
Systems biology

On the feasibility of dynamical analysis of network

models of biochemical regulation

Luis M. Rocha 1,2

1Consortium of Social and Biomedical Complexity, Department of Systems Science and Industrial Engineering, Binghamton University

(State University of New York), Binghamton, NY 13902, USA and 2Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal

Contact: rocha@binghamton.edu

Associate Editor: Alfonso Valencia

Received on June 8, 2021; revised on October 20, 2021; editorial decision on October 26, 2021; accepted on May 27, 2022

To the Editor,

A recent article by Weidner et al. (2021) presents a method to ex-
tract graph properties that are predictive of the dynamical behav-
ior of multivariate, discrete models of biochemical regulation. In
other words, a method that uses only features from the structure
of network interactions to predict which nodes are most involved
in automata network dynamics. However, the authors claim that
dynamical analysis of large automata network models is ‘not even
feasible’. To make sure that others are not discouraged from
working on this problem, it is important to clarify that effective
dynamical analysis of automata network models, to the contrary,
is feasible. Unlike what is suggested in the article, graph-based
analysis of static features is not the only analytical avenue for
large systems biology models of regulation and signaling dynam-
ics because there are dynamical methods that are, indeed, scal-
able. By scalable we mean that the computational complexity of
methods employed to analyze multivariate dynamical systems in
regard to their dynamical behavior (e.g. controllability, conver-
gence to attractors, robustness to perturbations, etc.) is manage-
able. That is, a given method is scalable if results can be
computed in finite (and reasonable) time, with finite memory, for
a system of a reasonable size—ideally for network models in
Systems Biology, up to thousands of nodes.

There has been much interest recently in predicting multivariate
dynamics from static network structure alone, especially in regard
to the controllability of systems biology models of gene regulation,
signaling and cellular differentiation (Fiedler et al., 2013; Liu et al.,
2011; Nacher and Akutsu, 2013; Zanudo et al., 2017). These are
quite welcome methods because we often lack information about
the underlying causal interaction dynamics. However, two very
popular (and scalable) methods in network science lead to very erro-
neous predictions of the subsets of (driver) variables that control dy-
namics (Gates and Rocha, 2016). The most accurate of these
methods are based on feedback vertex set theory (Fiedler et al.,
2013; Zanudo et al., 2017), which does not scale well and can only
make predictions about the entire ensemble of dynamical systems
that fits the same static interaction graph (Gates et al., 2021).

Another putative reason for pursuing structure-only methods is
that even when the underlying interaction dynamics of each variable
is known, it is not feasible to compute the dynamical (or attractor)
landscape of the entire multivariate system when the interaction

network is sufficiently large. This prevents us from exhaustively enu-
merating all possible interventions that can control the dynamics
from one attractor basin to another. The most important scalability
constraint in the analysis of automata networks is the number of
node variables, n, as the dynamical landscape of such systems is
comprised of sn possible configurations of states s (Gates and
Rocha, 2016). For instance, a well-known Boolean network model
of intracellular signaling networks in generic fibroblasts is com-
prised of 130 nodes (Helikar et al., 2008), thus it can be in one of
2130 possible state configurations—a dynamical landscape that is
too large to be exhaustively searched. Importantly, it is also true
that enumeration of all possible interventions is infeasible in a sim-
ple graph of sufficient size. The computational complexity of finding
all possible subsets of the set of nodes, or generating the powerset, is
at least o(2n) (Moore, 1971). Therefore, exhaustive search of all pos-
sible interventions in any network is ultimately infeasible for large
graphs whether one uses structure- or dynamics-based methods.

Computing the full dynamics of a multivariate system certainly
adds to the complexity of exhaustively searching all possible inter-
ventions. But many software tools exist—and are collected in reposi-
tories such as the CoLoMoTo Consortium (Naldi et al., 2015)—that
allow for the identification of attractors in automata networks with-
out full enumeration of their dynamical landscapes, such as
PyBoolNet (Klarner et al., 2017) and Boolink (Karanam et al.,
2021). In particular, recent developments in attractor identification
algorithms and code (PyStableMotifs) now allow the dynamical ana-
lysis of thousands of networks, some with over 15 000 nodes
(Rozum et al., 2021). From another angle, a novel update scheme
for asynchronous automata networks has been shown to reduce the
complexity of attractor identification, enabling the modeling and
dynamical analysis of genome-scale networks (Paulev�e et al., 2020).

Moreover, various computational approaches have been devel-
oped and applied to extract the key drivers of collective dynamics of
biochemical network models without going through every possible
subset of nodes, much less the entire dynamical landscape, in a brute
force manner (Biane and Delaplace, 2019; Hari et al., 2021; Rozum
et al., 2021; Su and Pang, 2020; Za~nudo and Albert, 2015). Indeed,
scalable methods exist that remove the redundancy of the dynamics
of each variable (micro-level) to allow for a characterization of the
entire causal macro-level dynamics, in both complete (Marques-Pita
and Rocha, 2013) and probabilistic (Gates et al., 2021) manners.
These scalable methods, and the associated software tool CANA

VC The Author(s) 2022. Published by Oxford University Press. 3674

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 38(14), 2022, 3674–3675

https://doi.org/10.1093/bioinformatics/btac360

Advance Access Publication Date: 31 May 2022

Letter to the Editor

https://orcid.org/0000-0001-9402-887X
https://academic.oup.com/


(Correia et al., 2018), provide causal graph representations of
automata networks that synthesize both structure and dynamics.
They are exhaustive in the sense that they preserve all effective inter-

actions of the micro-level dynamics—only redundant interactions
are disregarded. Thus, it is very feasible to analyze systems biology

models without disregarding their dynamics, allowing the precise
study of any putative intervention that controls the dynamics just as
easily as structure-only methods, but with additional accuracy

afforded by information about the dynamics.
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