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Purpose: Pathologic studies suggest that unstable plaquemorphology and inflammation

are associated with cerebrovascular events. 18F-fluorodeoxyglucose positron emission

tomography (18FDG-PET) is a validated technique for non-invasive imaging of

inflammation-related plaque metabolism, and MRI can identify morphologic features of

plaque instability. The aim of this study was to investigate the association of selected

imaging characteristics of plaque vulnerability measured with MRI and PET in patients

with symptomatic carotid stenosis.

Methods: Patients from the BIOVASC study were selected based on the following

inclusion criteria: (1) age ≥ 50 years; (2) recent (<30 days) ischaemic stroke (modified

Rankin scale≤3) or motor/speech/vision TIA; (3) ipsilateral internal carotid artery stenosis

(≥5 0% lumen-narrowing); (4) carotid PET/CTA and MRI completed. Semi-automated

plaque analysis of MRI images was performed to quantify morphologic features of plaque

instability. PET images were co-registered with CTA and inflammation-relatedmetabolism

expressed as maximum standardised uptake value (SUVmax).

Results: Twenty-five patients met inclusion criteria (72% men, mean age 65

years). MRI-measured plaque volume was greater in men (1,708–1,286 mm3,

p = 0.03), patients who qualified with stroke (1,856–1,440 mm3, p = 0.05), and

non-statin users (1,325–1,797 mm3, p = 0.03). SUVmax was associated with MRI-

measured plaque lipid-rich necrotic core (LRNC) in the corresponding axial slice

(rs = 0.64, p <0.001) and was inversely associated with whole-plaque fibrous cap

thickness (rs = −0.4, p = 0.02) and calcium volume (rs = −0.4, p = 0.03).
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Conclusion: This study demonstrated novel correlations of non-invasive imaging

biomarkers of inflammation-related plaque metabolism with morphological MRI markers

of plaque instability. If replicated, our findings may support the application of combined

MRI and PET to detect vulnerable plaque in future clinical practise and randomised trials.

Keywords: PET, MRI, atherosclerosis, vulnerable plaque biomarker, carotid, plaque inflammation,

plaque segmentation

INTRODUCTION

Recurrent stroke and coronary events occur in 4–6% of stroke
survivors each year, despite guideline-based treatment (1). New
approaches to address this residual vascular risk are urgently
needed. The current assessment of carotid atherosclerotic
lesions is based on luminal stenosis measurements and surface
defects using in vivo imaging techniques including digital
angiography, CT, MRI, and ultrasonography (2). However,
histopathologic studies suggested that morphological plaque
characteristics of instability and inflammation may be associated
with an increased risk for cerebrovascular events (3, 4). The
identification of carotid plaque containing a large lipid-rich
necrotic core (LRNC) with intraplaque haemorrhage (IPH) and
thin or ruptured fibrous cap (FC) may assist physicians to
identify symptomatic or asymptomatic patients at higher risk for
future stroke.

MRI is a validated technique for characterising luminal
stenosis, plaque volume, and composition. Positron emission
tomography (PET) using 18F-fluorodeoxyglucose (FDG) has
been validated for non-invasive imaging of inflammation-
related plaque metabolism (5, 6). Almost no data exist on
the association between plaque inflammation imaged with
PET and biomarkers of unstable plaque imaged with MRI in
patients with recently symptomatic carotid atherosclerosis.
Therefore, using an imaging dataset of symptomatic patients
recruited as part of a larger, multi-centre prospective cohort
study Biomarkers Imaging Vulnerable Atherosclerosis in
Symptomatic Carotid disease (BIOVASC), we aimed to
investigate the association between plaque inflammation
measured as SUVmax on 18FDG-PET and MRI biomarkers
of plaque vulnerability in patients with symptomatic
carotid stenosis.

METHODS

Eligibility Criteria
Pre-specified inclusion criteria of the BIOVASC study were:
(1) age ≥ 50 years; (2) presentation to medical attention
with recent (<30 days) non-severe ischaemic stroke (modified
Rankin scale [MRS] ≤ 3) or motor/speech/vision transient
ischaemic attack (TIA); (3) ipsilateral internal carotid artery
(ICA) stenosis (≥ 50% lumen-narrowing) on admission Doppler
ultrasound, magnetic resonance angiogram (MRA) or CT
angiography (CTA) done for clinical care; (4) PET/CTA

Abbreviations: LRNC, Lipid rich necrotic core; MDS, Most diseased segment;

SHS, Single hottest slice.

completed. The main exclusion criteria were: (1) possible
haemodynamic stroke/TIA due to carotid near-occlusion; (2)
contraindication to contrast-enhanced CT; (3) unsuitability
for carotid PET/CTA, MRI, or research participation. For
the current study, we selected patients who had high-
resolution carotid wall MRI completed no later than 7-days
from PET/CTA.

The study was approved by relevant Ethics Committees and
patients gave informed consent. All procedures performed in
studies involving human participants were in accordance with
the ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Image Acquisition
PET/CT

F-fluorodeoxyglucose (18FDG) PET/CT was performed using a
Siemens Biograph 16 scanner (Siemens, Erlangen, Germany)
after a minimum 6h fast. Blood glucose level was verified for
each patient and if above 11 mmol/L the PET/CT scan was
not performed. Then, 320 megabecquerel (MBq) of 18FDG was
administered 2 h prior to image acquisition. The uptake phase
was standardised with the patient resting. PET images were
acquired in three-dimensional (3D) mode in two bed positions
for 10min each. Slice thickness of 3mm and a 256 × 256
matrix were used. PET emission mode images were acquired and
reconstructed by applying the OSEM2D4i24s algorithm and XZY
Gauss 2 convolution kernel (Siemens Healthineers, Erlangen,
Germany). A low-dose CT scan for attenuation correction was
performed using the same scanner directly after PET; in addition,
where the administration of a contrast agent (Omnipaque
350, GE Healthcare, Milwaukee, USA) was not contraindicated
(serum creatinine level >1.5 mg/dl or estimated glomerular
filtration rate < 60 ml/min) a diagnostic carotid CTA was
performed using bolus tracking. The pre-monitoring slice was
set at the aortic arch, and a circular region of interest (ROI) was
drawn distant from any vessel calcification. CT images (1mm
slice thickness, with contrast enhancement) were acquired from
the aortic arch to the skull base to identify carotid arteries and
jugular veins. CTA parameters were 120 kVp, 104mAs, 512× 512
matrix, pitch 0.6 and 1-mm CT slice reconstructions following
the acquisition. A smooth reconstruction kernel was used (b30f).

MRI

Carotid arteries were scanned from the common carotid artery
to a point distal to the internal carotid artery stenosis where
the vessel wall is parallel. Patients were scanned with Siemens
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FIGURE 1 | (A) carotid MRI semi-automatic segmentation of lumen and vessel wall. (B) semi-automatic plaque characterisation of an LRNC area. (C) ICA plaque 3D

Volume Rendering. (D–F) CT and PET images of the same plaque area. The ROI (F) shows where SUVmax was measured.

Avanto 1.5T MR (Siemens Healthineers, Erlangen, Germany)
with a dedicated phased-array surface neck coil (Machnet
BV, Netherlands). The carotid bifurcation of the symptomatic
side was identified with the MR localiser. Following this, 3D

time-of-flight (TOF) MR Angiography (MRA) and axial T1w,
T2w, proton density-weighted (PD), and T1w post-contrast
sequences were acquired along the length of the vessel wall.
Double inversion-recovery (IR) sequences were used to allow
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TABLE 1 | Patient demographics.

Characteristic Patients

Total number 25

Age, years (mean, range) 65 (55–86)

Hypertension, n (%) 16 (64.0%)

Current Smoking, n (%) 13 (52%)

Statin at presentation, n (%) 11 (41%)

Aspirin at presentation, n (%) 11 (41%)

Diabetes mellitus, n (%) 3 (11%)

Type of index cerebrovascular event

Stroke, n (%) 10 (40.0%)

TIA, n (%) 15 (60.0%)

Stenosis category (NASCET)

Moderate 50–69% 15 (60%)

Severe > 70% 10 (40.0%)

blood signal nulling with cardiac synchronisation to reduce
wall motion. T1w sequences were acquired prior to and
post-injection of 20 mls of Gadobutrol (Gadovist, AG Bayer,
Berlin, Germany).

Scanning parameters: field of view 256 × 256mm; 2mm slice
thickness and 0.2 slice interval; time to repetition (TR)/time to
echo (TE) were 978/12, 1,880/62, and 1,880/12 for T1, PD, and
T2, respectively. Voxel size 0.5 × 0.5 × 2mm and NEX of 1.
Moreover, a 40◦ flip-angle and a short TE (< 7ms) were used in
the TOF sequence to maximise the contrast between stationary
tissues and flowing blood. The total scan time was 23.2min
per patient.

Image Analysis
Quality assurance (QA) cheques were performed on PET/CT and
MRI prior to commencing the study to ensure that the scanners
were performing according to recommended international
standards. Further QA cheques were performed on the MRI and
PET/CT imaging datasets before commencing the image analysis.

All images were centrally analysed by a single trained
reader, including re-measurement of CTA images to confirm
the degree of stenosis according to the NASCET criteria (7).
Intra-rater reliability assessment showed excellent agreement
between carotid CTA measurements taken at different time-
points (intraclass correlation α = 0.814, p < 0.001) (8).
Following semi-automated co-registration of PET and CT images
(Osirix, Pixmeo, Geneva), carotid 18F-FDG activity in 10 regions
of interest (ROI) defined relative to the slice of maximal
stenosis was quantified using standardised uptake values (SUV
g/ml = measured uptake (MBq/ml) / injected dose (MBq) per
patient weight [g]).

The whole plaque was defined as the volume of the carotid
artery corresponding to 10 ROIs drawn on 10 1mm CTA slices
(1 cm length in total) using the point of maximal stenosis as
the mid-point of the whole plaque segment. The whole-plaque
SUV represents the SUV averaged across the 10 ROIs. Moreover,
we defined the single hottest slice (SHS) as the axial slice with

maximal SUV uptake (SUVmax) and most diseased segment
(MDS) as SHS plus the adjacent proximal and distal axial slices,
corresponding to a 3mm long plaque segment (9).

Following a semi-automatic co-registration of MRI sequences
(T1-weighted, T2-weighted, TOF, and proton density-weighted)
and lumen-plaque boundaries segmentation, carotid plaque
morphological features were semi-automatically measured with
MRI-Plaque View 2 (VPDiagnostic, Seattle, WA, USA). MRI
measures included plaque volume (mm3), plaque thickness
(mm2), LRNC volume (mm3), intra-plaque haemorrhage (IPH)
volume (mm3), fibrous cap (FC) thickness (mm), and normalised
wall index (NWI). TheNWI is defined as plaque wall area/(lumen
+ wall area).

Because inflammation may be non-uniformly distributed
across carotid plaques, the association of SHS-SUVmax with
MRI morphological features was first analysed and compared
to the corresponding axial MRI slice (matching slice analysis)
(Figure 1). The analysis was then repeated, comparing the
MDS-SUVmax to MRI morphological features across the entire
measured plaque (whole-plaque analysis).

Between-group characteristics were compared using pre-
specified analyses which included t-tests, Mann-Whitney, or
χ2 tests. Non-parametric associations between continuous
variables were analysed using Spearman’s correlation test.
Linear regression analysis was performed to investigate the
strength of the association between plaque inflammation and
clinical characteristics.

RESULTS

Clinical Characteristics
The study group consisted of 25 patients, among which 40% (10
patients) with severe ICA stenosis (Table 1). Furthermore, 10
patients presented with stroke (40%), while 15 patients (60%)
with a transient ischaemic attack (TIA). One patient had stroke
recurrence and four had TIA recurrence within 90 days. NWI
was the only MRI metric that was significantly greater in patients
with recurrent events (93 vs. 87.7, p = 0.05). MRI whole-plaque
volume was greater in men (1,707.7 vs. 1,285.9, p = 0.03), non-
statin users (1,325.3 vs. 1,797.3, p = 0.03), patients with stroke
as index event (1,856 vs. 1,439.7, p = 0.05). LRNC volume was
greater inmen (121.1 vs. 39.3, p= 0.03) andmean plaque calcium
volume was greater in patients with hypertension (209.3 vs. 64.6,
p < 0.01) (Table 2). NWI was associated with plaque LRNC
volume (rho= 0.49, p= 0.01).

Association of 18F-FDG PET Plaque Inflammation

With Plaque MRI Features

On analysis of corresponding axial slices, SUVmax SHS was
associated with greater LRNC volume (rho = 0.64, p = 0.001),
but not other MRI features of plaque instability (Table 3).

On analysis of whole-plaque MRI features, SUVmax

MDS was inversely associated with plaque calcium volume
(rho=−0.43, p= 0.03) and fibrous cap thickness (rho=−0.44,
p = 0.02) (Table 3). SUVmax MDS showed a weak trend towards
association with serum LDL-cholesterol (rs = 0.34, p= 0.09).
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TABLE 2 | Distribution of MRI plaque features and clinical characteristics.

Mean

plaque

volume

(mm3)

p Mean FC

thickness

(mm)

p Mean IPH

volume

(mm3)

p Mean

LRNC

volume

(mm3)

p Mean

calcium

volume

(mm3)

p Mean NWI p Mean

SUV

p SHS-SUV p MDS-SUV p

Gender

- Male 1,707.7 1.3 23.1 121.1 169.9 90 1.77 2.88 2.80

- Female 1,285.9 0.03 1.0 0.18 10.1 0.81 39.3 0.03 124.5 0.85 85 0.1 1.93 0.39 2.81 0.79 2.75 0.85

Hypertension

- Yes 1,678.1 1.3 19.7 106.4 209.3 88.7 1.74 2.68 2.63

- No 1,432.3 0.27 0.9 0.91 20.1 0.18 84.9 0.42 64.6 0.002 88.4 0.95 1.95 0.19 3.18 0.06 3.05 0.1

Current smoking

- Yes 1,558.3 1.2 26.8 117.4 136 89.9 1.72 2.99 2.91

- No 1,623.5 0.76 1.2 0.99 12.3 0.36 78.4 0.23 180.2 0.53 87.4 0.25 1.90 0.26 2.71 0.29 2.65 0.3

Statin at presentation

- Yes 1,325.3 1.2 15.3 75.1 146.7 88.1 1.75 2.62 2.59

- No 1,797.3 0.03 1.2 0.54 25.4 0.95 117.1 0.71 43.5 0.41 89.3 0.61 1.86 0.46 3.04 0.11 2.94 0.16

Diabetes mellitus

- Yes 1,256.3 0.9 23.4 101.9 97.6 88.3 1.63 2.53 2.53

- No 1,635.1 0.26 1.2 0.86 19.4 0.92 98.2 0.8 165.4 0.93 88.8 0.93 1.84 0.39 2.91 0.35 2.81 0.45

Index event

- Stroke 1,856 1.0 28.1 137.3 200.1 86.5 1.74 2.65 2.60

- TIA 1,439.7 0.05 1.3 0.15 15.2 0.33 76.9 0.21 133.1 0.25 89.9 0.14 1.86 0.45 2.98 0.22 2.89 0.27

Stenosis category

- Moderate 50–69% 1,778.3 1.2 22.5 104.1 189.5 87.5 1.77 2.77 2.69

- Severe > 70% 1,349.5 0.04 1.2 0.82 17.6 0.69 90.6 0.74 108.8 0.35 90.3 0.22 1.88 0.5 2.99 0.42 2.91 0.38

Stroke recurrence

- Yes 1,494.2 1.5 5.56 105.4 85.1 92.9 1.79 2.72 2.65

- No 1,613.5 0.66 1.1 0.63 23.4 0.52 97.0 0.59 175.3 0.15 87.7 0.05 1.91 0.54 3.42 0.14 3.30 0.13
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TABLE 3 | Correlation between plaque FDG uptake and plaque MRI features

(Spearman’s correlation coefficient).

Matching slice analysis Plaque analysis

SUVmax-SHS p SUVmax–MDS p

Calcium volume −0.17 0.41 −0.43 0.03

FC thickness −0.68 0.74 −0.44 0.02

IPH volume −0.96 0.65 0.33 0.11

LRNC vol 0.64 0.001 0.09 0.64

Plaque volume −0.15 0.49 −0.13 0.55

NWI −0.30 0.14 −0.15 0.40

For analysis of FDG uptake and MRI features in matching slices, FDG is expressed as

SUVmax in the corresponding axial slice. For analysis of FDG uptake and MRI features

across the plaque, FDG is expressed as SUVmax in the MDS.

On linear regression analysis, plaque FDG uptake (measured
as log-transformed SUVmax SHS to meet normality assumptions
of regression analysis) was associated with LRNC area at
the corresponding slice (R2.5, p = 0.001, coefficient.016,
standard error.003) suggesting that approximately half the

variance in plaque SUV uptake was explained by LNRC area
(Figure 2). No other associations between FDG uptake and
MRI morphology were observed on linear regression analysis of
corresponding slices.

DISCUSSION

In recently symptomatic patients with stroke or TIA, we
investigated the relationship between morphological MRI
biomarkers of unstable carotid plaque and inflammation-related
plaque metabolism measured by 18FDG-PET/CTA. We found
positive associations between plaque inflammation and lipid-
rich core volume in corresponding axial slices, and inverse
(negative) correlations between inflammation and markers of
plaque stability (plaque calcification and fibrous cap volume).

Few previous studies have investigated the combined use of
carotid wallMRI andmolecular imaging with PET/CT in patients
with atherosclerosis. In non-stroke subjects who underwent
serial whole-body combined FDG-PET/MRI, FDG uptake was
associated with the number and volume of atherosclerotic
plaques, and with plaque lipid content and positive remodelling
(10). In 61 patients with carotid stenosis and recent symptoms,

FIGURE 2 | Regression analysis figure for LRNC and SUV max (SHS).
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plaque SUVmax was associated with serum LDL cholesterol,
total cholesterol, and triglycerides, and inversely associated with
HDL cholesterol (11). However, plaque lipid content was not
measured in this study. In 18 patients with cryptogenic stroke and
non-stenosing carotid atheroma, the presence and size of MRI-
measured lipid core in ipsilateral carotid plaque were associated
with FDG uptake (12). Similar findings were reported in a
Chinese MRI/PET study of asymptomatic patients with non-
stenosing carotid plaque (13).

Few data exist relating other MRI morphological features with
FDG uptake. Inverse associations were observed between FDG
uptake and ipsilateral carotid plaque fibrous cap thickness
in patients with cryptogenic stroke and non-stenosing
plaque, and in asymptomatic Chinese patients thicker caps
and calcification were associated with lower FDG uptake
(12, 13). We found no association between FDG uptake
and IPH, unlike 2 earlier studies that reported positive
associations (12, 14). Two other studies reported associations
between plaque neovascularisation measured by dynamic
contrast-enhanced MRI and plaque inflammation measured by
PET (15, 16).

The main strength of our study is the novelty of its findings,
as very little data exist on combined PET andMRI carotid plaque
imaging datasets in recently symptomatic patients. Both unstable
plaque morphology and inflammation are validated markers that
identify patients at the highest stroke risk. If validated in further
studies, our results may support a rationale for use of combined
PET/MRI plaque imaging for improved risk stratification of
patients in future randomised trials for carotid revascularisation
or may improve the cost-effective targeting of next-generation
anti-atherosclerotic medications towards high-risk patients (17).

The main limitation is the limited sample size, which may
have resulted in insufficient statistical power for some analyses.
The sample of data used in this study was collected from patients
enrolled in the larger BIOVASC study where carotid symptomatic
patients only were recruited. Although the SHS/MDS methods
are standard for such studies, we also acknowledge technical
limitations for spatial resolution of current PET scanners. Due
to limitations of spatial resolution of PET, we cannot exclude the
possibility that FDG uptake in theMDSmay partially reflect spill-
over of signal from adjacent proximal and distal plaque segments
(∼1–1.5mm in each direction).

Further studies involving a larger number of participants are
needed. We acknowledge that some variability may exist in the
matched slices analysis. Although themost optimal slice selection
of PET/CT and MRI images was made using defined protocols

and the carotid bifurcation as a reference, patient positioning and

technical limitations of each imaging modality may introduce
variability in the analysis of the two imaging datasets.

Summary
Although further research is needed, these initial findings suggest
that inflammation-related plaque metabolism measured with
PET/CT may be associated with morphological MRI biomarkers
of plaque vulnerability, suggesting that the use of both PET
and MRI may be a promising approach to assess new anti-
atherosclerotic treatments to prevent stroke in patients with
carotid stenosis.
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