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The diagnosis of a suspected tumor lesion faces two basic problems: detection and
identification of the specific type of tumor. Radiological techniques are commonly used for
the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced
contrast between normal and neoplastic tissue. Identification of the tumor type is still based
on histological analysis. The result depends critically on the sampling sites, which given
the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo
imaging might overcome this limitation providing comprehensive three-dimensional mor-
phological, physiological, and metabolic information as well as the possibility for longitudinal
studies. In this context, magnetic resonance based techniques are quite attractive since
offer at the same time high spatial resolution, unique soft tissue contrast, good temporal
resolution to study dynamic processes and high chemical specificity.The goal of this paper
is to review the role of magnetic resonance techniques in characterizing tumor tissue in
vivo both at morphological and physiological levels. The first part of this review covers
methods, which provide information on specific aspects of tumor phenotypes, considered
as indicators of malignancy. These comprise measurements of the inflammatory status,
neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue
morphology. Even if the spatial resolution is not sufficient to characterize the tumor
phenotype at a cellular level, this multiparametric information might potentially be used
for classification of tumors. The second part discusses mathematical tools, which allow
characterizing tissue based on the acquired three-dimensional data set. In particular,
methods addressing tumor heterogeneity will be highlighted. Finally, we address the
potential and limitation of using MRI as a tool to provide in vivo tissue characterization.
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INTRODUCTION
Imaging in diagnosis of suspected neoplastic lesion faces two basic
problems: detection and identification of a tumor mass. Detection
is based on achieving sufficient contrast (i.e., contrast-to-noise
ratio) to enable discrimination of pathological from adjacent nor-
mal tissue. Critical factors are high SNR (signal-to-noise ratio) and
high soft-tissue contrast, i.e., different tissues should be reflected
by different intensity levels in the images and with high spatial res-
olution. Identification is more demanding and today still based in
histological analysis, which faces however, some limitations. His-
tology is typically carried out on biopsy samples, which provide
only focal information on a heterogeneous mass. Sample collec-
tion constitutes a burden for the patient and may not always be
feasible. Furthermore, longitudinal analyses are difficult. On the
other hand, histology yields unambiguous information critical for
diagnosis that is based on cellular morphology or on the expression
of a characteristic molecular signature expressed by the tissue. The
possibility to simultaneously analyze multiple tissue parameters is
essential for the identification of the tumor type.

Non-invasive imaging for tumor diagnosis offers unique
advantages: minimal burden of the patient, full three-dimensional
sampling of the heterogeneous lesion, dynamic measure-
ment of physiological and metabolic processes complementing
morphological information, and the possibility for longitudinal

examinations. Yet, current imaging approaches are based on struc-
tural and physiological phenotypic readouts, which are sufficient
for lesion detection and monitoring disease progression or ther-
apy response, but most likely, will not allow identifying the lesion
type. Analogous to histological tissue characterization it would be
important to assess (a) molecular and cellular characteristics and
(b) multiple complementary tissue features in order to achieve a
high discriminative power.

As we will see later, the use of complementary imaging modal-
ities that probe different aspects of the pathology would be most
promising. Nevertheless, we will focus our current discussion on
magnetic resonance based techniques, which are attractive as they
provide high spatial resolution, unique soft tissue contrast, a tem-
poral resolution sufficient for studying dynamic processes, and
moreover are characterized by high chemical specificity, a feature
that is extensively used for chemical and biochemical structure
elucidation. In addition, the method can be easily translated into
the clinics.

TISSUE CHARACTERIZATION BY MAGNETIC RESONANCE
Magnetic resonance images represent a weighted distribution of
protons (1H) in tissue, the predominant source of the signal being
tissue water and lipids (adipose tissue). Obviously the signal is
proportional to the density of protons in the respective tissue.
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The weighting function is governed by the proton magnetic prop-
erties, which are affected by their local environments due to
magnetic and chemical interactions which depend on the nature
of tissue (Weishaupt et al., 2006). The effect of the environment
on the MRI signal is lumped into parameters describing three
distinct relaxation processes (Mark Haacke, 1999): (1) the longi-
tudinal relaxation characterized by the relaxation time T1, which
describes the interaction of the spin with its environment, hence
the expression spin-lattice relaxation as a crystal lattice constituted
the environment in early solid state physics nuclear magnetic res-
onance (NMR) experiments. T1 relaxation is based on energy
exchange between the spin under investigation and its environ-
ment and occurs such that the system is driven back to its thermal
equilibrium state. (2) Transverse relaxation, characterized by the
relaxation time T2 that describes the interaction of the spin under
interrogation with neighboring spins, hence the term spin-spin
relaxation. T2 relaxation is based on dipole–dipole interactions
between spin pairs that fluctuate with regard to their spatial align-
ment and hence is of stochastic nature. It leads to the irreversible
loss of phase coherence and hence to a loss in signal intensity. (3)
T2* relaxation is related to T2 and in addition to spin–spin inter-
actions is governed by inhomogeneities in the local magnetic field,
e.g., due to difference in magnetic susceptibility between tissues.
This local field inhomogeneities are static and hence deterministic
and can be accounted for when tailoring the MRI data acquisition
(so-called spin-echo experiments). Nevertheless, T2* provides an
additional source for contrast. Additional parameters that influ-
ence the modulate the interaction of the MRI signal with the
environment and hence the MRI signal intensity are molecular
diffusion, as well as mechanism leading to coherence/polarization
transfer such as chemical exchange reactions or spin diffusion.

Relaxation processes can be influenced by administration of
contrast agent, which are either paramagnetic (gadolinium based)
or superparamagnetic agents (iron-oxide based). These agents
contained unpaired electrons with a strong effect on the local
magnetic field that is experience be nearby protons. The contrast
mechanism of the two classes of agents is different, yet a detailed
description is beyond the scope of this article (Rudin, 2005a). In
the context of our discussion it suffices to state that paramagnetic
agents enhance the longitudinal relaxation rate, i.e., they reduce
T1, while superparamagnetic agents predominantly enhance the
transverse relaxation rate, i.e., reduce T2. Apart from enhanc-
ing the contrast in static MR images to improve discrimination
of distinct tissues, MRI allows monitoring dynamic changes fol-
lowing the contrast agent administration. The contrast change
measured in a volume element (voxel) is proportional to the
amount of contrast agent in this voxel, which by itself depends
on the biodistribution (including compartments within a tissue)
and pharmacokinetic properties of the agent. Such dynamic stud-
ies yield information on tissue perfusion, vascular leakage, or
distribution volumes.

The magnetic resonance phenomena are not only restricted
to the detection of protons of water and lipid molecules in
tissue. Essentially all magnetic nuclei give rise to signal. The
resonance frequency of a nucleus depends on its identity (char-
acterized by the so-called gyromagnetic ratio) and its chemical
environment. It is in particular the fact that the magnetic

resonance sensitively probes the chemical structure to which the
interrogated nucleus is attached that has made the method indis-
pensable for chemical structure elucidation. The identification
of a molecular entity is based on the detailed spectral analysis
of its resonance frequencies. Translating these approaches to in
vivo tissue characterization therefore bears considerable potential
to enable a detailed (molecular) tissue characterization, which
might be of high diagnostic value. Apart from protons, other
nuclei such as phosphorus-31, carbon-13, constituents of many
biologically relevant molecules are of interest for in vivo mag-
netic resonance spectroscopy (MRS). Yet this method suffers
from the low intrinsic sensitivity of magnetic resonance, as these
metabolites are typically present at millimolar to sub-millimolar
concentration compared to water protons with tissue levels of
approximately 80 M.

PHENOTYPIC TUMOR CHARACTERIZATION
If compared to healthy organs, tumor tissues present in general
highly heterogeneous and chaotic architecture. Such heterogene-
ity is primarily due to the genetic instability of tumor cells that is
responsible of the apparently chaotic tumor development, which
is reflected in tissue architecture, tumor vasculature, host infil-
trates, and metastasis formation (Heppner, 1984; Marusyk et al.,
2012). This chaotic behavior occurs at a molecular, cellular,
and microdomain level and determines also the interaction with
the host environment. The result is the formation of different
regions inside the tumor, which may exhibit completely different
physiological behavior (Denysenko et al., 2010; Huse et al., 2013).

In order to rationalize the complexities of neoplastic disease,
Hanahan and Weinberg (2000) have defined six phenotypic hall-
marks of cancer, which correspond to six biological features
acquired during tumor development. Those include sustained
proliferative signaling, evasion of effects of growth suppressor,
resistance to cell death program, acquisition of replicative immor-
tality, development of a vascular network (angiogenesis), invasion
of adjacent healthy tissue, and the formation of distant metastases.
In a recent publication (Hanahan and Weinberg, 2011), these ini-
tial six hallmarks were complemented by four additional features
related to the specific behavior of tumor tissue: genome instability,
inflammation, reprogramming of energy metabolism, and evasion
of immune surveillance.

An important aspect of tumor is that they are not only com-
posed of cancer cells but contain a variety of host derived cells
such as immune cells, endothelial cells, pericytes, fibroblasts, stem,
and progenitor cells that characterize the hallmarks traits and
constitute the tumor microenvironment (Swartz et al., 2012).

Considerable efforts have been invested to assess these tumor
hallmarks non-invasively using imaging. Today, methods are
available to study tumor proliferation (DNA, protein, and mem-
brane synthesis) using PET and MRI methods, aspects of tumor
metabolism using PET and MRS, aspects of tumor vessel architec-
ture and physiology (MRI), apoptotic processes using PET, MRI,
and fluorescence imaging, as well as of the invasive potential and
propensity for metastasis formation using PET and fluorescence
imaging. Yet, all these phenotypic readouts are not specific enough
for an unambiguous identification of the tumor type, which is
based on unique molecular markers. Secondly, many of these tools
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are still in an early experimental stage and will not be available in
a clinical setting soon.

TUMOR MORPHOLOGY
Damadian (1971) reported on the observation that T1 relaxation
times in tumors are higher than in the adjacent normal tissue and
suggested that this feature might be used for tumor detection.
This constituted one of the prime motivations that later led to
the development of MRI. Nowadays, modern MRI scanners offer
several tools for detecting and characterize tumor.

Detection of tumors based on altered relaxivity values
Despite the fact that the basic biophysical mechanism leading
to tissue specific relaxivity values are poorly understood, the
evaluation of relaxivity parameters are of high diagnostic value.

According to the type of MR sequence and the relative parame-
ters, it is possible to acquire a signal, which is mostly dominated by
one of these contributions. Most established are T1-weighted, T2-
weighted or proton density weighted images (Haacke et al., 1999).
By optimizing the contrast between neoplastic and normal tissue
it is in generally possible to detect the cancer lesion, to identify
sub-regions displaying different tissue characteristics (dense ver-
sus non-dense tissue, poorly versus highly vascularized, necrotic
areas, edematous tissue, etc.), and to monitor of tumor progres-
sion or regression. Yet, these phenotypic measurements are in
general not sufficient for “histological” classification of the tumor.
Instead some generic tissue features are reflected. For example, T1-
weighted images are usually used to assess the gross morphology
of the tumor as shown in Figure 1 (left). As rule of thumb, regions
with high water content appear dark, while regions with high fat
content appear bright (Weishaupt et al., 2006). In combination
with gadolinium-based contrast agent such as Gd-DTPA it is pos-
sible to assess regions displaying high uptake of the agent indicative
of hemorrhage and leaky vessels. Areas, for which little uptake is
observed are commonly associated with necrotic or edematous

domains. Only when waiting sufficiently long these areas will
accumulate extravasated contrast agent via passive diffusion.

In T2-weighted images areas with high water content appears
bright. Since most diseases are characterized by increased water
content in tissues associated with an inflammatory tissue response,
T2-weighted are particularly useful for pathological investigation.
Dark regions may indicate high blood content such as hemorrhage,
vessels, or angiomas.

In proton weighted images (Westbrook, 2010), bright areas
indicates high proton density tissue, such as cerebrospinal fluid
or edema, while dark areas indicate low proton density such
connective tissue (i.e., tendons) or cortical bone.

Nowadays, tumor detection based on altered T1 and T2 relax-
ivity values is commonly used to diagnose and follow-up different
kinds of tumor comprising, among the others, brain tumor
(Young, 2007), breast tumor (Heywang-Kobrunner et al., 1997),
prostate cancer (Verma et al., 2012), and gastric cancer (Wang
et al., 2000). By means of T1 and T2 weighted images and in
combination with contrast agent, as Gd-DTPA or superparam-
agnetic nanoparticles, it is possible to assess tumor morphology
and grossly identify edematous and necrotic regions. Moreover,
kinetics and extent of contrast agent uptake are considered as an
indicator of prognostic quality.

The possibility to obtain high-resolution and high-contrast
images of soft tissue with similar density but different relaxiv-
ity values makes MRI the method of choice for the detection of
solid tumors.

Alteration in cellularity: measuring the apparent diffusion
coefficient
Diffusion Weighted Imaging (DWI) measures the random move-
ment of the water molecules and allows deriving the so-called
apparent diffusion coefficient (ADC) for each voxel (Haacke et al.,
1999). “Apparent” since the measured coefficient corresponds to
a weighted average across individual diffusion coefficients for all
compartments contained in this voxel. Also, structural barriers

FIGURE 1 |T1-weighted image of a glioma following contrast enhancement using a gadolinium-based contrast agent (left). Diffusion weighted images
DWI (middle), and apparent diffusion coefficient map ADC (right) of the same tumor patient. Adapted from Young (2007), reproduced with permission.
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like cell membranes, or perfusion effects affect diffusion (Haacke
et al., 1999). Given this definition and the fact that the diffusion
coefficients within cells and in the extracellular space are differ-
ent, with Dintracellular < Dextracellular , it becomes apparent that the
ADC values are sensitive to the relative size of these two compart-
ments. Hence, regions with densely packed cells will show low
ADC values. This has been exploited in the characterization of
brain neoplasms. High grade tumor neoplasms display significant
reduction of ADC and correspondingly a higher signal in DWI as
compared to lower grade (Okamoto et al., 2000; Figure 1 middle
and right). Fluid filled cysts or edematous regions appear hyperin-
tense in ADC maps (and hypo-intense in DWI) when compared to
the normal parenchyma because they largely correspond to bulk
water enabling unrestricted diffusion (within the MRI timescale;
Drevelegas and Papanikolaou, 2011).

Inflammatory status: edema formation and infiltration of immune
cells
Recent data have expanded the concept that inflammation is a crit-
ical component of tumor progression (Coussens and Werb, 2002).
The quantification of the inflammatory status is crucial in the
determination of the tumor volume, since its value is an impor-
tant prognostic factor with regard to the treatment of malignant
tumors (Xie et al., 2005). Moreover, inflammation may also influ-
ence therapy outcome in two opposite ways, in particular for brain
tumors such as gliomas (Kleijn et al., 2011). It can lead to tumor
control, by killing cancer cells and establishing anti-cancer immu-
nity, or it may further promote tumor growth, by participating in
glioma reoccurrence and progression. It is therefore evident that
the possibility to monitor the inflammation status in vivo, i.e.,
by monitoring immune cells, is a crucial step in tumor manage-
ment. Traditionally, such evaluation is performed ex vivo using
cytometry and immunohistochemistry methods, or in vivo using
labeled-radionuclides for PET (Positron Emission Tomography)
or SPET (Single Photon emission tomography) scanner (Ahrens
and Bulte, 2013). However, recent developments, in particular
the possibility to prepare non-toxic MRI probes for cell labeling,
enables MRI based tracking of immune cells. Compared to PET

or SPET, MRI has the advantages that it does not use ionizing
radiation and provides higher spatial resolution.

Magnetic resonance imaging (MRI) cell tracking involves
exogenous cell labels such as iron oxide nanoparticles, perflu-
orocarbon (PFC) nanoemulsion, or genetically encoded MRI
reporters (Ahrens and Bulte, 2013; Figure 2). Immune cells can be
labeled with superparamagnetic iron oxide based (SPIO) nanopar-
ticles in two ways: (i) by ex vivo labeling of harvested cells that
are incubated with SPIO nanoparticles in media typically using
a transfection agent, or (ii) by non-selective in situ labeling of
the phagocytic cells, such as macrophages, following intravenous
injection of SPIO nanoparticles (Bhakoo et al., 2006). PFC emul-
sion can be used to track cells using the same labeling strategies.
PFC-based cell tracking provides high specificity for cell detection
(i.e., a high signal-to-background ratio can be achieved as there is
no endogenous source of a fluorine signal) and enables the quan-
titative measurements of the amount of cells. Yet they require a
specific MRI coil tuned to the resonance frequency of 19F nuclei.
Disadvantages of using passive labeling strategies are that only the
presence of the label is detected, which is not necessarily identical
with the presence of cells. Cells may release the label into the envi-
ronment, e.g., after death, yielding to a false positive signal. Also,
the presence of the label does not yield any information on the sta-
tus of the cell, i.e., whether it is alive or dead. Finally, for dividing
cells (which is not relevant for the immune cells) the label will be
subsequently diluted. In addition, a passive label will be degraded
over time. Genetic encoded reporters avoid some of these issues.
They only yield a signal when the gene is expressed, i.e., when the
cell is alive, and the presence of labels also indicates the presence of
the cell. On the other hand, the sensitivity of genetic cell marking
is in general inferior to that of potent exogenous labels.

Magnetic resonance imaging cell tracking can also be used to
monitor inflammation related to other disease as neurological dis-
orders, autoimmune diseases, or transplant rejection. Moreover,
it is likely to become an important tool also in cell therapy (i.e.,
stem cells for different diseases) with the specific aim to guide cell
injections and subsequently monitoring their migration (Bulte,
2009; Hong et al., 2010).

FIGURE 2 | Example of tracking immune cells with MRI using SPIO

nanoparticles and PFC emulsions. (A) Imaging of in vivo antigen capture
and trafficking of dendritic cells (DCs). Sentinel DCs were labeled in situ by
intradermal injection of unlabeled (dashed arrow) or SPIO-labeled (solid

arrow) irradiated cancer cells, which function as a vaccine. Following
phagocytosis of both SPIO particles and tumour antigens in a process known

as magnetovaccination, the hypointense DCs migrate into the medulla
of the draining popliteal lymph node. (B) An electron micrograph of a
perfluorocarbon (PFC)-labeled DC is shown. Numerous bright spots (PFC
droplets) are observed inside the cell. Particles appear as smooth spheroids
(Ogawa et al., 1990). Arrowheads indicate vesicles. The scale bar represents
200 nm. Adapted from Ahrens and Bulte (2013), reproduced with permission.
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One of the consequences of the inflammatory status is the for-
mation of a peritumoral edema which is the results of several
cellular mechanism (Stummer, 2007). Although its prognostic
value for diagnosis, as well its role in the course of disease is
still a matter of discussion, peritumoral edema may cause severe
neurological symptoms in case of brain tumor, and remains a chal-
lenge in the treatment of glioblastoma patients (Kleijn et al., 2011;
Stummer, 2007).

The evaluation of edema by means of MRI is usually performed
using T2-weighted sequences that are quite sensitive to water con-
tent, and by assessing changes in ADC. The regions affected by
edema are characterized by prolonged T2 values and therefore
appear hyperintense in T2-weighted images.

TUMOR PHYSIOLOGY
The physiology of tumor tissues is directly dependent on the struc-
ture and functionality of the vascular network developed during
tumor growth. The newly formed vessels are responsible for the
delivery of the nutrients from the hosting tissue to the tumor and
for the removing of waste metabolites from the tumor. Charac-
terization of the angiogenic process is therefore essential either
for understanding the chaotic steps of tumor evolution or for
the development of anti-angiogenic drugs (Marmé and Fusenig,
2007).

Tumor vasculature deviates profoundly from that of the nor-
mal organs both in vascular architecture and functionality. The
vascular network of solid tumor does not show the hierarchi-
cal branching patterns characteristic for the majority of healthy
organs. This is the results of the opportunistic nature of the
angiogenic process, which in tumor seems not to follow physi-
ological pre-determined steps (Tropres et al., 2001; Kiselev et al.,
2005). Initially avascular tumor masses trigger the development
of new angiogenic vessels as a consequence of hypoxia and the
secretion of angiogenic factors (Lemasson et al., 2013). Alter-
natively, tumors may grow along one or more existing vessels
and co-opt them in the tumor structure in a parasitic manner.
In both cases vessels usually remain in a primitive status with
immature vascular walls and proper support by the tissue matrix.

Tumor vascular networks therefore consist of tortuous micro-
vessels exerting chaotic branching, arterial-venous shunts, and are
subject to acute or transient collapse (Heywang-Kobrunner et al.,
1997).

The lack of maturation of the primitive vessel network gives ori-
gin to a few abnormalities in vascular function. Tumor capillaries
show high permeability compared to the healthy ones (Tropres
et al., 2004). This results in a profound extravasation of erythro-
cytes and plasma in the adjacent tissue leading to an elevated
interstitial fluid pressure and to a rise in the viscous resistance
to blood flow (Dominietto, 2012). Second, because of this resis-
tance and chaotic structure, the blood circulation or perfusion
within such vessels is rarely correlated to the metabolic demands
of solid tumor (Heywang-Kobrunner et al., 1997). Moreover, the
clearance of metabolites from the tissue and the drainage by the
venous system do not work properly and are responsible of the
accumulation of blood in the tumor tissue.

To complicate matters even more, the degree of abnormali-
ties changes in different kinds of tumors and also during different
stages of the same tumor. While from a biological point of view
the origin of these physiological fluctuations is poorly understood,
the assessment of vascular abnormalities constitute an attrac-
tive biomarker, as it clearly distinguishes neoplastic from normal
tissue. Various structural and physiological aspects of tumor vas-
culature can be quantified by MRI and used for classification and
staging of tumors.

NEOANGIOGENESIS: VASCULAR STATUS AND PHYSIOLOGY
The vascular network of bigger vessels (diameter > 50 μm) can
be directly visualized by means of magnetic resonance angiog-
raphy (MRA) technique as shown in Figure 3. Three different
methods are currently available: (a) time-of-flight (TOF), (b) con-
trast enhanced (CE), and (c) phase contrast (PC) MRA. All these
approaches aim at generating a high contrast between the vascular
lumen (blood compartment) and the surrounding tissue to enable
the segmentation and extraction of vascular structures.

Time-of-flight angiography (Heverhagen et al., 2008) exploits
the intrinsic differential behavior of protons in flowing blood

FIGURE 3 | Magnetic resonance angiography of a brain tumor to

evaluate the tortuosity of the vascular network. Vessels within the
tumor nidus are shown in red, vessels supplying or passing through the
nidus in gold, while normal vessels outside the nidus are blue. The

nidus, containing type II tortuosity vessels, is volume rendered at full
opacity (left), at partial opacity (center), while vascular structures
exclusively are shown at (right). Adapted from Bullitt and Gerig (2003),
reproduced with permission.
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as compared to stationary tissue and does not require the
administration of contrast agents. Briefly, by a combination of
radiofrequency excitation pulses all the spins of the excited vol-
ume will be saturated and, because of that, the signal will be largely
suppressed. However, blood that has entered the imaged volume,
will give rise to the full signal intensity, as it has not experienced
previous saturation. Whether a vessel can be depicted using TOF-
MRA depends on whether it can be reached by fresh blood during
excitation.

Contrast enhanced (Chandra et al., 2012) takes the advan-
tage of the administration as a bolus of a contrast agent in the
blood stream during MRI acquisition. Gadolinium based contrast
agent will produce an enhancement of the signal in T1-weighted
sequences, while iron-based contrast agent will cause dephasing of
the nuclear magnets decreasing the overall signal in T2-weighted
acquisitions. Acquisition has to be fast enough that extravasa-
tion of the contrast agent remains minimal. Angiograms are then
obtained by comparing pre- and post-contrast images.

Phase contrast (Thomas and Wells, 2011) utilizes the change in
the phase shifts of the flowing protons in the region of interest to
create an image. Spins moving along the direction of a magnetic
field gradient receive a phase shift proportional to their velocity.
This is usually accomplished by applying gradient pairs, which
sequentially dephase and then rephase spins during the sequence.
Use of phase-sensitive image reconstruction allows depticting the
vascular systems exclusively and more over provides information
on blood flow velocities.

Despite the high spatial resolution of MRI if compared to other
diagnostic imaging modalities, it is not possible to depict the fine
details vascular tree as (a) the typical vessel diameter of tumor
vessels is in the range 5–50 μm, and (b) flow velocity in these ves-
sels is typical small. Only with high-field magnets and sophisticate
coils that are used in experimental studies in animals, enabling an
isotropic spatial resolution of the order of 50 μm, it has been pos-
sible to depict larger branches of the tumor vasculature (>50 μm)
using CE techniques in subcutaneous or orthotopic tumors in
mice. Nevertheless, MRI offers the ability to indirectly investigate
small vessels by means of a special CE technique called vessel size
imaging (VSI).

Vessel size imaging (Tropres et al., 2001; Kiselev et al., 2005)
allows the evaluation of the mean vascular density (MVD;
Lemasson et al., 2013) and the average vessel diameter (AVD) in
a voxel or in a volume (Tropres et al., 2004). The approach is
based on the simultaneous measurement of the changes in T2
and T2* induced by the administration of an intravascular super-
paramagnetic contrast agent. While T2 depends on the dipolar
interaction between the intravascular contrast agent and the tis-
sue protons, which scales to the surface of the vessel T2* effects ar
proportional to the bulk effect of the contrast agent to the local
magnetic susceptibility, which scales to the vascular volume. From
indirect measurements of vessel surface and volume we can infer
on the average radius of the vessels in a given region-of-interest.

The dimension and density of the vessels is an important
index when studying angiogenesis. When combined with an inde-
pendent measurement of the tumor blood volume (TBV), it
constitutes an index of the organization of the vascular network.
Identification of vessels of various diameter (from big to small)

indicates a hierarchical network, while the presence of only small
vessels is an index of the poor organization of the vascular tree.

While information on the vascular architecture within the
tumor is a downstream manifestation of the angiogenic process,
it is important to derive physiological information in order to
understand the implication on substrate delivery, which essentially
determines the fate of the tumor. Capillary vessels like arterioles
and venules are permeable to the substances present in the blood
to enhancing compound exchange between the blood and tissue
compartment. It has been shown that in tumors also relatively
big vessels are highly permeable due to the immature structure
of the vascular wall. This results on an almost completely leaky
network with a highly non-uniform blood supply to tumor tissue
(Dominietto, 2012).

The characteristically high permeability of tumor vessels has
been suggested as biomarker for angiogenesis (Feng et al., 2008),
and for evaluating antiangiogenic treatment efficacy (Alic et al.,
2011; O’Connor et al., 2011; Najafi et al., 2012). Vascular perme-
ability values are commonly assessed by means of T1-weighted
dynamic contrast enhanced (DCE) acquisitions, involving serial
images of the same region during the administration of a
gadolinium-based contrast agent (Rudin et al., 2005). The mea-
sured MRI signal enhancement curve is fitted using a two-
compartment model originally proposed by Tofts and Kermode
(1991). In its simplest version the model comprises a vascular and
an extracellular compartment. Fitting to the enhancement curve is
carried out by optimizing two parameters, the vascular permeabil-
ity defined by the transfer constant ktrans , a measure for the rate of
contrast agent extravasation, and the volume of the extracellular
compartment V e .

Two other important parameters giving insight into the vessel
functionality are tumor blood flow (TBF) and TBV (Figure 4).
While TBV measure the volume of the vascular compartment
in a region-of-interest, TBF assess the exchange of blood within
this volume per unit time. Both parameters can be estimated by
means of T2*-weighted dynamic susceptibility contrast (DSC)
MRI experiments recording the change in signal intensity dur-
ing the administration of a super-paramagnetic contrast agent
(Barbier et al., 2001; Rudin et al., 2005). For data analysis, it is
assumed that, due to its nanoparticulate size, the contrast agent
remains confined to the blood compartment, at least for the
duration of the measurement.

Tumor oxygenation
The oxygenation is another important factor in tissue character-
ization since abnormal oxygen levels have several implications in
tumor progression and treatment (Nilesh and Quarles, 2011). In
particular, a hypoxic environment is known to promote angio-
genesis, inflammatory behavior, genetic instability, invasiveness,
and metastasis formation. Hence, hypoxia is associated with
increased malignancy and causes reduced efficacy of radio- and
chemo-therapy.

Two MR based techniques have mainly developed to image
tissue oxygenation status: BOLD-MRI and fluorine-19 NMR (19F-
NMR). BOLD (Blood Oxygen Level Dependent; Figure 5) contrast
assesses alterations in the relative concentrations of deoxyhe-
moglobin (dHb) and oxyemoglobin (HbO2) concentration in
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FIGURE 4 | Example of relative tumor blood volume rTBV (color)

overlaid on a structural MR image (gray level). The images show the
effect of DMOG treatment that affects angiogenesis process (left) versus
placebo (right). DMOG treated tumor shows multiple small regions with

relative high rTBV, while placebo treated tumor present only one big
region with significant rTBV. The color bar indicates the rTBV values in
arbitrary units. Adapted from Dominietto et al. (2012), reproduced with
permission.

FIGURE 5 | BOLD MRI for a patient with breast tumor exhibiting a partial

response to therapy. Images show a signal enhancement maps (color)
overlaid on T2-weighted anatomical images. Images have been acquired
1 week before start of neoadjuvant chemotherapy (left), after one cycle of

chemotherapy showing small signal response (middle) and after four cycles
of chemotherapy demonstrating a striking change in tumor characteristics in
response to therapy (right). Adapted from Jiang and Weatherall (2013),
reproduced with permission.

blood (Ogawa et al., 1990). The blood oxygen saturation given by
the ratio [HbO2]/(HbO2] + [dHb]) changes according to local
cellular activity and hence oxygen consumption. Since dHb is
paramagnetic, it induces local changes in magnetic susceptibil-
ity, and hence a decrease of T2*, in the region surrounding the
vessel. Correspondingly, increased oxygen saturation will lead
to an increased signal intensity when using T2*-weighted pulse
sequences (Nilesh and Quarles, 2011). This method has been used
to monitor treatment response during phototherapy (Gross et al.,
2003), upon administration of vasomodulators (Robinson et al.,
1995; Taylor et al., 2001), to predict the response radiotherapy
response, which is known to critically depend on the oxygenation
status of the tumor (Rodrigues et al., 2004), and to character-
ize vascular architecture in general (Robinson et al., 2003). While
BOLD based methods provide accurate qualitative information
of blood oxygenation it is difficult to extract reliable quantitative
data.

19F-NMR approaches involve the administration of PFCs,
which are well known for their high oxygen carrying capacity. It
has been demonstrated that the 19F relaxation time T1 is linearly
dependent on oxygen tension (Joseph et al., 1985; Fishman et al.,
1989) and with proper calibration it is possible to quantitatively
assess tissue oxygenation at equilibrium, or following a metabolic
perturbation. However, given the difficulty of delivering sufficient
quantities of PFCs to tumor tissue, as many of these agents require
intra-tumoral injection, the method has remained a preclinical
tool (Nilesh and Quarles, 2011).

Acidosis: link to metabolism
Metabolic reprogramming of tumor cells has been recognized
already very early. It has been observed that neoplastic tissue
exerts high glycolytic activity even under conditions of nor-
moxia (Warburg effect; Gatenby and Gillies, 2004). In fact,
measurement of enhanced glucose utilization with PET using
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[18F]-2-fluoro-2-doxyglucose (FDG) as tracer has emerged as
important diagnostic tool for tumor diagnosis, in particular for
detection of the metastatic burden. Only recently, molecular
mechanism underlying this reprogramming, linking metabolic
processes to altered gene expression are being elucidated (DeBer-
ardinis et al., 2008; Ward and Thompson, 2012). Glycolysis leads
to the production of lactic acid from pyruvic acid via pyruvate
dehydrogenase, which is responsible for acidosis. Nevertheless,
the intracellular pH of solid tumor, which is the result of a
balance between metabolic proton production, proton buffering
capacity and transport processes, is maintained within a range
of pH = 7.0–7.2 (Zhang et al., 2010). Hence, despite increased
acid production, tumor cells maintain a normal slightly alka-
line intracellular pH. The major acid load is transported outside
the cells but, since the acid cannot be easily removed by the
abnormal vasculature, the microenvironment will become acidic
(Zhang et al., 2010).

Tissue acidosis is an important feature of the tumor
microenvironment which has been shown to drive local invasion
and not surprisingly several approaches have been described to
assess tumor pH non-invasively (Figure 6). In vivo MRI and MRS
can be used to measure pH values in vivo either using endogenous
or exogenous compounds (Raghunand, 2006). MRS methods are
generally based on a difference in chemical shifts between pH-
dependent and pH-independent resonances (Zhang et al., 2010). A
resonance becomes pH dependent when the resonance frequency
of the protonated form is distinct from that of the deprotonated
form and when the exchange reaction is fast compared to the MRS
time scale, which is defined by the frequency difference of the
two resonances. Different nuclei can be used to determine tissue
pH using this approach: 31P (Gadian and Radda, 1981), 1H and
hyperpolarized 13C (Gallagher et al., 2011).

An alternative approach using MRI relies on perturbing the
relaxivity of water via pH-dependent relaxation agents. Small
molecules Gd-based agents, whose relaxivity is pH dependent,
have been recently synthesized (Zhang et al., 1999; Raghunand
et al., 2002; Pierre et al., 2006). For the pH quantification, this
method requires knowledge of the concentration of the agent in
each voxel.

FIGURE 6 | pH map of mouse MCF-7 breast tumor model. pH was
measured by administration of a paramagnetic CEST (Chemical Exchange
Saturation Transfer) MRI using pH-sensitive contrast agent ytterbium-
1,4,7,10-tetraazacyclododecane-1,4,7 tetraacetic acid, 10-oaminoanilide.
Adapted from Zhang et al. (2010) reproduced with permission.

Finally, a new generation of agents that have been developed
to generate contrast via chemical shift saturation transfer (CEST)
enable pH measurement (Zhang et al., 2010). The dynamic pro-
cess of CEST can be described by 2-pool chemical exchange model,
wherein the magnetization is exchanged between a labile proton
(e.g., an amide proton of proteins) and bulk water. The two res-
onances have to be distinguishable. In the experiment one of the
two resonances (the smaller proton pool) is magnetically labeled
(saturated) and the transfer of label to the exchange partner (the
water proton) is monitored. For example, the resonance of amide
protons is saturated and the transfer of saturation to the water
resonance, i.e., the decrease of the water signal intensity, is ana-
lyzed. Mathematical modeling based on Bloch equations coupled
by chemical exchange yields estimates for the exchange rate, which
depend on pH. In general, exchange rates are slower at a low pH.
There are three main categories of CEST imaging: diamagnetic
(Pacheco-Torres et al., 2011), paramagnetic (Liu et al., 2012), and
amide proton transfer (Sun et al., 2011).

TUMOR METABOLISM
The concentration various metabolites can be measured by means
of MRS (Figure 7). Compounds accessible by MRS relate to
the tumor hallmarks deregulated energy metabolism, sustained
proliferation, and resisting cell death (Hanahan, 2000). Metabo-
lites related to energy metabolism are the substrate glucose and
the intermediates of glycolytic processing including pyruvate
and lactate, which can be assessed using either 1H or 13C
MRS. Recently, hyperpolarization techniques such as 13C MRS
combined with dynamic nuclear polarization (DNP) have been
introduce. They enhance the sensitivity of MRI by three to four
orders of magnitude, though the lifetime of the hyperpolarized
state is typically less than 1 min in biological tissue, which limits
the applicability of the method. Nevertheless, it could be shown
using DNP 13C MRS in addition to glycolytic processing of pyru-
vate that the label is also transferred to alanine, which indicates
the increased anabolic (proliferative) activity of tumors. The prime
energy substrate produced by anaerobic and aerobic glucose pro-
cessing is adenosine-triphosphate (ATP), which can be assessed,
together with other phosphorus containing metabolites such as
phosphocreatine (PCr), nicotinamide adenine dinucleotide phos-
phate (NADP), or orthophosphate (HPO4

2−/ H2PO4
−) using 31P

MRS. A characteristic of tumors is their acidic environment, which
is related to their high glycolytic activity. Intracellular pH is com-
monly assessed by comparing the resonance frequency of the PCr
and HPO4

2−/ H2PO4
− resonance. Due to the fast proton exchange

(with regard to the MRS time scale) between HPO4
2−and H2PO4

−
only one resonance signal is observed for the two compounds,
the frequency of which depends on the relative concentration
of the two and hence sensitive to the pH value. In contrast, the
PCR signal does not depend on the pH value. Hence by mea-
suring the frequency difference of the PCr versus the HPO4

2−/
H2PO4

− signal, the pH value can be accurately determined
(Zhang et al., 2010). High proliferation capacity implies high rates
of membrane synthesis. Not surprisingly tumor typically show
high levels of phospholipid precursors such as choline/phospho-
choline or ethanolamine/phospho-ethanolamine. While the non-
phosphorylated compound are typically measured using 1H MRS,
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FIGURE 7 | Magnetic resonance spectroscopy from patient with

heterogeneously enhancing white matter lesions. The indistinguishable
spectra demonstrate elevated choline, low NAA, and moderate lactate. One
spectrum represents tumefactive multiple sclerosis (MS), the other one

anaplastic astrocytoma. In anaplastic astrocytoma, choline elevation reflects
membrane synthesis as marker of active proliferation, whereas in MS, it
represents membrane injury and degradation of membrane phospholipids.
Adapted from Young (2007) reproduced with permission.

the phosphorylated analogs are detected as a phosphomonoester
resonance using 31P MRS. In fact the characteristic nature of this
peak has been used to assess therapy response already very early
(Ng et al., 1989). In clinical routine, these proliferation readouts
are mainly used in the diagnosis and monitoring of brain tumors
(Bhakoo et al., 2006; Ahrens and Bulte, 2013). Finally it has been
shown that 1H MRS of lipid signal may be used to study apoptotic
signaling (Schmitz et al., 2005).

The evaluations of all the phenotypic readouts previously
described are indirect measurement of processes that occur at a
molecular level. Although these readouts provide relevant infor-
mation on the tumor status, they are of generic nature and may lack
the specificity required for the final diagnosis: different molecular
processes, for example, can lead to almost identical phenotypes.
The identification of tumor types is based on its molecular com-
position. Hence, similar to the histological analysis imaging,
methods have to be developed that provide cellular and molecu-
lar information (see Assessing Cellular and Molecular: Molecular
Imaging Approaches). Alternatively, we might consider compiling
the various structural, physiological and metabolic informa-
tion collected into a fingerprint that may provide the desired
degree of specificity in selected cases (see Mathematical Tools
for Handling Multi-Parametric Imaging Data: a Classification
Problem).

ASSESSING CELLULAR AND MOLECULAR: MOLECULAR IMAGING
APPROACHES
Final histological tumor diagnosis/classification is based on the
expression of specific molecular markers, hence it becomes obvi-
ous that whenever non-invasive imaging should reach that stage,

it mast yield temporal-spatially resolved information on the
expression of such tumor-specific biomolecules, typically surface
epitopes. This asks for molecular imaging solutions visualizing
molecular targets or molecular processes occurring at the molec-
ular and cellular levels (Martin, 2011). To achieve this goal,
exogenous contrast agents coupled with a molecule that targets
specific cell receptors or interacts with specific enzyme or proteins
in vivo are needed. Quantification of results in molecular imaging
refers to the ability to estimate the concentration of the exogenous
agent that has reached a specific location at a specific time, and in
special cases, to estimate the rate of a biochemical process, such as
enzymatic cleavage.

Today, there are a considerable number of publications describ-
ing target specific compounds tested in in vitro assays that have the
potential for in vivo imaging; yet only few studies are reported with
living organism.

Antibody-based imaging agents constitute a large majority of
tumor specific probes (Rudin, 2005b). The tyrosine kinase recep-
tor Her-2/neu, for example, is a protein over-expressed on the
surface of breast cancer cells, and other human tumors (Slamon
et al., 1989). Approximately 30% of mammary carcinomas express
this epithelial growth factor receptor. High expression levels cor-
respond to poor prognosis; hence, Her-2/neu may constitute an
attractive target for immunotherapeutic agents, such as human-
ized monoclonal antibody trastuzumab (Herceptin). By labeling
trastuzumab with a superparamagnetic iron-oxide nanoparticles
(SPIO) a specific agent able to target cancer cells that overex-
pressed Her-2/neu could be designed though in vivo validation
of the approach is still lacking (Smith, 2010; Artemov et al.,
2003).
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Tissue homeostasis is normally achieved by a tight regulation
of proliferation, differentiation, and apoptosis. Apoptosis, or pro-
grammed cells death, is downregulated in cancer cells. A general
therapeutic strategy may be therefore to induce apoptosis. Devel-
opment of such treatments would benefit from imaging assays
that specifically target molecular players involved in apoptotic sig-
naling or cell surface marker that are specifically expressed on
the surface of cells undergoing programmed cell death (Rudin,
2005b). For example, cells undergoing apoptosis redistribute
aminophospholipids, primarily phosphatidylserine, to the outer
layer of the cell membrane. Phagocytic cells, thus constituting
a signal for cell removal, recognize exposed phosphatidylserines.
Phosphatidylserine is recognized by peptidic molecules such as
annexin-V and synaptogamin I. The latter has been labeled with
SPIO nanoparticles and used in vivo as apoptosis-specific contrast
agent. The nanoparticulate probe can leave the vascular bed in
tumors since tumor vessels are immature and leaky, hence uptake
is likely to be non-specific. Nevertheless it could be shown that
the target specific probe was better retained in subcutaneously
implanted tumors in mice while non-targeted SPIO nanoparticles
were rapidly cleared from the tumor site (Zhao et al., 2001).

Molecular imaging can also be used as a complementary tool
to monitor angiogenesis. In particular, it offers the possibil-
ity to differentiate angiogenic vessels from normal blood vessels
by detecting differences in the expression of molecular mark-
ers (McDonald and Choyke, 2003). In the angiogenic cascade,
different cell surface receptors, including the αvβ3-integrin, are
strongly expressed on activated endothelial cells. Mulder et al.
(2005) have described the possibility to imaging angiogenesis
using αvβ3-specific bimodal lipidic nanoparticle both with MRI
and fluorescence imaging.

The motivation for using MRI-based contrast agents, instead
of other imaging modalities, is the possibility to combine together
both the target-specific information with the high anatomical
definition. Moreover, MRI is able to provide three-dimensional
imaging which enables the possibility for an accurate quantifica-
tion of the probe concentration, which otherwise is not be possible
in the case of two-dimensional techniques as SPECT or optical
imaging. The drawback of MRI approach is the low sensitivity, i.e.,
high local concentration of the reporter construct is required to
induce detectable changes in the relaxation rates (Rudin, 2005b).
In addition, MRI reporter molecules are in general bulky and
may not easily reach the target site. However, for tumors this
might be less an issue due to the leaky vasculature. Today, none
of the MRI based target-specific probes has been approved for
clinical use.

MATHEMATICAL TOOLS FOR HANDLING
MULTI-PARAMETRIC IMAGING DATA:
A CLASSIFICATION PROBLEM
In each three-dimensional image dataset the object (tumor) is
characterized by a set of voxels, with parameter values (features)
that are characteristic for the respective measurement attributed
to every voxel. Examples are values for the relaxation time, appar-
ent water diffusion coefficient, or vascular permeability. Assuming
that the dataset are properly coregistered all voxels vx,y,z are char-
acterized by a vector, whose elements are the parameter values fi

allocated to the various measurements, i.e.,

vx,y,z;t = vx,y,z;t (f1, f2, ..., fN ).

The dimension of this data set is D×T×N, where D is the
number of voxels, T the number of time points measured (T = 1
for static measurements) and N the number of features evaluated.

In mathematical terms these set of voxels (three-dimensional
maps) form a dataset that contains all the information collected
for the tumor. Although all the data are stored in a simple structure
as a basic database, it is not easy to extract and quantify informa-
tion from it. Usually, radiologists consider just few features and
mentally divide the tumor in macro-regions, for which individual
parameters are analyzed. Obviously this type of analysis discards
many the majority of features contained in the dataset and the
validity of conclusion critically depends on the experience of the
reader. There is no way for human brain to systematically process
all the available information voxel by voxel.

The three-dimensional maps contain all measured information
on the object reflecting both morphological aspects and physio-
logical behavior. Information regarding the heterogeneity of the
object is intrinsically contained. Taking into account this huge
amount of information requires mathematical tools that allow a
data reduction in a robust manner. One output of such tools is to
classify each voxel of the tumor according to the measured features,
and finally generate a map of the different tissues types present in
the tumor. Several mathematical methods, which come from the
field of information theory, have been developed for this purpose.
A schematic workflow of the quantification process is shown in
Figure 8.

EXTRACTING OBJECT FEATURES FOR CLASSIFICATION
As mentioned before, all the information are stored in a dataset,
where the features are any kind of map (measured by MRI,
Figure 9) and the subject are the individual voxels voxel of the
three-dimensional matrix.

The first step of the classification process consists of the selec-
tion of useful features from the dataset. This process called feature
selection aims at taking into account only features that contain sig-
nificant and non-redundant information in order to minimize the
confusion intrinsic noise of the data (Umbaugh, 2011). For this
purpose different approaches, that describe the variability of the
dataset, can be pursued. The traditional way, which comprises a
set of techniques that perform a simultaneous statistical analysis of
all features, is called multivariate analysis. Such techniques include
multivariate analysis of variance (MANOVA), principal compo-
nent analysis (PCA), factor analysis, multidimensional scaling, and
correspondence analysis. All of them have as goal to determine a
new set of synthetic variables that best represent the samples in a
statistical interval.

Another approach consist of considering all the features and
assign them a ranking score according to their discriminant
power and accuracy, and then simply select the top ranked ones
as final features used for the classification (Press et al., 2007;
Zacharaki et al., 2009). These methods can be divided in three
main categories: filter algorithm, wrapper, and embedded meth-
ods. For a comprehensive mathematical description of these
methods the reader is referred to (Guyon and Elisseff, 2003).
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FIGURE 8 | Scheme for potential tumor phenotypic characterization by mean of MRI.

FIGURE 9 | Schematic workflow of the quantification process.

Another important issue is the quantifications of the charac-
teristics inherent in 3D feature maps. In other words, specific
estimators that take into account the heterogeneity and the
complexity of the object (tumor) are determined (Dominietto
et al., 2012). Two types of estimators are commonly used: shape
and texture estimators. The first group describes the geome-
try of the object (whole tumor or specific region), and extracts
shape descriptors such as volume, surface area, compactness and

signature (Rangayyan and Nguyen, 2007; Rangayyan et al., 2010).
Texture estimators are related with the contents of the object and
in particular to its texture by means of a set of estimators as fractal
dimension (Lopes and Betrouni, 2009), lacunarity (Plotnick et al.,
1996), Laws’measures (Rangayyan, 2005), and Haralick’s measures
(Haralick, 1979). Both shape and texture estimators also used in
the geometrical segmentation of anatomical structure (Rangayyan,
2005).
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CLASSIFICATION
For classification two common techniques are currently used:
pattern recognition and clustering technique (Umbaugh, 2010).

In general terms, for a given group of objects (i.e., different
kinds of tissue or different type of tumors), pattern recognition
algorithms aim at identifying the individual objects and assign
them the correct label. In order to perform this operation, the
algorithm has been “trained” previously with a dataset consisting
of known objects (training dataset) by means of which it learns
to recognize the objects from their features. This process is called
supervised machine learning (Bishop, 2006).

The clustering approach is different as it does not require previ-
ous knowledge on the objects. Briefly, for analyzing multiparamet-
ric static data each voxel represent a subject in a N .D-dimensional
space, where N is the number of features and D the number of vox-
els. Voxels that share similar properties will have similar features
values and therefore will form a group (or cluster) of points in the
N .D space. The objective of using the cluster algorithm is to iden-
tify the different groups of points (Theodoridis and Koutroumbas,
2006). The combination of features expressed by each group char-
acterizes its morphological, physiological, metabolic, or molecular
properties: it is therefore necessary, but not always straightfor-
ward, to translate the feature fingerprint into biomedically relevant
information.

For both approaches, the most critical point is feature selection
as subsequent tissue classification, e.g., differentiating tumor from
healthy tissue or classifying subregions within a tumor, critically
depends on the discriminative nature of the features.

Most of the studies to classify tumor tissues relate to brain
tumors. Brain, in fact, offers many advantages related with the
image acquisitions: easy positioning and fixation, absence of or
minimal physiological movements, availability of several anatom-
ical landmarks that renders co-registration rather straightforward
in case of multi-modalities acquisitions. Different approaches have
been described in the literature to classify and segment brain
tumors using texture analysis (Qurat-Ul-Ain et al., 2010), neu-
ral networks (Arizmendi et al., 2012), linear discriminant analysis
decision tree support vector machine (Zacharaki et al., 2009), and
clustering (Jagadeesan and Sivanandam, 2013). Similar studies
have been reported for breast tumor in order first to discrimi-
nate between malignant tumors and benign microcalcifications
(Rangayyan and Nguyen, 2007; Mu et al., 2008), and second to
classify tumor lesions (Zheng et al., 2007; Tang et al., 2009; Glasser
et al., 2013).

IN VIVO HISTOLOGY USING MRI/MULTIMODAL ANALYSIS:
POTENTIAL AND ISSUES
Multiple features have to be evaluated in order to comprehensively
characterize biological tissue. Histological analysis, the gold stan-
dard for such investigation, used morphological features as well
as specific molecular markers to unambiguously identify a spe-
cific tissue type. Yet, histology is based on tissue specimen, which
for diagnosis are typically obtained via biopsy. Standard biopsy
involves focal sampling of only small portions of tissue, and hence
carries the risk, that critical regions may be missed in particular
when sampling highly heterogeneous tissue such as tumors. The
possibility to acquire in vivo 3D multi-parametric information

on tissues, in our context tumors, in a non-invasive manner
might offer important benefits in management of cancer patients.
Compared to biopsy, imaging (MRI) based tissue characterization
allows analyzing the whole tumor yielding information over its
entire volume thereby avoiding the problem of sampling errors.
As the measurement is non-invasive, changes in tissue features can
be monitored longitudinally, which is highly relevant for prognosis
and for evaluating therapy response. The comprehensive nature of
tissue analysis provided by imaging supports histological analysis
by guiding biopsy sampling thereby minimizing the possibility of
sampling errors.

An important advantage of the in vivo measurement is the pos-
sibility to study physiological processes, which evidently cannot
be assessed ex vivo. Measurements of processes such as tumor
angiogenesis, perfusion, metabolism, or oxygen consumption pro-
vide essential information for determining the stage of the tumor.
Also it has been shown that such readouts may be early indicators
of therapy response, proceeding morphological changes. Simi-
lar to morphological features, tumor physiological and metabolic
parameters are highly heterogeneous, for example different tumor
stages may coexist in the same proliferative mass in glioma patients
(Zacharaki et al., 2009). Apart from spatial heterogeneity tumor
physiology and metabolism also fluctuate over time (Bonadonna
et al., 2007).

In vivo tissue characterization based on imaging has emerged
as important tool for the detection and characterization of solid
tumors including metastases (Mia, 2011). Today, MRI together
with PET (Positron Emission Tomography), SPECT (Single Pho-
ton Emission Computer Tomography), CT (Computer Tomog-
raphy), and US (Ultra Sound) provide a platform that provides
multiparametric information characterizing tumor morphology,
physiology, metabolism as well as cellular and molecular proper-
ties. These techniques are currently used in the clinic to gain as
comprehensive information as possible before deciding the best
treatment for the patient. Nevertheless, the evaluation of this huge
amount of data is usually qualitative and relies on skills of the radi-
ologist. A standardize quantitative evaluation, which gives robust
and reproducible results is at the moment missing.

At present there is a huge diversity of imaging/MRI meth-
ods that are used in experimental animal studies that provide the
multiparametric information required for using the classification
tools. However, only a few are being used in the clinics, stan-
dard features derived from DCE, FLAIR, T1w, and T2w images
and used as qualitative indicators of tumor stage (Young, 2007).
More sophisticated techniques as DTI (Diffusion Tensor Imaging),
MRS together with machine learning infrastructure, can provide
complementary features that better characterize tumor physi-
ology and micro-environment behavior, which would enhance
the value of multiparametric analysis. It is important to intro-
duce such method in a standardized manner into radiological
practice.

Obviously MRI does not reach microscopic resolution; (Heyn
et al., 2005; Martin, 2011), for in vivo experiments, the detec-
tion limit is in the range between 100 and 500 cells (Heyn et al.,
2005; Muja and Bulte, 2009). This is relevant insofar, as final
diagnosis is based on the cellular (type and shape) and molec-
ular information (surface epitopes expressed by the cells) derived
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from histology. In order to reach this detail of information at the
macroscopic level sampled by MRI, target specific contrast agents
have to be used. We have seen, that such agents can be devel-
oped; yet there are substantial hurdles to overcome, before such
agents will make it to the clinics. Scientific hurdles mainly relate to
probe specificity and even more so probe delivery. MRI contrast
agents are bulky and in general do not cross tissue barriers (mem-
branes). Despite substantial efforts, this still constitute a major
problem. The second hurdle relates to economics: development
of such an agent is expensive. MRI probes are not adminis-
tered in tracer amounts, which requires full safety and toxicology
analysis. Multicenter clinical trials to demonstrate diagnostic rel-
evance have to be carried. The complexity of developing MRI
contrast agents to the market is reflected by the fact that only
a very small number of generic agents is currently available for
clinical use and it is unlikely that this is going to change in the
near future. Hence, MRI methods to be used in clinical setting
have to exploit endogenous contrast and rely on the contrast
agents currently available. Nevertheless, together with spectro-
scopic readouts this already constitutes a fair basis for tissue
characterization.

Multiparametric imaging based tumor characterization using
morphological, physiological, metabolic – and eventually also
cellular and molecular – features that can be monitored longitu-
dinally in individual patients might open a way to personalization
of the treatment. Today, for many tumor standard treatment
protocols that are nevertheless tuned to the specific situation
of each patient, are being pursued. This approach does not
permit to exploit all possibilities offered today for tumor treat-
ment. Highly specific drugs, new detailed reclassifications of
tumor diseases, genetic characterization of several tumors as
well as improvements in diagnostic technologies are dramatically
changing the landscape of oncology toward patient-specific per-
sonalized treatments (Tursz et al., 2011). On the other hand, given
the high genetic instability of tumors, it has been questioned
whether such approaches are in fact viable (Gillies et al., 2012).
Nevertheless, it is beyond doubt that the combined analysis of
multi-parametric readouts will improve the diagnostic accuracy,
which ultimately should translate into an improved management
of cancer patients
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