ts <sub>2</sub> cells | cent suppression ±<br>SE‡ |
| BW5147                                           | None                   | C57BL/6                       | $0 \pm 6$ (16)            |
| CKB-Ts <sub>1</sub> -39                          | None                   | (H-2 <sup>b</sup> )           | 77 ± 19 (9)*              |
|                                                  | $(B6 \times C3H)F_1$   |                               | $61 \pm 6 (13)^*$         |
|                                                  | C57BL/6                |                               | 58 ± 3 (14)*              |
|                                                  | B10.BR                 |                               | $18 \pm 5 (15)$           |
| BW5147                                           | None                   | B10.BR                        | $0 \pm 4 (13)$            |
| CKB-Ts <sub>1</sub> -39                          | None                   | (H-2 <sup>k</sup> )           | $80 \pm 9 (10)^*$         |
|                                                  | $(B6 \times C3H)F_1$   |                               | $50 \pm 6 (10)^*$         |
|                                                  | C57BL/6                |                               | $1 \pm 9 (10)$            |
|                                                  | <b>B10.BR</b>          |                               | $63 \pm 6 (10)^*$         |
| BW5147                                           | None                   | B10.RIII                      | $0 \pm 13(6)$             |
| CKB-Ts <sub>1</sub> -39                          | None                   | (H-2 <sup>r</sup> )           | $8 \pm 10(11)$            |

TABLE II H-2 Genotype of TsF1-Pulsed Spleen Cells Controls Ts2 Cell Restrictions\*

\* Ts<sub>2</sub> cells were generated in  $H-2^b \times H-2^k$  heterozygous mice by administration of either soluble TsF<sub>1</sub> or by intravenous injection of TsF<sub>1</sub>-pulsed spleen cells. After 5 d, the F<sub>1</sub> spleen cells were adoptively transferred to previously NP-O-Su-primed C57BL/6 or B10.BR recipients. The recipients were challenged with NP-O-Su 1 h after transfer of Ts<sub>2</sub> cells.

<sup>‡</sup> The results of four independent experiments were normalized and pooled using the response with BW5147 or BW5147-pulsed cells (data not shown) as the control. The control responses ranged from 28 to  $43 \times 10^3$  mm with backgrounds in unprimed control groups yielding  $<10 \times 10^3$  U of swelling. The number of mice tested is indicated in parentheses. Significant suppression (P < 0.01) is indicated by §.

1729

parental C57BL/6 (H-2<sup>b</sup>) spleen cells. The data demonstrated that the latter Ts<sub>2</sub> cells only functioned when transferred to C57BL/6 recipients (Table II). The same population of (B6 × C3H)F<sub>1</sub>Ts<sub>2</sub> cells failed to suppress B10.BR (H-2<sup>k</sup>) recipients. In reciprocal experiments (B6 × C3H)F<sub>1</sub>-derived Ts<sub>2</sub> cells, which were induced by intravenous administration of TsF<sub>1</sub> pulsed onto B10.BR spleen cells, functioned in B10.BR but not C57BL/6 recipients (Table II). These experiments have been repeated on three separate occasions using various combinations of (H-2<sup>b</sup> × H-2<sup>k</sup>)F<sub>1</sub> mice; in each experiment we obtained similar results. Thus, the H-2 restrictions of the F<sub>1</sub>derived Ts<sub>2</sub> cells were controlled by the genotype of the cells presenting TsF<sub>1</sub>, not by the genotype of the cells that produced TsF<sub>1</sub>.

The I-J Genotype of the TsF1-Presenting Cells Determines the Genetic Restrictions of the Ts2 Population. We have previously demonstrated that the activity of Ts<sub>2</sub> cells or factors are restricted by genes in the I-J region of the H-2 complex (5, 6). To determine whether the I-I region encoded determinants were also involved in the induction of  $T_{s_2}$  restrictions, we compared the abilities of I-J congeneic 3R and 5R cells to present TsF<sub>1</sub>. Ts<sub>2</sub> cells were generated in B6AF<sub>1</sub> (H-2<sup>b</sup> × H-2<sup>a</sup>) mice by injection with CKBderived TsF<sub>1</sub> pulsed onto either B6AF<sub>1</sub>, 3R, or 5R spleen cells. After 6 d spleen cells from these B6AF1 donors were adoptively transferred to NP-O-Su-primed C57BL/6 or B10.BR recipients. In agreement with the data in Table II, Ts<sub>2</sub> cells induced by administration of  $TsF_1$  pulsed onto  $B6AF_1$  spleen cells could suppress either C57BL/ 6 or B10.BR recipients (Table III). Although the B10.BR recipients differed at the I-C,S, and D regions of the H-2 complex, with the  $B6AF_1$  donors suppression was still observed. This result is consistent with those obtained elsewhere, which demonstrate that homology at the I-J region between the  $Ts_2$  donor and the recipient is sufficient for transfer of suppressive activity (5, 6). When 3R (I-J<sup>b</sup>) cells were pulsed with TsF<sub>1</sub> and used to induce suppressor cells in  $B6AF_1$  mice the resulting  $TsF_2$  population only functioned when transferred to C57BL/6 (I-J<sup>b</sup>) recipients (Table III). There was no detectable level of suppression when the B6AF1-derived Ts2 population was transferred to B10.BR  $(I-J^k)$  recipients. In reciprocal experiments the B6AF<sub>1</sub> Ts<sub>2</sub> donors were injected with  $TsF_1$  pulsed onto 5R cells. Under these conditions the activation of B6AF<sub>1</sub> Ts<sub>2</sub> cells was restricted to B10.BR not C57BL/6 recipients (Table III). Thus,

TABLE III

The I-J Region of the Antigen-presenting Cells Determines the H-2 Restrictions of Ts<sub>2</sub> Cells\*

| Ts <sub>2</sub> Induction in F <sub>1</sub> mice |                           | D                             | Normalized per-          |
|--------------------------------------------------|---------------------------|-------------------------------|--------------------------|
| TsF source                                       | Cells for TsF1<br>pulsing | derived Tso cells cent suppre | cent suppressior<br>± SE |
| BW5147                                           | (B6A)F <sub>1</sub>       | C57BL/6                       | $0 \pm 4 (16)$           |
| CKB-Ts <sub>1</sub> -39                          | (B6A)F <sub>1</sub>       |                               | $70 \pm 5 (15)^*$        |
|                                                  | 3R                        |                               | $50 \pm 6 (16)^*$        |
|                                                  | 5 <b>R</b>                |                               | $17 \pm 9 (15)$          |
| BW5147                                           | $(B6A)F_1$                | <b>B</b> 10. <b>BR</b>        | $0 \pm 4$ (12)           |
| CKB-Ts <sub>1</sub> -39                          | $(B6A)F_1$                |                               | $63 \pm 11 (11)^*$       |
|                                                  | 3 <b>R</b>                |                               | $3 \pm 9 (15)$           |
|                                                  | 5 <b>R</b>                |                               | $57 \pm 6 (13)^*$        |

\* Ts<sub>2</sub> cells were generated in (B6A)F<sub>1</sub> mice; refer to legend of Table II for additional details.

the I-I phenotype of the cells used to present  $T_{s}F_{1}$  determines the genetic restrictions of the Ts<sub>2</sub> population.

Phenotype of the  $TsF_1$ -Presenting Cells. To directly demonstrate the presence of I-J gene products on the TsF<sub>1</sub>-presenting cells, treatment of the TsF<sub>1</sub>-presenting cells with anti-I-I alloantisera plus complement was used to lyse the critical cell population. In a series of seven experiments, we observed some evidence of specific lysis on four occasions (data not shown). It is not clear why the remaining experiments failed, but we assume that technical factors (antibody titer, complement source, etc.) prevented more consistent success.

Finally, we examined the adherence properties of the cells involved in  $T_{s_2}$  induction. Spleen cells were separated on G10 or by adherence for 4 h on glass petri dishes. The unfractionated, nonadherent, and adherent fractions were pulsed with  $TsF_1$  and injected in graded doses into syngeneic mice immediately before antigen priming (Table IV). The minimum number of  $TsF_1$  pulsed unfractionated spleen cells required to cause suppression varied among experiments; generally  $2.5-10 \times 10^6$  cells were sufficient, while  $<2.5 \times 10^6$  cells consistently failed to induce significant levels of suppressive activity (data not shown). Administration of  $2-4 \times 10^7$  nonadherent splenic cells pulsed with TsF<sub>1</sub> could not induce suppression while as few as  $2.5-5 \times$  $10^5$  splenic adherent cells were capable of presenting TsF<sub>1</sub> (Table IV). Thus, an adherent cell population is required to induce Ts<sub>2</sub> cells.

# Discussion

Several groups have demonstrated that in vivo administration of TsF could induce a population of second-order suppressor T cells (4, 9, 11, 15, 16). However, the mechanism of Ts<sub>2</sub> induction had not been well characterized. The present report analyzed the process by which TsF1 induced Ts2 cells. Previous experiments have demonstrated that the H-2 restriction of the Ts<sub>2</sub> population was controlled by the host H-2 genotype, not that of the  $TsF_1$  donor (7, 11, 17). The present experiments

| Splenic Adherent Cells Present TsF <sub>1</sub> * |                         |                                                      |  |
|---------------------------------------------------|-------------------------|------------------------------------------------------|--|
| Spleen cells for TsF1 pulsing                     | TsF source              | Normalized percent suppression $\pm$ SE <sup>‡</sup> |  |
| $4 \times 10^7$ unfractionated                    | BW5147                  | $0 \pm 8 (13)$                                       |  |
| $4 \times 10^7$ unfractionated                    | CKB-Ts <sub>1</sub> -39 | $35 \pm 14 (13)$ §                                   |  |
| $1 \times 10^7$ unfractionated                    | CKB-Ts <sub>1</sub> -39 | $41 \pm 8 (10)$ §                                    |  |

CKB-Ts<sub>1</sub>-39

BW5147

CKB-Ts<sub>1</sub>-39

CKB-Ts<sub>1</sub>-39

BW5147

CKB-Ts<sub>1</sub>-39

CKB-Ts<sub>1</sub>-39

 $32 \pm 9 (11)$ §

 $0 \pm 6 (7)$ 

 $12 \pm 8 (11)$ 

 $4 \pm 7$  (7)

 $0 \pm 6 (13)$ 

46 ± 4 (12)§

 $33 \pm 7 (11)$ §

| TABLE IV                          |         |
|-----------------------------------|---------|
| Splenic Adherent Cells Present Ts | $F_1^*$ |

| * Groups of C57BL/6 mice were given TsF1 pulsed onto graded phases of          |
|--------------------------------------------------------------------------------|
| either unfractionated, nonadherent, or adherent syngeneic spleen cells, intra- |
| venously. Following administration of TsF1-pulsed cells the mice were primed   |
| with NP-O-Su.                                                                  |

<sup>‡</sup> The results of three experiments were normalized and pooled; refer to legend of Table II.

§ Significant suppression.

 $2.5 \times 10^6$  unfractionated

 $2-4 \times 10^7$  G10 nonadherent

 $1-4 \times 10^7$  G10 nonadherent

 $2.5 \times 10^{6}$  G10 nonadherent

 $1-2.5 \times 10^{6}$  adherent

 $1-2.5 \times 10^{6}$  adherent

 $2.5-5 \times 10^5$  adherent

### 1732 CELLS THAT PRESENT SUPPRESSOR FACTOR

evaluated how such restrictions were imposed. The data indicate that  $TsF_1$  is presented by a specialized population of I-J-bearing, factor-presenting cells present in the host. Thus, when  $T_{s_2}$  cells are generated with either soluble  $T_sF_1$  or with  $T_sF_1$  pulsed onto syngeneic  $F_1$  spleen cells, the  $T_{s_2}$  population acquires a restriction for host H-2 determinants. However, when the  $T_{s_2}$  population is induced in  $F_1$  mice by administration of  $TsF_1$  pulsed onto parental spleen cells, the  $Ts_2$  cells can only suppress recipients that share an H-2 haplotype with the cells used to present  $TsF_1$ . These experiments suggest that the  $TsF_1$  is directly presented on the splenic cell population and is not reprocessed or represented by host cells. Secondly, the data demonstrate that the H-2 genotype of the TsF1 source does not influence the genetic restrictions. Thus,  $TsF_1$  derived from H-2<sup>k</sup>-bearing CKB mice could induce populations of  $Ts_2$ cells whose activity was restricted to mice bearing the H-2<sup>b</sup> haplotype. In addition, the data demonstrate that H-2 heterozygous  $F_1$  hybrid mice have the potential of generating two distinct populations of Ts<sub>2</sub> cells. Thus, as shown in Tables II and III, when soluble  $TsF_1$  or  $Ts_1$ -pulsed  $F_1$ -presenting cells are used to induce  $Ts_2$  cells in H-2 heterozygous  $F_1$  mice, both types of  $Ts_2$  populations are generated, but only one  $Ts_2$ population is generated when TsF<sub>1</sub> is pulsed onto parental TsF<sub>1</sub>-presenting cells.

Additional characterization of these  $TsF_1$ -presenting cells demonstrated that they lack Thy-1 antigenic determinants (data not shown), and are adherent to glass (Table IV). Thus, these specialized factor-presenting cells are probably of a macrophage or dendritic cell lineage.

Further experiments demonstrated that genes of the I-J subregion expressed on the TsF<sub>1</sub>-presenting cells controlled the H-2 restrictions of the Ts<sub>2</sub> population. Thus, TsF<sub>1</sub>presenting cells from I-J congenic 3R and 5R mice induced distinct populations of  $T_{s_2}$  cells in  $F_1$  mice (Table III). Considering previous data demonstrating that the activity of  $T_{s_2}$  cells and factors is restricted by genes of the I-J region (6, 9, 17); we propose that the I-J determinants present on the TsF1-presenting cells, determine the subsequent I-J restrictions of the Ts<sub>2</sub> cells and factors. This implies that the Ts<sub>2</sub> cells (and factors) have anti-self I-J receptors. If as Schrader (18) first postulated, the alloantisera used to detect I-J determinants also contained antiidiotypic antibodies to specificities present on anti-I-J antibodies, one may mistake cells that carried I-J determinants with those that express idiotypic anti-self receptors for I-J. The implications of this hypothesis are important. If suppressor T cells bear anti-self I-J receptors plus specific receptors for antigen or TsF (either as distinct entities or as a single combined receptor), one can draw numerous functional homologies among the receptors of the various T cell lineages (helper, killer, and suppressor). In addition, this hypothesis would predict that molecular genetic evidence (19) for I-J-encoded determinants may be obtained by analysis of the specialized APC required for induction of suppressor cells. Additional data also support the contention that I-J determinants exist on at least some macrophage like cells. Niederhuber et al. (20) have reported that some antigen-presenting cells involved in the induction of burro erthyrocyte responses also possess the I-J marker. In addition, Murphy et al. (21) described a non-T, non-B cell population that carried I-J determinants.

To date, our laboratory has identified two T cell populations in the suppressor cell cascade that recognize I-J determinants on specialized presenting cells. In addition to the three distinct suppressor T cell populations, two accessory or presenting cell populations are required to manifest suppression. A summary of our present view of

the cellular elements of the suppressor cascade is illustrated in Fig. 1. The figure depicts the role of the I-J-bearing TsF<sub>1</sub>-presenting cells (FPC) and the I-J-bearing APC that are involved in Ts<sub>3</sub> induction. It will be important to determine whether the accessory cells of the suppressor cascade represent a single cell type or whether different accessory cells are required in each stage of the suppressor pathway. In this regard, additional studies are presently underway to re-evaluate the nature of the signals required for Ts<sub>1</sub> induction. Previous data in another experimental system (22) suggested that Ia positive adherent cells are required to initiate the events leading to the suppressor cell pathway, however, the I-J phenotype of these cells was not determined. Other portions of the suppressor cascade in which an I-J-bearing

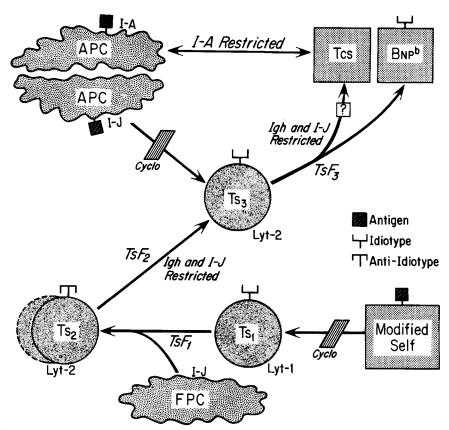



Fig. 1. A summary of the NP suppressor cell cascade. Intravenous administration of haptenmodified syngeneic cells induces a cyclophosphamide-sensitive Lyt-1-bearing Ts<sub>1</sub> population. Soluble factors (TsF<sub>1</sub>) released by Ts<sub>1</sub> cells are then presented by specific factor-presenting cells (FPC) to induce Lyt-2-bearing Ts<sub>2</sub> cells. In turn, Ts<sub>2</sub> cells mediate their activity via another suppressor factor (TsF<sub>2</sub>). The ability of TsF<sub>2</sub> to suppress NP responses is genetically restricted by genes in the Igh and I-J regions. The TsF<sub>2</sub> activates a third-order suppressor cell (Ts<sub>3</sub>) that is initially induced following conventional antigen priming. The antigen-presenting cells (APC) required for Ts<sub>3</sub> induction also bear I-J determinants. Once the Lyt-2-bearing Ts<sub>3</sub> cells are activated by TsF<sub>2</sub> they release another factor (TsF<sub>3</sub>) that directly suppresses B cells and either directly or indirectly suppresses T cellmediated CS responses.

The receptors on the suppressor cells have not been fully defined. However, the data indicate that these receptors have either idiotypic or anti-idiotypic properties. Suppressor T cells may also have anti-self I-J receptors to account for the observed MHC restrictions.

1733

accessory cell may be involved include the presentation of  $TsF_2$  and the final effector stage of the pathway.

In spite of deficiencies in our overall understanding of this complex cascade, it is clear that the suppressor cell cascade represents a system of cellular interactions that are dependent on I-J products for induction and activation of effector T cells. The process of inducing genetic restrictions on suppressor cells uses the same mechanism that is responsible for imposing genetic restrictions on helper cells, i.e., antigen (or factor) is presented on a specialized adherent cell population. The differences between cells that present antigen to elements of the suppressor pathway and the cells that present antigen to cells of the helper pathway require further investigation. However, the analogies between the strategy of recognizing antigen in the context of self MHC products employed by both suppressor and helper cells (although the latter involve I-A and/or I-E gene products) emphasize the common mechanisms used by distinct T lymphocyte subsets.

## Summary

The mechanism by which I-J restrictions were imposed on second-order suppressor cells  $(Ts_2)$  was analyzed. The induction of  $Ts_2$  cells requires presentation of an inducer suppressor factor by a specialized population of factor-presenting cells. The I-J phenotype of this factor-presenting population controls the H-2 restriction of the  $Ts_2$  cells. The splenic cells responsible for presenting inducer factor appear to be of macrophage or dendritic cell lineage.

Several homologies exist between the mechanism responsible for the induction of H-2-restricted suppressor and helper T cells. Thus, the I region products on specialized presenting cells determine the specificity and genetic restrictions of the T cell. In an H-2 heterozygous  $F_1$  animal, two distinct populations of cells can be induced, one specific for each parental H-2 heplotype. Furthermore, the data suggest that the suppressor cells also bear receptors for self H-2 products. The ramifications of these observations for the suppressor cell cascade are discussed.

The authors express their appreciation to Mrs. N. Axelrod and M. J. Tawa for secretarial assistance and to Dr. D. H. Sherr for helpful discussions.

Received for publication 18 January 1982.

### References

- 1. Minami, M., N. Honji, and M. E. Dorf. 1982. Mechanism responsible for the induction of I-J restrictions on Ts<sub>3</sub> suppressor cells. J. Exp. Med. 156:1502.
- Takaoki, M., M. S. Sy, A. Tominaga, A. Lowy, M. Tsurufuji, R. Finberg, B. Benacerraf, and M. I. Greene. I-J restricted interactions in the generation of azobenzenearsonatespecific suppressor T cells. J. Exp. Med. 156:1325.
- 3. Nakamura, R. M., H. Tanaka, and T. Tokunaga. 1982. In vitro induction of suppressor T cells in delayed-type hypersensitivity to BCG and an essential role of I-J positive accessory cells. *Immunol. Lett.* 4:295.
- 4. Weinberger, J. Z., R. N. Germain, B. Benacerraf, and M. E. Dorf. 1980. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. V. Role of idiotypes in the suppressor pathway. J. Exp. Med. 152:161.
- 5. Sunday, M. E., B. Benacerraf, and M. E. Dorf. 1981. Hapten-specific T cell responses to 4-

1734

hydroxy-3-nitrophenyl acetyl. VIII. Suppressor cell pathways in cutaneous sensitivity responses. J. Exp. Med. 153:811.

- Minami, M., K. Okuda, S. Furusawa, B. Benacerraf, and M. E. Dorf. 1981. Analysis of T cell hybridomas. I. Characterization of H-2- and Igh-restricted monoclonal suppressor factors. J. Exp. Med. 154:1390.
- Okuda, K., M. Minami, D. H. Sherr, and M. E. Dorf. 1981. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XI. Pseudogenetic restrictions of hybridoma suppressor factors. J. Exp. Med. 154:468.
- Sherr, D. H., M. Minami, K. Okuda, and M. E. Dorf. 1983. Analysis of T cell hybridomas. III. Distinctions between two types of hapten-specific suppressor factors that affect plaqueforming cell responses. J. Exp. Med. 157:515.
- Okuda, K., M. Minami, S. Ju, and M. E. Dorf. 1981. Functional association of idiotypic and I-J determinants on the antigen receptor of suppressor T cells. *Proc. Natl. Acad. Sci.* USA. 78:4557.
- Sherr, D. H., S. Ju, and M. E. Dorf. 1981. Hapten-specific T cell responses to 4-hydroxy-3nitrophenyl acetyl. XII. Fine specificity of anti-idiotypic suppressor T cells (Ts<sub>2</sub>). J. Exp. Med. 154:1382.
- 11. Greene, M. I., M. J. Nelles, M. S. Sy, and A. Nisonoff. 1982. Regulation of immunity to the azobenzenearsonate hapten. *Adv. Immunol.* **32:**253.
- 12. Minami, M., D. C. Shreffler, and C. Cowing. 1980. Characterization of the stimulator cells in the murine primary mixed leukocyte response. J. Immunol. 124:1314.
- 13. Cowing, C., B. D. Schwartz, and H. B. Dickler. 1978. Macrophage Ia antigens. I. Macrophage populations differ in their expression of Ia antigens. J. Immunol. 120:378.
- Sunday, M. E., J. Z. Weinberger, B. Benacerraf, and M. E. Dorf. 1980. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. IV. Specificity of cutaneous sensitivity responses. J. Immunol. 125:1601.
- Waltenbaugh, C., J. Theze, J. A. Kapp, and B. Benacerraf. 1977. Immunosuppressive factor(s) specific for L-glutamic acid<sup>50</sup>-L-tyrosine<sup>50</sup> (GT). III. Generation of suppressor T cells by a suppressive extract derived from GT primed lymphoid cells. J. Exp. Med. 146:970.
- Yamauchi, K., D. Murphy, H. Cantor, and R. Gershon. 1981. Analysis of antigen-specific, Ig-restricted cell-free material made by I-J<sup>+</sup> Ly-1 cells (Ly-1 T<sub>si</sub>F) that induces Ly-2<sup>+</sup> cells to express suppressive activity. *Eur. J. Immunol.* 11:905.
- Kapp, J. A., and B. A. Araneo. 1982. Antigen-specific suppressor T cell interactions. I. Induction of an MHC-restricted suppressor factor specific for L-glutamic acid<sup>50</sup>-L-tyrosine<sup>50</sup>. J. Immunol. 128:2447.
- 18. Schrader, J. W. 1979. Nature of the T cell receptor. Scand. J. Immunol. 10:387.
- Steinmetz, M., K. Minard, S. Horvath, J. McNicholas, J. Srelinger, C. Wake, E. Long, B. Mach, and L. Hood. 1982. A molecular map of the immune response region from the major histocompatibility complex of the mouse. *Nature (Lond.).* 300:35.
- Niederhuber, J. E., and P. Allen. 1980. Role of I-region gene products in macrophage induction of an antibody response. II. Restriction at the level of T cell in recognition of I-J-subregion macrophage determinants. J. Exp. Med. 151:1103.
- Murphy, D. B., K. Yamauchi, S. Habu, D. D. Eardley, and R. K. Gershon. 1981. T cells in a suppressor circuit and non T:non B cells bear different I-J determinants. *Immunogenetics*. 13:205.
- Sherr, D. H., K. M. Heghinian, B. Benacerraf, and M. E. Dorf. 1980. Immune suppression in vivo with antigen-modified syngeneic cells. IV. Requirements for Ia<sup>+</sup> adherent cells for induction. J. Immunol. 124:1389.