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Background: As an immunogenic cancer, crosstalk between cancer cells and immune cells has been 
gradually recognized in bladder cancer (BC). Several studies have emphasized the clinical significance of the 
molecular stratification of BC without highlighting the role of the immune microenvironment. Although 
immunotherapy acted as a prospective treatment, more precise molecular stratification should be established 
to select those sensitive to immunotherapy.
Methods: To select specific immune genes forming subtypes indicating disparate prognoses, we performed 
bioinformatic analysis using BC transcriptomic profiles from six published datasets, with 408 BC samples 
in The Cancer Genome Atlas (TCGA) database and 295 individuals in International Cancer Genome 
Consortium (ICGC) database. Survival analyses were conducted using Kaplan-Meier curves, while Kruskal-
Wallis tests were applied to test the differences among groups. Except for unsupervised clustering based on 
the differential expression of genes, we additionally performed binomial logistic regression, focusing on the 
mRNA level of a single sample.
Results: Unsupervised clustering showed that 4 clusters captured the best segmentation. After validation 
with survival data and simplification using binomial logistic regression, we found that cluster B and cluster D  
showed worse survival outcomes (P=0.012). Considering the similar survival outcomes of these two clusters, 
we recombined and performed another survival analysis, which also showed significant survival differences 
(P=0.0041). Bonding with clinical data, a greater proportion of risk factors were assigned to the worse 
prognosis subtype, especially showing higher grades in the subtype (P<0.001). In addition, immune cell 
infiltration, single nucleotide polymorphism (SNP) and copy number variation (CNV) all showed differences 
between clusters, indicating changes in the immune microenvironment and mutation burden. Through 
phenotypical analysis, we found metabolism and proliferation phenotypes associated with the immune 
clusters and mutually exclusive in BC, of which proliferation contributed to worse outcomes. Using the 
tumor immune dysfunction and exclusion (TIDE) score, a worse immunotherapy benefit was predicted in 
clusters B&D, defined as the worse prognosis subtype.
Conclusions: With this novel clustering criterion based on immune-related genes, we provide a better 
understanding of the immune microenvironment, further guiding the use of immunotherapy.
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Introduction

Bladder cancer (BC/BLCA) is one of the most common 
tumors in the United States, with 81,400 estimated new 
cases and 17,980 estimated deaths in 2020 (1). At present, 
there are several evaluation methods to differentiate BC, 
including the tumour, node, metastasis (TNM) classification 
system and the pathological grading standard (2,3). 
However, the great heterogeneity of BC leads to different 
prognoses, although it is defined as the same stage. It has 
been reported that the tumor microenvironment (TME) 
acts as an important factor in tumor initiation, progression, 
and metastasis (4). Thus, more researchers have focused 
on the impact of TME components, including immune 
cells, stromal cells, endothelial cells and cancer-associated 
fibroblasts (5).

As an immunogenic cancer, the crosstalk between 
cancer cells and immune cells was gradually recognized in 
BC. Cancer cells attempt to survive by escaping immune 
supervision and destruction (6), while immunotherapy 
plays an important role in harnessing immune cells within 
or outside the TME, further attacking cancer cells (7). 
Based on these theories, BC at early and advanced stages 
can benefit from immunotherapy, bacillus Calmette-
Guérin (BCG) intravesical instillation and anti-PD-1/PD-
L1 immune checkpoint blockade (ICB), respectively (8). 
However, there are still a group of patients with nonmuscle-
invasive bladder cancer (NMIBC) showing no response 
to BCG (9), and only 25% of advanced BCs respond to 
anti-PD-1/PD-L1 ICB (10). As a result, identifying those 
individuals sensitive to immunotherapy appeared to be 
essential.

Recently, several studies emphasized the clinical 
significance of the molecular stratification of muscle-
invasive bladder cancer (MIBC), reporting that specific 
subgroups of MIBC showed better chemotherapy and 
immunotherapy responses (11-13). According to these 
findings, Kamoun et al. (14) integrated six classification 
systems on MIBC and raised a new classification containing 
six subtypes: luminal papillary, luminal nonspecified, 
luminal unstable, stroma-rich, basal/squamous, and 
neuroendocrine-like. Based on this, we performed a more 
comprehensive and concise grouping standard relying 
on the immune microenvironment of BC, aiming at 

establishing immune-related molecular classification to 
guide the use of immunotherapy. We present the following 
article in accordance with the STROBE reporting 
checklist (available at https://tau.amegroups.com/article/
view/10.21037/tau-21-887/rc).

Methods

Data acquisition and processing

RNA-seq data of BLCA were downloaded from The Cancer 
Genome Atlas (TCGA; http://portal.gdc.cancer.gov) 
project. Samples were obtained and processed according to 
the protocols from NCI’s Biospecimen Research Database 
(https://brd.nci.nih.gov/brd/). All genes were transformed 
into a gene symbol matrix with the use of Ensembl ID 
data from the Ensembl database (http://asia.ensembl.org/
index.html). After matching genes from BLCA and genes 
from the nCounter® PanCancer Immune Profiling Panel 
(http://www.nanostring.com/products/gene-expression-
panels/gene-expression-panels-overview/hallmarks-cancer-
gene-expression-panel-collection/pancancer-immune-
profiling-panel), immune genes were screened to conduct 
cluster analysis. Additionally, phenotype and clinical data 
were acquired from the TCGA database. Another gene 
expression dataset of BC was used for validation from the 
International Cancer Genome Consortium (ICGC; http://
dcc.icgc.org/). All data, including sequencing data and 
relevant clinical data, have been collected and published 
online, and we conducted this bioinformatic analysis based 
on these data. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Unsupervised clustering to obtain immune clusters

First, 770 genes from the nCounter® PanCancer Immune 
Profiling Panel were matched with genes obtained from 
the TCGA database (BLCA), selecting 758 immune genes 
for subsequent analyses. Then, we conducted hierarchical 
clustering of the patient correlation matrix using correlation 
as the clustering distance and ward. D as linkage via the R 
package pheatmap v1.0.12, while the cutree function was 
used to identify clusters. To identify the optimal number of 
clusters, we used silhouette analysis of KMeans using the 
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cluster R package. Based on the proper number of clusters, 
the associations of clinical data and clusters were evaluated; 
thus, the degree of malignancy could be identified. In 
addition, we selected two genes with a high frequency of 
mutation, including KMT2D and TP53, as well as other 
clustering standards (15), such as methylation, lncRNA, 
mRNA and reversed-phase protein array (RPPA) clusters, 
to perform variation analysis compared with our immune 
clusters.

Nanodissect analysis and lymphoid and myeloid scores

As the tumor immune microenvironment might play an 
important role in tumor recurrence or progression, we 
calculated the mRNA expression-based stiffness index 
(mRNAsi) to explore the similarity of tumor cells and 
stem cells. Additionally, analyses of the StromalScore, 
ImmuneScore and ESTIMATEScore were also conducted 
to explain the association of immune clusters and the 
immune microenvironment. The algorithm Nanodissect 
(http://nano.princeton.edu) was used to predict lymphoid 
and myeloid infiltration, reflecting the average expression of 
the respective genes in a sample.

Validation with survival data

To confirm that our immune clusters have great value 
in grouping individuals with different prognoses, we 
conducted Kaplan-Meier estimator and log-rank tests using 
the functions Surv, survfit, and survdiff (R package survival 
v2.42-3). Survival data from the TCGA database and the 
ICGA database were used for validation.

Binomial logistic regression to predict new immune clusters

With the use of glmnet v2.0-16 R package, we performed 
binomial logistic regression to predict new immune 
clusters. Not only is this predictor method highly efficient 
for smaller cohorts, but it also allows the assignment of a 
class to single samples without depending on unsupervised 
clustering. We used gene expression datasets to develop the 
regression, predicting the categorical response of the two 
possible outcomes: distributed to the worse prognosis group 
or not. The prediction efficacy was measured by a relative 
operating characteristic (ROC) curve using the R package 
pROC. As the number of clusters was simplified to only 
two, analysis of clinical features was performed to explain 
the significance of new immune clusters. Additionally, 

the risk score of the samples was calculated depending on 
coefficients from binomial logistic regression. Analyses of 
clinical characteristics and clusters were performed based 
on the risk score.

Immune infiltration assessment

To evaluate the effects of immune cells infiltrating the 
TME, we used the CIBERSORT algorithm to assess 
immune cell infiltration. With the use of this deconvolution 
algorithm and reference of gene expression values 
containing 547 genes, 22 immune cell type proportions 
from large tumor samples could be predicted via support 
vector regression. This algorithm provided a P value for 
each sample to maintain reliability. The CIBERSORT 
software package was obtained from the developers, with 
the default signature matrix at 1,000 permutations.

Gene set enrichment analysis (GSEA) and single-sample 
GSEA (GSVA)

GSEA was performed using the C2 dataset and hallmark 
dataset, which were downloaded from The Molecular 
Signatures Database (MsigDB) (https://www.gsea-
msigdb.org/gsea/msigdb). Enrichment was assessed by 
hypergeometric testing.

Gene set analysis was carried out using the GSVA R 
package v1.30.0. After collecting gene sets for various 
epithelial mesenchymal transition (EMT), stem cell, 
proliferation, and cell cycle-related pathways, the 
enrichment score for each sample was obtained using the 
gene expression profile.

Independent role of specific types of immune cells

To assess which type of immune cells played an important 
role in prognosis, we performed a multivariate Cox 
regression of survival outcomes testing the independent 
effect of each type. According to the average expression 
level of each type, these cells were stratified into a high-
infiltration group and a low-infiltration group. Moreover, 
the association between survival outcomes and infiltration 
level was explored.

Analyses of single nucleotide polymorphisms (SNPs) and 
copy number variation (CNV) in clusters

SNP data of BC were obtained from the TCGA database, 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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and we analysed SNP mutations using the maftools R 
package. Level 3 CNV data were downloaded from 
Fire Browse (http://firebrowse.org/). Analysis of CNV 
was performed relying on the GISTIC2 module in the 
Genepattern platform, while we chose hg19 to analyse the 
Reference Genome File.

The effect of immunotherapy on different immune clusters

The association between immune clusters and response 
to immunotherapy was predicted by calculating the 
tumor immune dysfunction and exclusion (TIDE) score 
using TIDE software (http://tide.dfci.harvard.edu/). This 
method synthesized the mechanisms of immune evasion 
and precisely predicted the effects of immune checkpoint 
inhibitors; thus, we identified a specific group of patients 
who benefited from immunotherapy.

Statistical analysis

After separating into different clusters, two pair comparisons 
were performed with the use of unpaired t-test, while 
multiple comparisons of characteristics were performed 
with the use of Kruskal-Wallis test. In addition, survival 
analyses were performed with Kaplan-Meier method. In 
the comparison of demography baseline of two clusters 

(clusters B&D vs. clusters A&C), F test was performed. As 
for multivariate analysis, Cox regressions were performed to 
investigate contribution of each immune cell type and each 
gene signature in promoting specific cluster.

Results

Expression differences of immune clusters in BC

RNA-seq data of BC from the TCGA database were 
matched with the expression of 770 genes from the 
nCounter® PanCancer Immune Profiling array, an array 
designed to profile immune infiltration in solid tumors. A 
total of 758 overlapping immune genes were selected for 
the subsequent analyses. Based on the expression of these 
immune genes, patients were divided into various subgroups. 
Depending on the elbow method, 4 clusters captured the 
best segmentation (Figure S1). From the heatmap of gene 
expression, patients in cluster C demonstrated the lowest 
expression levels of immune genes, while cluster A showed 
the highest expression levels (Figure 1). Comparing the gene 
mutation status of BC, we found that TP52 and KMT2D 
were more likely to be mutated. In our cluster analysis, 
the highest proportion of these two genes was found in 
cluster A (Figure 2). Additionally, in the comparisons of our 
clusters and other current grouping standards, including 
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Figure 1 Immune clusters showed distinctive immune related gene expression and different clinical characteristics, including clinical stage 
and metastatic status. 
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methylation, lncRNA, mRNA and RPPA clusters, great 
heterogeneity was also observed among our clusters.

To explore the characteristics of tumors in different 
clusters, analysis of mRNAsi was performed. We found that 
the four clusters were significantly correlated with mRNAsi 
(P<0.0001), of which cluster C had the highest score  
(Figure 3A). In the analyses of StromalScore, ImmuneScore 
and ESTIMATEScore, obvious differences were discovered 
among clusters, with cluster C accompanying the lowest 
level (Figure 3B-3D). From these primary results, we 
concluded that clusters A–D reflect distinct immune 
infiltration and therefore could be defined as immune 
clusters.

Distinct prognosis and recombination of clusters

In the survival analysis, patients in different clusters had 
distinct survival outcomes (P=0.012) (Figure 4A). However, 
cluster B and cluster D demonstrated similar prognoses; 
thus, we regarded these two clusters as one group (clusters 
B&D). In the three newly created clusters (cluster A, 
clusters B&D, cluster C), heterogeneity still existed, with 
a P value equal to 0.0041 (Figure 4B). For an additional 
layer of validation, clinical data and gene expression data 
of 295 BC patients obtained from the ICGC database 
were used to perform similar analyses. Additionally, a four-

cluster grouping was regarded as the best segmentation 
(Figure 5A), among which cluster C had the best survival 
outcomes (Figure 5B) with the lowest expression level of 
immune genes (Figure S2). After redefining clusters B&D, 
a tendency toward better survival outcomes was observed in 
cluster C (P=0.058) (Figure 5C).

Predicting immune clusters with binomial logistic 
regression

To develop a general method that could predict the 
classification of patients precisely and sensitively, a novel 
prediction classifier was constructed without having to rely 
on unsupervised clustering. Based on the binomial logistic 
regression penalized by the lasso method, two clusters 
(clusters A&C and clusters B&D) with different survival 
outcomes were obtained. In the lasso regression including 
758 genes, 72 key genes were selected to stratify subgroups 
of BC patients; thus, this group of genes could be regarded 
as prognostic indicators. Our model predicted the immune 
clusters with moderate efficacy [area under the curve (AUC) 
=0.777] (Figure 6A). We found that 65% of the samples 
assigned to clusters A and C by clustering were predicted 
to be A and C by the model, while 90.2% of the samples 
assigned to clusters B and D through clustering were found 
in clusters B&D using the lasso method (Figure 6B), slightly 
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decreasing the number of samples with poor prognosis. As 
unsupervised clustering is less reliable in small cohorts, we 
hypothesized that the Lasso-derived classification would be 
a better prognostic factor than the clustering method. In the 

subsequent validation using clinical data, survival analysis 
showed a more significant difference compared with that 
of the clustering method, with a P value equal to 0.0089  
(Figure 6C). Furthermore, in the analysis of the risk score 
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using the new lasso-derived classification, clusters B&D 
presented a higher risk score (P<0.001) (Figure 6D).

Immune clusters and clinical characteristics

To explore the association between the two clusters 
and clinical characteristics, we selected several factors 

potentially related to prognosis. The results showed that 
clusters B&D had a slightly higher proportion in men and 
smoking individuals, while the age of patients in the two 
clusters presented no significant differences (Figure 7A-7C).  
For tumor stages, clusters B&D had a significantly 
higher grade status and a higher proportion of T3 stage  
(Figure 7D,7E), although the clinical T stage distribution 

1.00

0.75

0.50

0.25

0.00O
ve

ra
ll 

su
rv

iv
al

 (p
ro

ba
bi

lit
y)

0       1000    2000    3000    4000
Time, days

P=0.12

Cluster A Cluster B Cluster C Cluster DStrata

1.00

0.75

0.50

0.25

0.00O
ve

ra
ll 

su
rv

iv
al

 (p
ro

ba
bi

lit
y)

0       1000    2000    3000    4000
Time, days

P=0.058

Cluster A Cluster B&D Cluster CStrata

0.15

0.10

0.05To
ta

l w
ith

in
 s

um
 o

f s
qu

ar
e

Optimal number of clusters

1   2   3   4   5   6   7   8   9  10
Number of clusters k

A B C

Figure 5 Validation of survival outcomes from the ICGC database. (A) The elbow method showed 4 clusters captured the best segmentation. 
(B) Survival analysis based on four clusters. (C) Survival analysis based on recombined three clusters. ICGC, International Cancer Genome 
Consortium. 

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

1.0    0.8    0.6    0.4    0.2    0.0
Specificity

AUC: 0.777

1.00

0.75

0.50

0.25

0.00O
ve

ra
ll 

su
rv

iv
al

 (p
ro

ba
bi

lit
y)

0    1000 2000 3000 4000 5000
Time, days

P=0.0089

Cluster A&C Cluster B&DStrataC

Cluster A&C Cluster B&D

Predicted cluster category 

Cluster category

4

0

−4

S
co

re

Cluster A&C Cluster B&D

P≤2e–16

A B

D

Figure 6 Binomial logistic regression predict the poor prognosis subgroup. (A) Prediction value of Lasso regression. (B) Distribution of 
single sample in predicted cluster and actual cluster. (C) Survival analysis of two predicted clusters. (D) Comparison of risk score between 
two clusters. AUC, area under the curve. 



Jin et al. A novel molecular classification of BC950

© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2022;11(7):943-958 | https://dx.doi.org/10.21037/tau-21-887

showed no significance (P=0.15). Additionally, in the 
analysis of risk scores stratified by two clusters, clusters 
B&D had significantly higher risk scores regardless of 
smoking status and dissection parts than clusters A&C 
(Figure 8A,8B). However, focusing on the microsatellite 
instability (MSI) score, no obvious difference was found 
(P=0.57) (Figure 8C). Combining the previous clustering 
standard with our immune-related clustering standard, the 
poor prognosis cluster (B&D) had a higher proportion of 
luminal and neuronal subtypes (Figure 8D).

The association of clusters and immune infiltration

In the analysis containing 22 types of immune cells, 
activated and resting dendritic cells, M0 macrophages, 
activated mast cells, resting NK cells, activated CD4 
memory T cells and CD8 T cells showed distinct expression 
levels in the two clusters (Figure 9A,9B). In the multivariate 
regression including all these immune cells, activated 
CD4 memory T cells and CD8 T cells could be regarded 
as protective factors, with higher infiltration indicating 

better prognosis. High infiltration of M0 macrophages, 
M2 macrophages and neutrophils led to worse survival 
outcomes (Figure 9C). These results were validated in the 
Kaplan-Meier survival analysis (Figure 10).

Function of enrichment in clusters

To evaluate functional differences between the two immune 
clusters, we performed GSEA to reveal potential pathways. 
GSEA showed that upregulated genes in clusters B&D were 
mainly enriched in metabolism-related functions, and the 
most enriched processes in C2 and hallmark collections are 
denoted (Figure 11A,11B). Through unsupervised clustering 
of GSVA enrichment scores, two mutually exclusive gene 
signatures in BC were identified. Samples in clusters 
A&C were enriched in HALLMARK_DNA_REPAI 
and HALLMARK_XENOBIOTIC_METABOLISM, 
while those in clusters B&D were enriched in NOTCH_
PATHWAY and DNA_REPLICATION (Figure 11C). In 
the generalized linear model, metabolism and apoptosis 
positively contributed to clusters A&C, while proliferation 

Figure 7 Comparison of demography baseline, including (A) sex, (B) smoking status, (C) age; and clinical risk factors, including (D) tumor 
grade, (E) T stage between two clusters. ND, not detected.
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indicated a strong association with clusters B&D  
(Figure 11D). Overall, combining the results from survival 
analysis, proliferation probably led to worse prognosis.

Analyses of SNPs and CNVs

First, in the CNV analysis, we discovered that two clusters 
(clusters A&C vs. clusters B&D) represented significant 
differences (Figure 12A). In addition, differences in 
copy number GISTIC scores between the two clusters 
were also observed (Figure 12B,12C). With SNP data, 
we found that the genes with the highest frequency of 
mutation were TP53 and TTN, accounting for over 40% 
of mutations in all samples. In the comparison of the two 
clusters, clusters B&D showed a higher proportion of 
mutations (Figure 12D).

Immune clusters and response to immunotherapy

According to the analysis of the TIDE score, the two 
clusters showed a strong trend to difference, with a P value 
equal to 0.053 (Figure 13A). In another analysis of the 
predicted percentage of immunotherapy benefit, clusters 
A&C were significantly more likely to obtain benefits from 
immunotherapy (P=0.023) (Figure 13B).

Discussion

As the TME plays an important role in tumorigenesis 
or progression, we provided a novel immune-related 
subtype in BC with relevance for prognosis and response 
to immunotherapy. Through unsupervised clustering with 
immune-related gene expression, we identified four clusters 
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associated with distinct levels of immune infiltration, 
specific immune microenvironments and different 
prognoses.

Although there were several gene signatures to stratify 
BC patients (16-23), the majority of these studies mainly 
focused on genes rather than individuals. This approach 
of classification might lead to certain deficiencies. For a 
specific BC patient, those high-risk genes and low-risk genes 
related to survival outcomes probably had interactions. As 
a result, this unsupervised clustering method based on the 
expression levels of a group of genes might be ideal when 
grouping patients. In contrast, binomial logistic regression 
could assign patients more practically. In our study, we 
merged two clusters with similar survival outcomes and 
further refined the grouping standard, developing a simple 
method predicting whether a sample falls in the poor 
prognosis cluster (clusters B&D) or not (clusters A&C). 
With moderate prediction value and a more significant 

survival difference, this new clustering method could be 
regarded as a better prognostic indicator.

Through functional enrichment and phenotypic 
characterization of the immune clusters, we also identified 
two mutually exclusive states in BC, one associated with 
metabolism and the other with proliferation. Evidence 
has shown that highly proliferative tumor cells rely on 
oxygen supply; in this circumstance, aerobic glycolysis is 
promoted (24). However, on account of rapid proliferation 
and reduced mitochondrial function, tumor cell growth 
demands plenty of oxygen, and a hypoxic microenvironment 
is induced (25). During this process, hypoxia-inducible 
factor 1α (HIF-1α) plays an important role in maintaining 
the survival of hypoxic tumor cells (26) and upregulating 
a number of genes involved in glycolysis (27). Perhaps 
more importantly, many tumors can adapt to metabolic 
changes in the microenvironment and thus have a bimodal 
metabolic capacity (28). In our analysis, metabolic function 

Figure 9 Immune cell infiltration level in clusters. (A) Differential expression level of infiltrated immune cells. (B) Heatmap of immune cell 
infiltration. (C) Contribution of specific immune cell type. *, P<0.05; **, P<0.01; ***, P<0.001. 
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Figure 10 Survival analysis of specific type of immune cell. 

enrichment indicated the primary state of tumor growth, 
with abundant oxygen supply and less aggressive features. 
As a result, the clinical stages and pathological phenotypes 
in clusters A&C were superior to those in clusters B&D. 

Additionally, enrichment of the function of hypoxia helped 
to explain clusters B&D, probably reflecting the process 
of overcoming hypoxia and entering rapid proliferation, 
further causing a worse prognosis.
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Using CIBERSORT to infer specific immune cell 
infiltration, we found that the proliferation state was 
highly correlated with the infiltration of mast cells, M2 
macrophages, monocytes, and neutrophils. A previous 
study showed that immune contexture presented a strong 
relationship with cancer prognosis, of which CD8+ T 
cells and regulatory T cells indicated a positive prognosis, 
while macrophages, in particular subtype M2, presented 
a negative prognosis in BC (29). In addition, tumor-
infiltrating mast cells indicated worse survival outcomes 
and higher pathological grades with higher infiltration 
(30,31), which contributed to the explanation of worse 
prognosis in clusters B&D. Neutrophils play a complex 
role, including tumor initiation, growth, proliferation and 
metastatic spreading (32,33), and it was reported that an 
elevated neutrophil count was an adverse prognostic factor 
in metastatic renal cell carcinoma (34). As various types of 
immune cells interact and play complex roles, a single type 
of immune cell cannot be evaluated independently.

As an important tumor suppressor gene, TP53 arrested 
the cell cycle in response to DNA damage, further allowing 
DNA repair and maintaining genomic integrity (35). Mutant 
TP53 limited the process of TP53-mediated apoptosis when 
recognizing DNA damage. Previous studies showed that a 
higher mutation burden of TP53 led to radiation resistance 

(36,37). As a result, with a higher mutant TP53 proportion, 
clusters B&D showed both worse survival outcomes and 
lower radiation sensitivity. However, in two studies of lung 
adenocarcinoma and advanced non-small-cell lung cancer, 
TP53 mutation and KRAS mutation patients obtained more 
survival benefits through PD-1 blockade immunotherapy 
(38,39). Due to tumor heterogeneity, this correlation 
may not exist in BC. In addition, considering functional 
enrichment and immune infiltration content, TP53 could 
not be regarded as an independent prognostic factor.

Robertson and colleagues created a detailed molecular 
classification of MIBC (15). Among the five subtypes (luminal 
papillary, luminal infiltrated, luminal, basal squamous and 
neuronal), luminal and neuronal phenotypes presented worse 
survival outcomes. In our analysis, almost all of these two 
types were allocated to clusters B&D, which verified the 
robustness of our results. Kamoun et al. (14) summarized 
present classification standards and reported that 
neuroendocrine-like tumors had the worst prognosis but 
had an association with a potential response to radiotherapy 
and immune checkpoint inhibitors (40-42). Because of its 
low proportion, the tendency that cluster B&D responded 
worse to immunotherapy could not be reversed.

Our analysis synthesized tumor mutation burden, 
immune infiltration, functional enrichment, SNPs and 
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CNVs to create a novel classification approach. In contrast, 
we focused on immune-related gene expression and 
simplified current standards to evaluate the TME from 
multiple dimensions. Thus, clinicians could select those 
potentially benefiting from immunotherapy and make 
valuable decisions. Finally, we found that the profiltration 
phenotype led to worse prognosis, providing potential 
therapeutic targets.

There are several limitations of our study. First, data 
were acquired from retrospective collections and varied 
in size, composition, and gene expression technology. 
Second, our molecular classification was established based 
on gene expression and was further validated using clinical 
characteristics and survival outcomes. In this way, potential 
confounding effects could be ignored. Third, whether 
tumor growth was slowed by inhibiting profiltration-
related pathways also needs mechanistic experiments to 
confirm its efficacy. Fourth, the response to immunotherapy 
was predicted and lacks relevant clinical data to reveal 
an immediate correlation; thus, large sample size clinical 
trials are necessary to validate our results. More empirical 
validation evidence for the prognostic role of the novel 
clustering criterion is needed in real-world practice.

Conclusions

Using various characteristics of the immune microenvironment 
of the BC, we performed a detailed analysis and created a 
novel clustering criterion based on immune-related genes. 
Depending on the single-sample mRNA classifier, this 

classification standard was more appropriate for clinical 
application. Thus, patients with a worse response to 
immunotherapy could be selected wisely, further promoting 
valuable medical decision making.
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