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Abstract

Successful reverse engineering of mutants that have been obtained by nontar-

geted strain improvement has long presented a major challenge in yeast bio-

technology. This paper reviews the use of genome-wide approaches for analysis

of Saccharomyces cerevisiae strains originating from evolutionary engineering or

random mutagenesis. On the basis of an evaluation of the strengths and weak-

nesses of different methods, we conclude that for the initial identification of

relevant genetic changes, whole genome sequencing is superior to other analyti-

cal techniques, such as transcriptome, metabolome, proteome, or array-based

genome analysis. Key advantages of this technique over gene expression analy-

sis include the independency of genome sequences on experimental context

and the possibility to directly and precisely reproduce the identified changes in

naive strains. The predictive value of genome-wide analysis of strains with

industrially relevant characteristics can be further improved by classical genetics

or simultaneous analysis of strains derived from parallel, independent strain

improvement lineages.

Introduction

Metabolic engineering, the targeted and knowledge-based

modification of cellular processes by genetic modification

with the aim to improve industrial performance (Bailey

et al., 1990; Nielsen, 2001), is a key driver for progress in

yeast biotechnology. Novel yeast-based processes for pro-

duction of a wide range of chemical compounds, ranging

from pharmaceuticals to bulk chemicals and biofuels, are

intensively investigated and increasingly find their way

toward industrial implementation (Nevoigt, 2008; Abbott

et al., 2009; Tsuruta et al., 2009; Sauer et al., 2010; Zhang

et al., 2011). Fifteen years after the first complete Saccha-

romyces cerevisiae genome sequence became available

(Goffeau et al., 1996), functional genome analysis, quanti-

tative physiology, and systems biology have advanced our

understanding of yeast metabolic networks to such an

extent that knowledge-based genetic intervention increas-

ingly yields the intended positive impacts on industrial

performance. Current developments in automated, high-

throughput strain construction and analysis (Wang et al.,

2009a; Anderson et al., 2010) and synthetic biology tech-

niques for rapid synthesis and manipulation of DNA

sequences (Gibson, 2011) further accelerate progress in

knowledge-based metabolic engineering.

Despite the growing number of successes in yeast meta-

bolic engineering, many cases remain in which the current

level of understanding is insufficient to achieve the quan-

tum leaps in performance demanded by industry. Knowl-

edge-based engineering of traits such as pathway kinetics,

cellular energetics, and robustness represent not only rele-

vant and intellectually stimulating, but also painstaking and

time-consuming challenges. Examples of such challenges

include the long-running attempts to engineer industrially

relevant aspects of yeast physiology such as glycolytic flux

(Kern et al., 2007) and tolerance to ethanol and acetic acid

(Mira et al., 2010; Stanley et al., 2010a, b). Consequently,

there is a growing awareness in academia and industry that

fast improvement of microbial strains requires integration

of targeted metabolic engineering with modifications that

do not a priori target specific genes (from here on referred

to as nontargeted approaches) (Lee et al., 2011).

Nontargeted approaches for strain improvement have

been a key driver in microbial biotechnology for over half
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a century. Even in the absence of detailed knowledge of

genetics or physiology of the producing strain, their effec-

tiveness is beyond dispute. The paradigm of such ‘classi-

cal’ strain development is the huge improvement, over a

period of 60 years, of penicillin production by the fila-

mentous fungus Penicillium chrysogenum (Nielsen, 1997;

van den Berg et al., 2008). However, nontargeted strain

improvement typically leads to a slow, incremental

increase in performance, especially in the later stages of

strain improvement. Moreover, its ‘black box’ character

precludes the rapid transfer of relevant traits among

strains or species. To address these limitations, it is essen-

tial to identify the genetic changes and mechanisms that

underlie the improved performance of strains generated

via nontargeted approaches.

In many technological disciplines, ranging from mili-

tary to medical engineering, the process of elucidating the

technological principles of a system via analysis and sub-

sequent reconstruction of its structure and function is

known as reverse engineering (Sutton, 1984; Rekoff,

1985). In a seminal paper by Bailey and co-workers

(Bailey et al., 1996), this concept was introduced to the

field of biotechnology as ‘inverse’ metabolic engineering.

However, to maintain consistency with other engineering

disciplines, ‘reverse’ metabolic engineering is used

throughout this mini-review.

In contrast to the conventional ‘forward’ metabolic

engineering cycle, which starts with a knowledge-based

design that is subsequently tested by construction and

analysis (Fig. 1), reverse metabolic engineering starts out

with (an) existing microbial strain(s) with improved per-

formance relative to (a) reference strain(s). High-per-

forming strains can be either isolated from nature,

obtained from culture collections, or created through

nontargeted strain improvement efforts. Such nontargeted

approaches for optimization of yeast strains include the

following: (i) random mutagenesis combined with high-

throughput selection, such as UV-C mutagenesis of the

xylose-fermenting yeast Scheffersomyces stipitis for

improved fermentation characteristics under anaerobic

conditions (Hughes et al., 2011); (ii) laboratory evolution

(‘evolutionary engineering’) under cultivation regimes

that have been especially designed to convey a selective

advantage to better performing strains (reviewed by Con-

rad et al., 2011). An example of this approach is the

improvement of the fermentation kinetics of genetically

engineered S. cerevisiae strains during growth on glucose-

xylose-arabinose mixtures via evolutionary engineering

(Wisselink et al., 2009); and (iii) the introduction of gene

libraries, sometimes after mutagenizing the expressed

genes. This has for instance been applied to transcription

factor engineering of S. cerevisiae for improved ethanol

tolerance (Alper et al., 2006).

The next step of the reverse metabolic engineering cycle

is the elucidation of the genetic basis for improved per-

formance (Fig. 1). This elucidation should be rigorous

and move beyond merely establishing genotype–pheno-
type correlations. Instead, it should be unambiguously

Fig. 1. The ‘forward’ metabolic engineering and ‘reverse’ metabolic engineering cycles and their interaction. In forward metabolic engineering,

analysis of strains constructed based on rational design often results in scientific questions that need to be addressed by further analysis and

consultation of the rapidly expanding knowledge on microbial metabolism and its regulation. In reverse metabolic engineering, generation and

analysis of biodiversity – obviously, with special attention for strains that show improved performance – contributes to accelerated strain

improvement and knowledge development (After Nielsen, 2001; Bailey et al., 1996; Bro & Nielsen, 2004).
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demonstrated that reintroduction of a defined set of

genetic changes can wholly or partially reconstruct the

improved performance. Reverse metabolic engineering

has the added benefit that it enables the extraction of

productive mutations, thereby avoiding the accumulation

of nonproductive mutations that may occur in prolonged

nontargeted strain improvement programmes.

Integration of the ‘forward’ and reverse metabolic engi-

neering cycles can be accomplished in several ways. Once

the molecular basis for improved performance, preferably

including understanding of the underlying biochemical

mechanism, has been elucidated by a reverse engineering

approach, this knowledge can be implemented in ‘for-

ward’ metabolic engineering of the same strain lineage or

of other strains (Fig. 1). For example, although not triv-

ial, the identified relevant mechanisms can be investigated

for their potential in robust industrial strains. Addition-

ally, secondary effects of mutations that not only give a

selective benefit, but also have a much broader impact,

such as mutations in regulatory networks, can be pre-

vented by only engineering the relevant trait. Strains con-

structed via ‘forward’ metabolic engineering can, after

additional nontargeted modification of their genomes, be

re-entered into the reverse metabolic engineering cycle.

This can, for example, accelerate the evaluation of opti-

mal gene sequences or pathway configurations (Fig. 1).

The unequivocal and fast identification of the genetic

basis of improved performance remains the key challenge

in reverse metabolic engineering of yeasts. In the 15 years

since the first S. cerevisiae genome sequence was pub-

lished, the toolbox for integral analysis of yeasts at differ-

ent information levels (genome, proteome and

metabolome) has rapidly expanded. In addition, the

decreasing costs of several key analytical technologies are

making them increasingly accessible for application in

industrial and academic yeast research. This fast progress

in tool development brings about a new challenge: How

to make informed choices from a wide range of expensive

analytical approaches? The goal of the present paper is not

to exhaustively review the literature on reverse metabolic

engineering of yeast. Instead, by discussing published

examples on reverse metabolic engineering of yeast, we

will identify advantages and limitations of the genome-

wide analytical approaches that are currently available.

Emphasis will be on analysis of yeast strains generated in

‘linear’ strain improvement programmes, for example, via

classical mutagenesis or evolutionary engineering, rather

than on the systematic exploration of yeast biodiversity.

Genome expression analysis

Until recently, the costs of whole genome sequencing pre-

cluded its use as a routine laboratory technique in reverse

metabolic engineering. Therefore, analysis of the molecu-

lar basis of industrially relevant traits has, for the past

decade, strongly depended on genome expression studies.

The goal of genome expression analysis in the context of

reverse metabolic engineering is to correlate expression

levels of individual genes with an industrially relevant

performance parameter, such as productivity, yield, or

robustness. These correlations form the basis for identifi-

cation of lead genes and/or cellular processes, whose con-

tribution to the phenotype of high-performing strains

should subsequently be assessed by targeted genetic modi-

fication. As the coverage of state-of-the art proteomics

platforms is still incomplete, transcriptome analysis is

currently the only widely available means of truly gen-

ome-wide analysis of gene expression in yeast. We will

therefore mainly focus our evaluation of genome expres-

sion for reverse metabolic engineering on transcriptome

analysis. The potential added value of a few examples of

proteomics and metabolomics in yeast reverse metabolic

engineering is briefly discussed in separate paragraphs.

Experimental design for genome expression

analysis

DNA microarray analyses (DeRisi, 1997 Daran-Lapujade

et al., 2009) and RNA sequencing (Wang et al., 2009b;

Ozsolak & Milos, 2011) enable the rapid, quantitative,

and inclusive correlation of the yeast transcriptome to

environmental or genetic contexts. Furthermore, powerful

algorithms enable analysis of the overrepresentation of

functional categories (Kresnowati et al., 2006; Huang

et al., 2009a, b) and transcription factor-binding

sequences (Harbison et al., 2004; MacIsaac et al., 2006)

that show a transcriptional up- or downregulation in a

given context. Additionally, transcriptome data can be

correlated with a vast body of information on the tran-

scriptional responses of S. cerevisiae to a range of envi-

ronmental parameters and genetic interventions. In the

interpretation of transcriptome data, it is important to

consider the context dependency of transcriptional regula-

tion in yeast (Knijnenburg et al., 2008).

Cultivation conditions and specific growth rate have a

substantial impact on yeast genome expression, which has

been especially well documented for transcriptome analy-

sis (Boer et al., 2003; Tai et al., 2005; Regenberg et al.,

2006; Abbott et al., 2007; Castrillo et al., 2007; De Nicola

et al., 2007; Fazio et al., 2008; Daran-Lapujade et al.,

2009). This has important implications for the use of

transcriptome data in reverse metabolic engineering.

When experimental conditions and/or specific growth

rates differ for the strains that are compared, this may

generate nonproductive leads, that is, gene expression dif-

ferences that do not reflect a positive contribution to the
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industrially relevant phenotype under study. Controlled

cultivation in chemostat cultures avoids the impact of the

changing environmental conditions that occur in batch

cultivation, and the fixed dilution rate eliminates the

impact of specific growth rate on transcriptome analyses

of different yeast strains and environmental conditions

(Daran-Lapujade et al., 2009).

An additional experimental design challenge, which is

specifically associated with reverse metabolic engineering,

arises when mutagenesis or laboratory evolution leads to

‘gain of function’ phenotypes. Ideally, transcriptome anal-

ysis should be performed under conditions where the

trait of interest is expressed, but these do not always

allow growth of the reference strain. For example, after

laboratory evolution of strains for anaerobic growth on

pentose sugars or for strongly induced ethanol or acetic

acid tolerance (Sonderegger & Sauer, 2003; Stanley et al.,

2010a; Wisselink et al., 2010; Wright et al., 2011), the

reference strain cannot be grown under the conditions in

which the selected phenotype becomes apparent. Conse-

quently, the use of identical cultivation conditions that

are permissive for both strains can only yield genes whose

transcriptional up- or downregulation in the evolved

strain does not depend on the conditions that led to its

selection. An example of such ‘constitutive’ expression is

the upregulation of transaldolase and transketolase-encod-

ing genes in yeast strains selected for growth on xylose or

arabinose (Wahlbom et al., 2003; Wisselink et al., 2010),

which could already be observed in a comparison of glu-

cose-grown cultures of the evolved and parental strains.

Additional, important transcriptional changes may only

be observable under conditions that are nonpermissive

for the reference strain. For example, in an evolved L-

arabinose-fermenting strain grown on glucose, transcript

levels of the GAL regulon were the same as those in the

nonevolved strain, presumably as a result of glucose

repression (Wisselink et al., 2010). However, very high

transcript levels of this regulon were observed during

growth of the evolved strain on L-arabinose and, subse-

quently, linked to the deregulation of the GAL2-encoded

transporter, which is responsible for L-arabinose transport

in engineered S. cerevisiae strains (Becker & Boles, 2003;

Wisselink et al., 2010). Similarly, S. cerevisiae strains

whose acetic acid tolerance had been strongly increased

by evolutionary engineering required induction by acetic

acid to express the acquired hyper tolerance (Wright

et al., 2011), thereby precluding a meaningful analysis of

gene expression in cultures grown without acetic acid. In

such cases, a three-way comparison can be applied by

comparing genome expression of both the evolved and

reference strains under conditions that are permissive for

the reference strain with the evolved strain under the rele-

vant condition (Wahlbom et al., 2003; van Maris et al.,

2007; Wisselink et al., 2010). However, the inevitable con-

sequence of such a comparison is that nonproductive

leads are likely to be generated as a result of the different

cultivation conditions.

Interpretation of transcriptome data: sources

of nonproductive leads

Studies in which analysis of genome-wide transcriptional

responses were followed up by systematic analysis of the

fitness of null mutants suggest that, generally, only a

small fraction of transcriptionally responsive genes posi-

tively contribute to fitness under the conditions to which

they showed a transcriptional response (Winzeler et al.,

1999b; Birrell et al., 2002; Giaever et al., 2002, 2004; Tai

et al., 2007). Also in transcriptome-based reverse meta-

bolic engineering, the number of responsive genes usually

far exceeds the number of productive leads, even when

cultivation conditions are rigorously controlled and stan-

dardized. Several causes for nonproductive leads will be

discussed below.

Nonproductive leads can occur when productive muta-

tions directly or indirectly affect expression of other

genes. A direct influence occurs, for example, when the

productive mutation affects the in vivo activity of a tran-

scriptional regulator that, in addition to genes that posi-

tively affect an industrially relevant phenotype, controls

the expression of genes that do not. An example is pro-

vided by a study on a S. cerevisiae strain in which the

sucrose-hydrolyzing enzyme invertase was relocated to the

cytosol to improve ethanol yields on sucrose. Prolonged

cultivation in sucrose-limited chemostat cultures led to a

drastic improvement of the affinity for sucrose. Analysis

of two independently evolved strains revealed increased

transcript levels of many genes involved in maltose

metabolism, whereas the improved affinity for sucrose

could be entirely attributed to upregulation of a single

maltose transporter gene (MAL11; Basso et al., 2011).

Although the specific mutation responsible for the dereg-

ulation of MAL genes in the evolved strain was not iden-

tified, it seems plausible that it affected a transcriptional

regulator. Similarly, the contribution of the very high

expression of the entire GAL regulon in an S. cerevisiae

strain evolved for fast L-arabinose fermentation (Wisselink

et al., 2010) could be entirely explained from the essential

role of Gal2p in L-arabinose transport (see above). The

high expression levels of other GAL genes in the evolved

L-arabinose-fermenting strain were most probably a side

effect of a mutation in a regulatory protein whose pri-

mary evolutionary significance was the deregulation of

GAL2. Although, in these cases, engineering of the regula-

tor may reproduce the selected phenotype, identification

and targeted engineering of the responsible reaction or
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transport step may be desirable, for example, to minimize

protein burden (Snoep et al., 1995).

Another cause for nonproductive leads from transcrip-

tome analysis is the deletion or amplification of multi-

gene DNA fragments. Even in cases where the

evolutionary distance between strains is small, as in labo-

ratory evolution experiments with S. cerevisiae, which

generally do not involve more than a few hundred gener-

ations of selective growth, deletion or amplification of

multigene DNA fragments is frequently observed (Brown

et al., 1998; Dunham et al., 2002; Jansen et al., 2005;

Wisselink et al., 2010; Basso et al., 2011). In such cases,

only a single gene on an amplified or deleted fragment

may contribute to the phenotype of interest. By plotting

transcript levels on a physical map of the yeast genome,

amplified or deleted regions larger than a couple of genes

stand out from the experimental background noise and

can be identified directly. For example, in a transcriptome

analysis of an S. cerevisiae strain evolved for fast anaero-

bic fermentation of L-arabinose, a 250-kb fragment of

chromosome VII appeared to be duplicated (Wisselink

et al., 2010; Fig. 2). One of the genes on this fragment

(YGR043C) encodes a transaldolase isoenzyme and was

subsequently shown to contribute to faster arabinose fer-

mentation rates. Although the impact of other genes on

the duplicated fragment was not studied, it seems plausi-

ble that their increased expression levels reflect ‘collateral

damage’ of the duplication event that led to increased

expression level of YGR043C.

Genetic differences that are related to the parameter of

interest can sometimes be enriched by comparison of dif-

ferent independent strains that share the same industrially

relevant phenotype. Of course, this does not provide leads

if the evolved phenotype is caused by different mecha-

nisms in the independent evolutions. A successful example

of this approach is an early transcriptome-based reverse

metabolic engineering study on strains with an evolved

freeze resistance (Tanghe et al., 2002). A transcriptome

comparison of three freeze-resistant strains with a freeze-

sensitive reference strain enabled the demonstration that

overexpression of a specific allele of the aquaporin-encod-

ing AQY2 gene led to increased freeze resistance in a naive

strain. Recently, transcriptomes of three independently

evolved S. cerevisiae strains with increased rates of galac-

tose metabolism were compared with those of the non-

evolved ancestor strain (Hong et al., 2011). Expression of

genes controlled by the RAS/PKA pathway was found to

be affected in all three evolved strains. When a specific

point mutation in RAS2 was introduced in the ancestor

strain, this led to a significant increase in the specific

growth rate on galactose (Hong et al., 2011).

In evolutionary engineering and in classical mutagene-

sis and selection, the relevant yeast strains generally share

a common genetic background. Interpretation of tran-

scriptome data becomes progressively more complicated

when the genetic background of strains becomes more

diverse. In addition to technical issues (e.g. the design of

microarrays), the different ‘wiring’ of transcriptional reg-

ulation networks complicates interpretation of transcrip-

tome data. However, even when different strain

backgrounds are compared, excellent results are occasion-

ally obtained when analysis is focused on subsets of genes

that have been selected based on prior knowledge. A suc-

cessful example is a transcriptome-based study on the

molecular basis of tolerance to hydroxymethylfurfural

(HMF), an important inhibitor of yeast fermentation in

lignocellulosic hydrolysates (Petersson et al., 2006). On

the basis of the knowledge that reduction of HMF to the

corresponding alcohol is a key detoxification mechanism,

a microarray-based transcriptome analysis of two nonre-

lated S. cerevisiae strains with different degrees of HMF

tolerance focused on oxido-reductase-encoding genes. A

set of 15 such genes were expressed at a higher level in

Fig. 2. Transcriptome comparison of a genetically engineered

Saccharomyces cerevisiae strain and an arabinose-fermenting

derivative strain obtained by laboratory evolution. The dotted lines

indicate a twofold difference. The circled dots represent genes

located between positions 543 555 and 807 659 with an at least

twofold increased transcript level in the evolved strain, indicating a

duplication of a 250-kb region on chromosome VII. The increased

expression level of YGR043C (diamond), encoding a transaldolase,

was subsequently shown to contribute to enhanced arabinose

fermentation rates in the evolved strain (reproduced with permission

from Wisselink et al., 2010).
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the tolerant strain. Individual overexpression of these

genes in an HMF-sensitive laboratory strain led to the

identification of Adh6p as a major HMF reductase, whose

overexpression led to increased rates of in vivo HMF

reduction (Petersson et al., 2006). Similarly, a recent

example is the identification of ILV6 as a target to reduce

diacetyl formation in lager brewers’ yeast through a com-

bination of microarray-based comparative genome

hybridization and a transcriptome analysis (Duong et al.,

2011).

The potential of proteome analysis in reverse

metabolic engineering

A large and growing body of evidence shows that in S. ce-

revisiae, the correlation between transcript and protein

levels is not perfect (de Groot et al., 2007; Wu et al.,

2008; Rossignol et al., 2009; Olivares-Hernández et al.,

2010; Rossouw et al., 2010), which indicates that, in

many cases, regulation occurs at the level of translation

and/or protein turnover. Consequently, analysis of gene

expression at the level of transcription may overlook

important changes, which might be detected by a thor-

ough proteome analysis (Kolkman et al., 2005; Beck

et al., 2011). However, we are aware of only very few

studies in which proteome analysis has been performed in

a reverse metabolic engineering context. A relevant study

is a proteome analysis of a S. cerevisiae strain evolved for

improved fermentation of xylose (Karhumaa et al., 2009).

Because the same strain and its parental strain had previ-

ously been studied at the transcriptome level (Wahlbom

et al., 2003), this investigation enabled a clear view on

the additional information that can be gained from prote-

ome analysis. Strikingly, the leads generated from the

transcriptome and proteome comparisons showed very

little correlation. Firstly, major increases were observed in

the protein levels of the heterologous xylose reductase

and xylitol dehydrogenase that were introduced into the

ancestor strain via targeted genetic modification. No

information on expression levels of their structural genes

was obtained in the earlier transcriptome analysis, because

they were not represented on the commercial S. cerevisiae

microarrays. Secondly, six- to eightfold changes in the

levels of several proteins – some of which were involved

in key pathways of sugar metabolism – were not accom-

panied by significant changes in the corresponding

mRNA (Karhumaa et al., 2009). This study reinforces the

warning that, especially for central metabolic pathways,

transcript levels cannot be considered as reliable indica-

tors of either in vivo metabolic activity or protein levels

(Daran-Lapujade et al., 2009). Clearly, proteomics analy-

sis has high potential for use in reverse metabolic engi-

neering, but requires further developments, such as

increased coverage of the proteome and low-labor, high-

throughput methodologies.

Metabolite analysis to support lead generation

Quantitative measurements of intracellular metabolite lev-

els can contribute to the identification of pathways whose

capacity controls the rate of substrate consumption or

product formation. Even though developments in (intra-

cellular) metabolite analysis progress rapidly (Roessner &

Bowne, 2009; Christen & Sauer, 2011), there are currently

no methods available that enable the complete and accu-

rate analysis of the yeast metabolome, and interpretation

of intracellular metabolite data is complicated by the met-

abolic compartmentation of yeast cells. Moreover, metab-

olite analysis shares the challenges in experimental design

that are inherent to all gene expression studies, such as

context dependency or defining a reference situation for

‘gain of function’ phenotypes. Additionally, changes at

the metabolite level alone are never sufficient to identify

the underlying molecular mechanism. These limitations

notwithstanding, in some studies metabolite analysis suc-

cessfully resulted in the generation of leads for reverse

metabolic engineering.

In genetically engineered strains of S. cerevisiae that

were evolved for faster metabolism of xylose, analysis of

intracellular metabolite levels indicated that the capacity

of the nonoxidative pentose phosphate pathway is a key

factor in engineering of pentose-fermenting strains (Zaldi-

var et al., 2002; Pitkänen et al., 2005). This indication is

in line with metabolic engineering studies, which showed

that overexpression of key enzymes of the pentose phos-

phate pathway is indeed essential to achieve high rates of

pentose fermentation in S. cerevisiae (Hahn-Hägerdal

et al., 2007; van Maris et al., 2007). However, as the

metabolite studies cited above were not linked to tran-

scriptome analysis or genome sequencing, improved per-

formance of the evolved strains could not be linked to

mutations or altered expression of specific genes.

A recent study on S. cerevisiae strains evolved for faster

growth on galactose integrated different analytical

approaches (Hong et al., 2011). Decreased intracellular

concentrations of glucose-1-phosphate and galactose-1-

phosphate, key metabolites of the Leloir pathway for

galactose fermentation, coincided with an increased

expression of PGM2, which encodes phosphoglucomutase.

Identification of PGM2 as a reverse engineering target

was validated by previous work, which showed that its

overexpression leads to increased rates of galactose

metabolism in S. cerevisiae (Bro et al., 2005). In this case,

metabolite analyses basically led to the confirmation of

targets that would also have been identified by transcrip-

tome analysis.
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One of the major challenges in intracellular metabolite

analysis is to assess whether altered metabolite concentra-

tions are cause or consequence of an increased flux

through a pathway. Integration of metabolite data with,

for example, gene expression studies and a thermody-

namic analysis can increase their predictive value for

reverse metabolic engineering. For example, Wisselink

et al. (2010) analyzed an engineered S. cerevisiae strain

that was evolved for fast fermentation of L-arabinose via

integrated analysis of the transcriptome and intracellular

concentrations of intermediates of central carbon metabo-

lism. A thermodynamic analysis based on measured intra-

cellular metabolite concentrations of glycolysis and the

pentose phosphate pathway indicated that the driving

force for the transaldolase and transketolase reactions was

much higher in arabinose-grown cultures of the evolved

strain than in glucose-grown cultures of the evolved and

parental strains. This suggested a limiting capacity of

these two reactions. The two major genes for transaldo-

lase and transketolase (TAL1 and TKL1, respectively) were

already strongly overexpressed in the evolved strain owing

to previous targeted metabolic engineering (Wisselink

et al., 2007). However, transcriptome analysis showed an

increased expression in the evolved strain of two genes

encoding ‘minor’ isoenzymes of transaldolase (YGR043C,

Fig. 2) and transketolase (TKL2). Subsequent knockout

studies confirmed the involvement of these genes in the

improved arabinose fermentation kinetics of the evolved

strain (Wisselink et al., 2010). Although these genes

might also have been identified as targets for reverse engi-

neering based on a transcriptome analysis only, their

expression level was low relative to those of the ‘major’

TAL1 and TKL1 genes (Wisselink et al., 2010). In the

examples discussed above, metabolite analysis led to

improved understanding of the impact of various muta-

tions on the biochemistry. Moreover, metabolite analysis

provided additional, strong incentives to prioritize muta-

tions for follow-up studies.

Analysis of gene and genome sequences

In contrast to gene expression data, genome sequences of

genetically homogeneous (‘pure’) cultures are context

independent and offer a direct view on molecular changes

at the DNA level. Furthermore, whereas a change in a

single transcript, protein, or metabolite often has a drastic

impact on the complete transcriptome, proteome, or

metabolome, individual mutations will generally have

little impact on the likelihood of mutations elsewhere on

the genome. One notable exception to this are mutator

phenotypes (Thompson et al., 2006; Raynes et al., 2011),

in which a genetic change in one gene leads to an

increased mutation frequency elsewhere on the genome

and which may well be enriched for in classical strain

improvement and evolutionary engineering.

Classical methods, such as genomic libraries and trans-

poson mutagenesis, have been instrumental in identifying

genotype–phenotype relations (Ross-Macdonald et al.,

1999; de Jesus Ferreira et al., 2001; Jin et al., 2005; Ni

et al., 2007; Hong et al., 2010). However, these tech-

niques are often laboreous and can only identify domi-

nant mutations. DNA sequencing is a powerful

alternative, but the associated costs and the large size of

the yeast genome in comparison with prokaryotes have

long been prohibitive for its routine use in reverse meta-

bolic engineering studies. Although the number of

sequence- or hybridization-based reverse metabolic engi-

neering studies with yeast is small, interesting insights

into the potential of a sequence-based approach for the

identification of reverse engineering targets that these

studies provide is discussed below.

(Re)sequencing of selected genes or plasmids

When available knowledge, models, flux analysis, or

expression studies strongly point toward a certain gene or

sequence, partial sequencing can sometimes economize

the discovery of relevant mutations. This is exemplified

by a recent study on the introduction of a heterologous

phospho-enol-pyruvate carboxykinase (PCK) into S. cere-

visiae as an alternative, ATP-efficient C3?C4 carboxylat-

ing pathway. Laboratory evolution was required to enable

the heterologous PCK to functionally replace the S. cere-

visiae pyruvate carboxylases. Based on a physiological

analysis, it was hypothesized that the high activities of

pyruvate kinase in S. cerevisiae might compete for phos-

pho-enol-pyruvate with the heterologous PCK. Rese-

quencing of the PYK1 gene in the evolved strain revealed

a point mutation, whose introduction in the nonevolved

strain led to a reduced pyruvate kinase activity and

enabled growth via the heterologous pathway (Zelle et al.,

2010).

When heterologous enzymes or pathways are expressed

from episomal vectors, it is straightforward to first estab-

lish, by plasmid curing and plasmid reintroduction into a

naive strain, whether a mutation is chromosomal or plas-

mid borne. In the latter case, sequencing of the plasmid

can be a fast, cost-effective alternative to whole genome

analysis. In a recent study, a pyruvate carboxylase–nega-
tive mutant of S. cerevisiae, expressing an Escherichia coli

malic enzyme gene, was evolved for growth on glucose as

the sole carbon source. As in the previous example, the

goal of this study was to explore energy-efficient pathways

for production of C4-dicarboxylic acids (Zelle et al.,

2011). After establishing that, in two independent

mutants, the relevant mutations were plasmid borne, two
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different point mutations were identified in the E. coli

gene. These were subsequently shown to drastically affect

their redox cofactor preference, thereby enabling them to

function in the carboxylating direction and to replace the

yeast pyruvate carboxylase (Zelle et al., 2011). Scientific

curiosity, time-to-results, and the disproportionality of

the cost per base pair of sequencing specific genes or

plasmids vs. whole genome analyses in the end determine

the choice between these techniques.

Hybridization-based microarray genome

analysis

Comparative genome hybridization and oligonucleotide

microarrays have proven to be a powerful tool in the dis-

covery of variations between yeast strains (Winzeler et al.,

1999a; Daran-Lapujade et al., 2003; Gresham et al., 2006;

Schacherer et al., 2007, 2009), ranging from single-nucleo-

tide polymorphisms to structural variations (Dunham et al.,

2002; Gresham et al., 2010). DNA hybridization experi-

ments assay the presence of complementary DNA that is

present in a sample, usually on a DNA array. All array

types, from BAC arrays to tiling arrays, can be used to

detect structural variations between the sample and the

reference on the chip. The density of DNA probes on the

array determines the resolution of the analysis, with rese-

quencing and tiling arrays having the ability to discover

single-nucleotide variations (SNVs) (reviewed by Gresham

et al., 2008a). Array-based genotyping has long had the

advantage over whole genome resequencing that it is fas-

ter. Moreover, especially in dynamic experiments and in

large comparative studies, the lower costs of array-based

techniques provided an advantage (reviewed by Gresham

et al., 2008a; but see next paragraph). However, these

hybridization-based techniques have the inherent disad-

vantage that in quality as well as in quantity, they only

allow a comparison with sequences that are represented

on the microarray. Therefore, when used to analyze

strains resulting from mutagenesis or evolutionary engi-

neering, arrays need to be representative for the ancestor

strains used in strain improvement. Additionally, while

some types of microarray allow for the accurate mapping

of the position of SNVs, determination of the exact iden-

tity of the sequence variation requires the use of either

resequencing arrays or resequencing (see review Gresham

et al., 2008a).

Whole genome (re)sequencing of yeast strains

for reverse metabolic engineering

The 1000-dollar genome (Mardis, 2006), an iconic target

in human genomics, is rapidly becoming a reality for S.

cerevisiae. Currently (September 2011), the costs for cus-

tom resequencing of a 12-Mb genome with short-read

paired-end technology at 40+-fold coverage is about €850

(E. Zeinstra, B., Leiden, the Netherlands; personal com-

munication). In principle, (re)sequencing of S. cerevisiae

strains that have been obtained via evolutionary engineer-

ing or mutagenesis offers huge opportunities for reverse

engineering.

The advantage of whole genome resequencing over

array-based techniques with respect to the identification

of SNVs was indicated by the discovery of additional

mutations of yeast strains (Araya et al., 2010; Kvitek &

Sherlock, 2011) that had previously been analyzed by til-

ing array-based genotyping (Gresham et al., 2008b; Kao

& Sherlock, 2008). On the other hand, identification of

structural variation with short next-generation sequence

reads is challenging with current alignment techniques,

but is likely to be solved with further technology

improvements (reviewed by Alkan et al., 2011). For the

reliable and comprehensive detection of relevant muta-

tions, including structural rearrangements such as indels

(insertions and deletions), inversions and duplications, it

is not always sufficient to align and compare sequence

data of a strain of interest to a reference genome, such as

the first published S. cerevisiae genome (strain S288C,

Goffeau et al., 1996).

To gain the full benefit of whole genome or whole

transcriptome sequencing, it is important to have access

to a well assembled and annotated genome sequence of

the reference strain that is used as the ancestor in muta-

genesis or evolutionary engineering experiments.

Although new algorithms enable the de novo assembly of

entire S. cerevisiae genomes from short-read sequence

information only (see e.g. Nijkamp et al., 2010), reliable

‘gold standard’ genome sequences for reference strains

will generally require sequencing of additional libraries.

This will include, preferably, longer-read sequencing (clas-

sical Sanger sequencing; Roche 454 or new Pacific Biosys-

tems) and mate-paired libraries of several insert sizes

(ranging from 400 bp to 10 kbp) (Table 1) to close gaps

in the assembled sequence and to obtain reliable assem-

blies of repetitive sequences (Argueso et al., 2009; Novo

et al., 2009). The costs of fully assembling and annotating

such a reference genome exceed the costs of routine rese-

quencing, which limits the true availability of fully de

novo assembled ‘gold standard’ genome sequences.

There are, hitherto, only few cases in which whole gen-

ome sequencing of S. cerevisiae has been performed in a

reverse metabolic engineering context (Timmermann

et al. 2010; Dhar et al., 2011; Hong et al., 2011; Kvitek &

Sherlock, 2011). Timmermann et al. (2010) used whole

genome sequencing to analyze the molecular basis for

oxidative stress tolerance in a S. cerevisiae mutant that

was obtained by mutagenesis with ethyl methanosulfonate.
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Comparison of raw sequence data, followed by a manual

inspection of results for ambiguous sequence calls, yielded

only four mutations that were predicted to cause amino

acid changes in proteins. A mutation in the peroxiredoxin

protein Tsa1 was subsequently shown to be responsible

for the improved oxidative stress tolerance. The discovery

of only four lead genes represents a marked contrast with

many microarray-based transcriptome analyses, which

typically yields dozens, if not hundreds of differentially

expressed genes. This contrast was even clearer in a direct

comparison of transcriptome analysis and whole genome

sequencing in a study on S. cerevisiae strains evolved for

faster growth on galactose (Hong et al., 2011). After

selecting strains by 400 generations of growth on galac-

tose as sole carbon source, hundreds of genes were differ-

entially expressed relative to the parental strain. However,

systematic analysis of whole genome sequencing data

revealed only small numbers of nonconservative SNVs

and insertions/deletions within genes (fewer than 20 in

two of three strains). On the basis of the observation that

mutations in genes involved in the RAS/PKA pathway

occurred in all three strains, a specific point mutation in

RAS2 was reverse engineered in the ancestor strain and

was shown to explain about half of the observed increase

in growth rate on galactose (Hong et al., 2011).

Prolonged glucose-limited growth of S. cerevisiae in

chemostat cultivation is a popular model for laboratory

evolution and its molecular analysis. Transcriptome-based

studies (Ferea et al., 1999; Jansen et al., 2005) identified

hundreds of genes whose transcript levels changed as the

yeast adapted to this nutrient limitation. In contrast, in a

similar evolution experiment, resequencing of an adaptive

clone revealed mutations in only six genes (Kvitek &

Sherlock, 2011). Interestingly, a long terminal repeat

insertion in GPB2, previously predicted based on tiling

array analysis of this clone (Kao & Sherlock, 2008), was

not identified during resequencing (Fig. 3). Mutations in

HXT6/7 and GPB2 were shown to confer a statistically

significant (P < 0.05) advantage over the ancestor strain

during competitive glucose-limited cultivation (Kvitek &

Sherlock, 2011). Unpublished results from our laboratory

confirm that whole genome sequencing of parallel evolu-

Table 1. Comparison of ‘next generation’ methods for whole genome sequence. Costs per megabase are estimated based on price quotes

(September 2011) from companies that offer commercial sequencing services

Company (sequencing platform) Chemistry

Read

length (bp)

Total base

count per

run (Gb)

Accuracy

(%)

Cost per

Mb (€)

Illumina (Hiseq2000, GAIIX) Reversible dye terminators 50–150 5 99.0 2.5

Life Technologies (ABI SOLiD, SOLiD4) Oligonucleotide probe ligation 35–50 10 99.9 3

Roche (454 GS FLX Titanium) Pyrosequencing 350–450 0.4 99.5 20

Pacific Biosystems (SMRT) Phospho-linked

fluorescent nucleotides

600–1400 100 85.0 15

Helicos Biosciences (HeliScope) Reversible dye terminators 35 25 99.9 –

Fig. 3. Analyses of evolved Saccharomyces cerevisiae strains adapted for glucose-limited cultivation conditions illustrate the advantages of whole

genome sequencing over microarray-based transcriptome analysis in reverse metabolic engineering. Transcriptome analysis of four independently

evolved strains consistently yielded more than 180 differentially expressed genes. Genotyping of a single cell line using tiling arrays and whole

genome sequencing showed a much smaller number of underlying nonconservative mutations. Some mutations identified by whole genome

sequencing went unnoticed by a previous analysis using tiling arrays.
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tion lines can contribute to the rapid identification of key

mutations in yeast strains generated in laboratory evolu-

tion experiments. For example, two suppressor mutants

were isolated from independent laboratory evolution

experiments with a jen1 null mutant, which encodes the

S. cerevisiae lactate transporter (Casal et al., 1999). These

strains regained the ability to grow on lactate as sole car-

bon source through different point mutations in the same

membrane transporter gene. Reverse engineering of these

mutations confirmed that each of them enabled the trans-

porter to act as an efficient lactate transporter. Interest-

ingly, this gene was not identified as a target in a parallel

transcriptome analysis (S. de Kok et al., in press).

Discussion

An overview of the relevant literature enables two clear

recommendations on experimental design of reverse met-

abolic engineering experiments of S. cerevisiae. Firstly,

although the number of studies in which whole genome

sequencing has been applied for the reverse metabolic

engineering of yeasts is still small, the available informa-

tion consistently indicates that this technique is a real

game changer. In ‘linear’ strain improvement studies (e.g.

chemical mutagenesis and laboratory evolution), whole

genome sequencing typically yields many fewer lead genes

than transcriptome analysis. Moreover, the changes that

are identified at the DNA level can be immediately and

exactly reconstructed in naive strain backgrounds. Also in

view of its rapidly decreasing costs, whole genome

sequencing should now be the first-choice analytical

approach in reverse metabolic engineering of yeast strains.

Metabolomics, proteomics, and transcriptomics can sub-

sequently be used for further interpretation of genome

sequencing data and to elucidate the biochemical impact

of the mutation, but, in general, are less suitable as first-

line analytical approaches than genome sequencing. An

interesting development in this respect is the sequencing

of mRNA (RNA-seq), because both genetic changes in

coding sequences and the transcriptional responses are

measured in one step (Wang et al., 2009b).

Secondly, prioritization of mutations is greatly facili-

tated by the use of parallel strain improvement experi-

ments. Focusing on functional analysis of mutations that

affect the same gene, pathway or cellular process in

multiple independent evolution or mutagenesis experi-

ments has been repeatedly shown to facilitate the fast

identification of relevant targets (Zelle et al., 2010; Hong

et al., 2011; S. de Kok et al., in press). Especially when

the number of parallel strain improvement experiments

is small, an exclusive focus on the ‘overlap’ of a small

number of selected genotypes can potentially lead to loss

of valuable information. Such a loss can result from

mutations in different genes or processes that have a

similar positive effect on the phenotype but which do

not occur in all strains selected for analysis. Moreover,

the phenotypic effect of a mutation, be it on evolution-

ary fitness or on industrial performance, can be strongly

dependent on the genetic context. The relevance of this

context dependency, which in genetics is known as

epistasis, is illustrated by an elegant study by Kvitek &

Sherlock (2011), who monitored the occurrence of

mutations during laboratory evolution experiments with

S. cerevisiae in glucose-limited chemostat cultures. The

authors convincingly demonstrated that mutations in the

hexose transporter gene HXT6/7 and in the regulator

gene MTH1 exhibited negative epistasis: individual intro-

duction of the mutations in a naive strain background

led to an improved fitness, while their combined intro-

duction had a negative effect. In addition to monitoring

the incidence of mutations during evolution, increasing

the number of parallel strain improvement experiments

should facilitate identification of negatively epistatic

mutations.

Wherever whole genome sequencing results in too

many candidate leads, the power of molecular techniques

should be amplified by their integration with classical

yeast genetics. Analysis of segregation patterns after mat-

ing with a reference strain and systematic backcrossing

can rapidly provide insight into the complexity of

acquired genotypes and reduce the number of nonpro-

ductive mutations (Timmermann et al. 2010). Moreover,

segregation of mutations in the offspring of a backcross

with the strain of interest is a powerful technique in dis-

covering positive epistasis (i.e. multigenic traits) through

the identification of quantitative trait loci (Kearsey, 1998;

Liti et al., 2009b; Ehrenreich et al., 2010; Cubillos et al.,

2011; Parts et al., 2011). When knowledge on gene or

protein function is limited, parallel strain improvement

and identification of quantitative trait loci give informa-

tion for target prioritization without requiring a priori

knowledge on gene or protein function.

We anticipate that further technology developments

and decreases in sequencing costs, combined with the

automation of the parallel and combinatorial reconstruc-

tion of different genetic variations, will make reverse met-

abolic engineering one of the major driving forces in

yeast biotechnology in the coming decade.
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