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Abstract: Available information associated with Calotropis procera posted its phytotoxic effect as
bio-herbicide scarce works studied its stimulatory/nutritive effect. A pot experiment was performed
to assess the validity of using Calotropis procera (C. procera) leaves extract as a bio-stimulant for the
growth and quality of a medicinal plant Catharanthus roseus (C. roseus) evaluated by some physio-
biochemical indices. Different types of C. procera leaves extracts (CLEs) (methanolic, cold water
and autoclaved water extracts) were delivered by two different modes of application. The results
revealed that application of CLEs as irrigation or foliar spraying caused a stimulation effect on
C. roseus plant. Root and shoot length, dry and fresh weight were significantly improved due to CLEs
applications. C. roseus bioactive molecules such as anthocyanins, phenolics, flavonoids, alkaloids,
ascorbic acid, reduced glutathione and α-tocopherol were abundance increased significantly with
CLEs applications. Reactive oxygen species (ROS) decreased explaining the involvement of CLEs
in induction of antioxidant enzymes catalase, ascorbate peroxidase, polyphenol oxidase, guaiacol
peroxidase and glutathione-S-transferase for modifying cell oxidative status witnessed by lower
lipid peroxidation that kept below the untreated plants’ baseline reflected the improvement of
growth and quality rather than phytotoxic effect. The promotion of wholesome-promoting secondary
metabolites by CLEs was closely correlated to elevated phenylalanineammonialyase activity. The
comparable efficient effect induced by all treatments might be judged by the relation between
C. procera phytochemicals and C. roseus metabolism (donor-receiver relation). It is concluded that
application of CLEs can be a promising approach for improving the yield and quality of plants
despite using polluting fertilizers. The current investigation may provide a matrix for coming studies
to seek illustration of numerous plants’ response to C. procera extracts.

Keywords: alkaloid; bio-stimulant; Calotropis procera; Catharanthus roseus; foliar spraying; phytochemical

1. Introduction

Within the agricultural and horticultural industry, high yield and high-quality crops
are of major commercial and economic importance. The demands for increased yield
and improved quality can be met through improvements in crop genotypes by selection,
breeding, and genetic engineering and by improvement of the crop growth environment
through irrigation, fertilization, and the use of plant protection products. Chemical growth
regulators are also one of the tools used to improve both crop growth and quality. However,
the extensive and irrational use of these agro-chemicals as inevitable practice for plant
production posed undesirable environmental impacts. An alternate strategy to reduce the
dependence on synthetic growth regulators and encourage the use of botanical sources is
considered safe for the environment and helps in achieving global food security sustainably
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and quality and being environmentally friendly [1]. Various plant extracts are being
approved claiming to enhance crop yield and are marketed as bio-stimulants [2].

Catharanthus roseus (L.) (Apocynaceae) is a perennial tropical plant with pink or
white flowers and formerly known as Vinca rosea. Being a medicinal plant and factory
of various valuable secondary metabolites many attempts are seeking to increase them
for agrochemical or pharmacological purposes [3,4]. Great efforts have been made to
maximize production on a large scale. Using synthetic growth regulators/fertilizers is
an integrated part of Catharanthus breeding for commercial production of economically
significant secondary metabolites [3]. Applying botanical-source substances may serve
as cheap, versatile and safe yielding alternative management and practice for important
medicinal plants need to cope up with global increasing demands.

Plants are endowed with highly potent and versatile phytochemicals in their extracts.
Phytochemicals, being secondary metabolites, promote root growth by improving moisture
availability and temperature regulation, enhance mineralization of nutrients and improve
their uptake [5]. They regulate seed germination, maturity, senescence, water relations,
chlorophyll accumulation, photosynthesis, translocation of assimilates and quality, tran-
spiration, leaf expansion, translocation and genetic encodings [4]. The positive role can
be predicted at their lower concentrations. In this way, they can be introduced for growth
promotion and can substitute for synthetic growth regulators. Recently, application of
plants extracts as bio-stimulants to crops can be a cost-effective and efficient means to
enhance growth and to improve crop productivity [1,5–7]. Although most of the research
on the use of bio-stimulants has focused mainly on their benefits under different stress con-
ditions, there have been also several reports on bio-stimulant-induced growth stimulation
when they were applied to plants grown under normal growth conditions [8]. In fact, in
dwindling agricultural lands, it should be a dominant goal of today’s plant researchers and
breeders to explore the potential of new plant extracts as growth and quality improving
substances of commercially valuable plants, including Catharanthus roseus, that could be
promising cost-effective and substitute tool in achieving higher productivity and quality
without compromising the environmental safety.

Calotropis procera (L.) (Asclepiadaceae), mudra, usher, apple of Sodom or giant milk-
weed, is a xerophytic perennial medicinal plant. It is native to tropical and subtropical
Africa and Asia and widespread in the Middle East. It grows in Egypt, and it is the only
species cited in that region. It is broadly distributed in Nile-Faiyum, Red Sea coastal
region, and Gebel Elba and situated in the southeast corner of Egypt at Sinai proper and
the Sudan frontier [9]. This highly invasive species can tolerate poor soils and adverse
climatic conditions [10] and has reached the status of weed in many regions. Having high
potential to invade pristine or economically important areas makes it of much concern, as
it is also very difficult to eradicate, necessitates dealing with it to the maximum benefit.
The plant received much concern from researchers due to its various biological effects
owing to the extractable phytochemicals. Sizable research posted its phytotoxic effects,
negative allelopathic potential and its role in weed control [11,12] while very limited works
mentioned its nutritive and positive/stimulatory effect [13]. In the context, the active
compounds from C. procera extract and their unique mode of action remain unknown due
to the apparent multitude of potential molecular targets [12], performance overlapping
and interaction between them [5,14], and their interference with the ecological factors
regarding delivering method [15]. In our investigation, studying the impact of C. procera
by using different types of extracts, ME, CWE and AWE (having different chemical na-
tures) applied by two different modes, irrigation and foliar spraying (different contact
surface, root and leaves), and identifying extracts composition may collectively present
a clarification for the possibility to be used as bio-stimulant agent and mapping out how
receiver plant could respond to them as well. Therefore, it seems valuable to assess and
elucidate the physio-biochemical effects of C. procera phytochemicals that may catapult
them as highly promising and environment-friendly natural substances and suitable for
wider applications.
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2. Material and Methods
2.1. Plant Materials and Tissue Collection

C. procera leaves were collected from the Agriculture Faculty Campus, University of
Al-Azhar, Assiut, Egypt. The Flora of Egypt [16] was used for authentication of the plant.
For phytochemical profile analysis four biological replicates from leaves were sampled
from one-year-old C. procera plant. The method described by Naz and Bano [17] was used
to prepare C. procera leaves extracts.

Three-month-old uniform C. roseus plants were collected in spring 2017 from the botan-
ical garden of the Faculty of Agriculture, Assiut University. The plants were transferred
into (30 cm in diameter and 35 cm in depth) containing 3000 gm air-dry soil (sand/clay
1:2 v/v) in rate of 5 plant/pot. The plants were kept in the greenhouse of the botanical
garden of the Botany and Microbiology Department, Faculty of Science, Assiut University,
Egypt (42” and 28◦ 59′23” E and latitude 25◦45′06” and 25◦53′34” N) to secure mild climatic
conditions during experimentation.

2.2. Treatment

After one week of pre-culture, the transplants were randomly divided into irrigation
and foliar spraying treatment groups. Each group consists of 12 pots (3 different extracts
(methanolic extract (ME), cold water extract (CWE) and autoclaved water extracts (AWE))
× 4 replicates for each). The plants not delivered any extracts (either by irrigation or
spraying) were considered as control. For irrigation treatment, each replicate was treated
using extract by field capacity at the rate of 250 mL kg−1, soil with polyethylene bags to
avoid soil treatment leaching. Additionally, for foliar spraying treatment, each replicate
was sprayed by 250 mL of extract per pot and the soil surface was covered by polyethylene
bag to avoid foliar treatment reaching soil. During the treatment, average temperature
was between 21 ◦C and 27 ◦C and relative humidity varied between 65.4% and 70.5%, and
plants were allowed to grow for one week. After one week of treatments, all the replicates
were washed firstly thoroughly with tap water and then with distilled water to remove
any extract surface deposit, rinsed in ultrapure water. Then the replicates were used for
growth criteria measurements and physio-biochemical indices evaluation.

2.3. Isolation of Phytochemical Compounds from C. procera Leaves

The correct method to reduce technical variability throughout a sampling procedure
is essential to stop cell metabolism and to avoid leaking of phytochemical metabolites
during the various preparation steps before the actual phytochemical extraction [18,19].
Therefore, three biological replicates from the fresh leaves were immediately frozen on
dry ice. In the laboratory, the frozen three biological replicates from fresh leaves sam-
ples were homogenized in cryogenic grinding for three cycles at one minute for each,
after which the plant material (ca. 500 g, 280 g and 280 g) were directly soaked in
1000 mL from each of 90% methanol as a solvent, cold water and autoclaved water, respec-
tively in Amber storage bottles, 2000 mL screw-top vials with silicone/PTFE septum lids
(https://www.brecklandscientific.co.uk/aboutus.asp accessed on 1 January 2020) were
used to limit dispersal of volatiles to the headspace then incubated with shaking at 37 ◦C
and 200 rpm for 24 h [16,19]. Afterward, each one from ME, CWE and AWE were trans-
ferred and aliquoted into several 250 mL utofil® PP centrifuge bottles with screw cap and
centrifuged at 5000 rpm for 10 min at 4 ◦C to eliminate plant debris. The upper layers from
the extract were transferred into new 1-L storage bottles. After that 3 mL from each extract
was pipetted into three new glass tubes of 1.5 mL with lids to reduce a loss of volatiles, and
each 1.5-mL glass tube contained 1 mL from the extract. Then all the glass tube 1.5 mL with
lids were placed on the GC-MS auto-sampler for GC-MS run, or each tube was covered
with paraflm after closed with screw-top vials with silicone/PTFE septum lids and stored
at −20 ◦C until GC-MS analysis [18,19].

https://www.brecklandscientific.co.uk/aboutus.asp
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2.4. GC-MS Analysis of Phytochemical Compounds from C. procera Leaves

Trace GC-ISQ Quantum mass spectrometer system (Thermo Scientific, Austin, TX,
USA) was used for phytochemical analysis. About 1 µL from each sample was injected into
a GC-MS equipped with a TG–5MS column (30 m × 0.25 mm ID, 0.25 µm film thickness).
Helium gas was used as a carrier at a constant flow of 1.0 mL min−1. The mass spectra
were observed between 50–500 m/z. Temperature was initially started at 50 ◦C for 10 min,
then increased at a rate of 5 ◦C min−1 to 250 ◦C, and isothermal was held at 300 ◦C for
2 min, and finally, the held isothermal for 10 min at 350 ◦C. NIST, Adams, Terpenoids and
Volatile Organic Compounds libraries were used to identify the phytochemical constituents
by comparing the recorded mass spectra for each compound with the data stored in the
previous libraries. The relative percentage amount for each component was calculated
using by Retention time index and comparing its average peak area with total peak areas.
And each sample was represented by three replicates [18,19].

2.5. Determination of C. roseus Plant Growth Criteria Affected by C. procera Leaves Extracts
under Irrigation and Foliar Spraying Treatments

After measuring the shoot and root length, the plants were separated into shoot and
root parts for measuring fresh and dry weight. Shoots and roots length and fresh weight of
harvested plants were determined immediately then oven-dried at 60 ◦C for 2 days to a
constant weight to evaluate dry weight.

2.6. Determination of C. roseus Physio-Biochemical Indices Affected by C. procera Leaves Extracts
under Irrigation and Foliar Spraying Treatments
2.6.1. Photosynthetic Pigment Content

The component of leaf photosynthetic pigments; chlorophyll a, chlorophyll b, and
carotenoids were quantified as mg g−1 FW adopting the method used by Abeed and
Dawood [20].

2.6.2. Primary Metabolites

Primary metabolites in terms of carbohydrate content, free amino acids content and
soluble proteins content all expressed as mg g−1 DW were estimated according to the
published methods of Abeed et al. [21] and Iqpal [22], respectively.

2.7. Stress Markers and Membrane Damage Trait

Oxidative stress was monitored by determined stress markers such as superoxide
anion (µg g−1 FW, O2

•−), hydroxyl radical (µmol g−1 FW, •OH) and hydrogen peroxide
(µmol g−1 FW, H2O2) using the method of Kamran et al. [23], Tripathi et al. [24] and
Soobrattee et al. [25], respectively. Lipid peroxidation assessed as malondialdehyde (MDA)
content expressed as µmol g−1 FW was quantified using the method of Madhava Rao and
Sresty [26].

2.8. Determination of Secondary Metabolites, Non-Enzymatic and Enzymatic Antioxidant
Capacities
2.8.1. Secondary Metabolites and Non-Enzymatic Antioxidants

Anthocyanin pigments (mg g−1 FW), total flavonoid content (mg g−1 FW), alkaloids
content (mg g−1 FW), total phenolic content (mg g−1 FW), ascorbic acid (µg g−1 FW), re-
duced glutathione (µg g−1 FW, GSH) and α-Tocopherol (µg g−1 FW) were determined as the
methods of Krizek et al. [27], Khyade and Vaikos [28], Sreevidya and Mehrotra [29], Kofalvi
and Nassuth [30], Colucci et al. [31], Anjum et al. [32] and Kivçak and Mert [33], respectively.

2.8.2. Enzymatic Antioxidants

The enzymatic potential of leaves and root was detected by screening the activities
of catalase (CAT; EC 1.11.1.6, u mg−1 protein g−1 FW min−1), ascorbate peroxidase (APX;
EC 1.11.1.11, µmol mg−1 protein g−1 FW min−1), polyphenol oxidase (PPO/EC 1.10.3.1,
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u mg−1 protein g−1 FW min−1), guaiacol peroxidase (POD; EC 1.11.1.7, µmol mg−1 pro-
tein g−1 FW min−1), phenylalanine ammonialyase (PAL; EC 4.3.1.5, µmol mg−1 protein g−1

FW min−1) and glutathione-S-transferase (GST; EC 2.5.1.18, u mg−1 protein g−1 FW min−1)
by following the methods adopted by Martinez et al. [34], Yaqoob et al. [35], Tatiana et al. [36],
Parmeggiani et al. [37], Al-Zahrani et al. [38] and AbdElgawad et al. [39], respectively.

2.9. Statistical Analysis

A completely randomized design (CRD) was utilized for the pot experiments. Ob-
tained data were expressed as means ± SE. SPSS 10.0 software program was used for
performing the statistical analysis. Comparisons between control and treatments were
assessed by one-way ANOVA using the least significant differences (LSD) test. Difference
from control was counted significant at the probability levels of 0.05 or very significant at
the probability levels of 0.01.

3. Results and Discussion
3.1. Identification of Phytochemical Components of C. procera Used Extracts

According to GC-MS analysis, 126 bioactive phytochemical compounds were iden-
tified in ME, CWE and AWE of C. procera leaves. The numbers of obtained bioactive
phytochemical compounds in ME, CWE and AWE were 68, 38 and 20, respectively. The re-
sults of the qualitative and quantitative analyses of all phytochemicals in the three extracts
are recorded in (Table 1 and Figure 1. The identified phytochemical compounds are listed
based on the retention time, compound formula, compound molecular mass, CAS registry
number and percentage of peak area (Table 1). In ME, guanosine was recorded as the major
compound (15.57%), followed by 1-heptatriacotanol compound, neophytadiene compound
and trans-phytol compound that registered as (4.57%), (4.53%) and (4.53%), respectively.

Regarding CWE, n-benzylidene-isopropylamine was recorded as the main compound
(19.11%), followed by α-copaene compound (12.88%), followed by biocytin compound
(9.51%) and 1,3-Dipalmitin, TMS derivative compound (6.61%). While phthalate (42.33%)
was the main compound recorded in the AWE, followed by 2-Oleoylglycerol, 2TMS deriva-
tive compound (17.15%), followed by linoleic acid, 2,3-bis-(OTMS) propyl ester (α-glyceryl
linoleate) compound (7.19%), followed by methyl 9,9-dideutero octadecanoate compound
(5.83%) (Table 1). Moreover, each extract contained its unique and common phytochemical
compounds that shared with others (Figure 1). For example, ME (A) had 48 unique com-
pounds while shared with CWE and AWE by 11and 4 common compounds, respectively.
Meanwhile, 5 common compounds were shared amongst all three leaf extracts. Further-
more, CWE (B) consisted of 21 unique compounds and one common compound shared
with the AWE. On the other hand, AWE (C) contained 10 unique compounds (Figure 1).
Thereby the variation existed in extracts composition and consequently different chemical
nature is extract-type dependent.
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Table 1. GC-MS profile of different extracts from Calotropis procera leaves.

N Compound Name R.T Formula M.W CAS % Peak Area Library

Methanol Extract

1 Iron iodide complex I 4.56 C26H26FeIN4O4 641 NA 3.66 W
2 Palmitoyl glycerol 5.12 C19H38O4 330 542-44-9 0.55 W
3 2-Cyclohexylpiperidine 5.37 C11H21N 167 56528-77-9 0.41 M

4 Beta-D-Galactopyranoside, methyl
2,6-bis-O-(trimethylsilyl)-, cyclic b utylboronate 5.75 C17H37BO6Si2 404 56211-13-3 1.99 W

5 Octadecanedioic acid 6.89 C18H34O4 314 71-70-5 1.06 W
6 alpha-Carotene 18.01 C40H56 536.43 NA 0.7 M
7 2-octadecenoic acid, methyl ester 8.13 C19H36O2 296 14435-34-8 3.11 W
8 1,25-Dihydroxyvitamin D3, TMS derivative 8.49 C30H52O3Si 488 55759-94-9 1.13 W
9 Digitoxin 8.75 C41H64O13 764 71-63-6 0.53 R

10 Cholesta-5,7,9(11)-trien-3-ol acetate 9.47 C29H44O2 424 1255-91-0 0.36 M

11 Carbamic acid, N-methyl-N-[6-iodo-9-oxabicyclo
[3.3.1]nonan-2-yl]-, ethyl ester 9.74 C12H20INO3 353 NA 0.81 M

12 7,8-Epoxylanostan-11-ol, 3-acetoxy- 10.81 C32H54O4 502 NA 0.77 M

13 beta-D-Galactopyranoside, methyl
2,6-bis-O-(trimethylsilyl)-, cyclic b utylboronate 11.64 C17H37BO6Si2 404 56211-13-3 0.82 W

14 Glucobrassicin 11.81 C16H20N2O9S2 448 4356-52-9 0.3 M
15 Geldaramycin 11.81 C29H40N2O9 560 30562-34-6 0.3 M
16 Sarreroside 12.14 C30H42O10 562 545-36-8 1.1 M
17 Indole-3-acetamide 12.47 C10H12N2O 176 50-67-9 0.26 W
18 2-linoleoylglycerol, 2TMS derivative 13.24 C27H54O4Si2 498 54284-46-7 0.4 W
19 Arachidonic acid, trimethylsilyl ester 13.66 C23H40O2Si 376 113516-18-0 0.96 M
20 Pseudosolasodine diacetate 14.09 C31H49NO4 499 NA 0.6 M
21 2-Trimethylsiloxy-6-hexadecenoic acid, methyl ester 14.41 C20H40O3Si, 356 NA 0.36 M
22 Lucenin-2 14.56 C27H30O16 610 29428-58-8 0.32 W
23 Alpha Methyl Mannoside 15.09 C15H28B2O6 326 54400-84-9 0.53 W
24 5,8,11-Eicosatriynoic acid, TMS derivative 15.51 C23H36O2Si, 372 NA 1.09 M
25 3′,4′,7-trimethylquercetin 15.79 C18H16O7 344 6068-80-0 0.22 W
26 Glyceryl 2-linoleateester, (Z,Z,Z)- 16.02 C27H52O4Si2 496 55521-23-8 2.09 W

27 à-D-Galactopyranose, 6-O-(trimethylsilyl)-, cyclic
1,2:3,4-bis(butylboronate) 16.67 C17H34B2O6Si 384 72347-47-8 0.27 M

28 Retinol 17.05 C20H30O 286 68-26-8 2.41 W

29 á-d-glucopyranoside, methyl 2,3-bis-o-(trimethylsilyl)-,
cyclic methyl-boronate 17.52 C14H31BO6Si2 362 56211-07-5 1.71 W
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Table 1. Cont.

N Compound Name R.T Formula M.W CAS % Peak Area Library

31 Octadecanoic acid, 9,10-epoxy-18-(trimethylsiloxy)-, methyl
ester, cis- 17.71 C22H44O4Si 400 22032-78-6 2.05 W

32 Bicyclo
[4.4.0]dec-2-ene-4-ol,2-methyl-9-(prop-1-en-3-ol-2-yl)- 18.01 C15H24O2 236 NA 0.49 M

33 Guanosine 18.32 C10H13N5O5 283 118-00-3 15.57 W
34 Pentadecanoic acid 18.61 C15H30O2 242 1002-84-2 0.16 W
35 Neophytadiene 18.74 C20H38 278 504-96-1 4.53 M
36 Trans-Phytol 18.76 C20H40O 296 150-86-7 4.53 W
37 2-aminoethanethiol hydrogen sulfate (ester) 18.93 C2H7NO3S2 157 2937-53-3 0.27 W
38 [1,1′-bicyclopropyl]-2-octan oic acid, 2′-hexyl-, methyl ester 19.27 C21H38O2 322 56687-68-4 0.85 M
39 Ethanol, 2-(9-octadecenyloxy)-, (Z)- 19.54 C20H40O2 312 5353-25-3 2.42 W

40 9-Octadecenoic Acid, (2-Phenyl-1,3-Dioxolan-4-Yl)Methyl
Ester, Cis- 19.83 C28H44O4 444 56599-45-2 0.68 M

41 5,8,11-Eicosatriynoic acid, methylester 20.01 C21H30O2 314 NA 1.26 M
42 Hexadecanoic acid, methylester 21.37 C17H34O2 270 112-39-0 3.22 W

43 tristrimethylsilyl ether derivative of 1,25-dihydroxy vitamin
d2 22.28 C37H68O3Si3 644 NA 0.54 W

44 à-D-Glucofuranose, 6-O-(trimethylsilyl)-, cyclic
1,2:3,5-bis(butylboronate) 22.81 C17H34B2O6Si 384 72347-48-9 0.5 W

45 4-Hexyl-1-(7-methoxycarbonylheptyl) bicyclo
[4.4.0]deca-2,5,7-triene 23.31 C25H40O2 372 NA 0.27 M

46 D-Mannitol,1,1′-O-1,16-hexadecanediylbis- 23.66 C28H58O12 586 119049-16-0 1.05 M
47 Ethyl iso-allocholate 24.01 C26H44O5 436 NA 1.39 M
48 11-Octadecenoic acid, methyl ester 24.22 C19H36O2 296 52380-33-3 4.43 M
49 Linoleic acid ethyl ester 24.44 C20H36O2 308 544-35-4 1.61 W
50 9,12,15-octadecatrienoic acid, methyl ester 24.84 C19H32O2 292 7361-80-0 2.64 W

51
9,12,15-Octadecatrienoic acid,

2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl) oxy]methyl]ethyl
ester, (Z,Z,Z)-

25.23 C27H52O4Si2 496 55521-23-8 0.34 W

Methanol Extract

52 Isochiapin B 26.55 C19H22O6 346 102607-34-1 0.39 W
53 Oxiraneoctanoic acid, 3-octyl-, cis- 26.84 C18H34O3 298 24560-98-3 0.25 R
54 2-palmitoyl glycerol 28 C19H38O4 330 542-44-9 1.05 W

55 2-hydroxy-3-[(9e)-9-octadecenoyloxy]
propyl(9e)-9-octadecenoate 28.24 C39H72O5 620 2465-32-9 0.85 W
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Table 1. Cont.

N Compound Name R.T Formula M.W CAS % Peak Area Library

56
A-d-glucopyranoside, methyl

2-(acetylamino)-2-deoxy-3-O-(trimethylsilyl)-, cyclic
methylboronate

28.63 C13H26BNO6Si, 331 54477-01-9 0.44 W

57 Mannopyranose, 1-O-(trimethylsilyl)-,
2,3:4,6-dibutaneboronate 29.28 C17H34B2O6Si 384 55712-55-5 0.24 M

58 Isokaempferide 31.27 C16H12O6 300 1592-70-7 0.6 W

59 9,12,15-Octadecatrienoicacid, 2,3-Bis[(Trimethylsilyl)
Oxy]Propyl Ester, (Z,Z,Z)- 31.91 C27H52O4Si2 496 55521-22-7 0.35 W

60 1-Heptatriacotanol 32.83 C37H76O, 536 105794-58-9 4.57 M
61 9,12,15-Octadecatrienoic acid,2-phenyl-1,3-dioxan-5-yl ester 34.62 C28H40O4 440 56700-76-6 0.25 M
62 5,8,11-Eicosatriynoic acid, tert-butyldimethylsilyl ester 36.53 C26H42O2Si 414 0.27 M
63 Vitamin E 37.6 C29H50O2 430 59-02-9 2.39 M

64 A-d-galactopyranoside,
methyl2,3-bis-o-(trimethylsilyl)-,cyclic methylboronate 39.19 C14H31BO6Si2 362 56211-08-6 0.53 W

65 3-(tetradecanoyloxy)-2-
[(trimethylsilyl)oxy]propylmyristate 40.31 C34H68O5Si 584 NA 0.24 W

66 á-D-Galactopyranoside, methyl 2,6-bis-O-(trimethylsilyl)-,
cyclic methylboronate 41.08 C14H31BO6Si2 362 56211-06-4 2.79 M

67
o-tetrakis(trimethylsilyl)

3,5-dihydroxy-2-(3-hydroxy-1-octenyl) cyclopentanehe
ptanoate

41.72 C32H64O5Si4 640 NA 0.2 W

68
25-Norisopropyl-9,19-cyclolanostan-22-en-24-one,3-

acetoxy-24 phenyl4,4,14
trimethyl-

42.57 C35H48O3 516 NA 0.14 M

Cold Water Extract

1 1,3-Dipalmitin, TMS derivative 4.56 C38H76O5Si 640 53212-95-6 6.61 R
2 Palmitoyl glycerol 4.87 C19H38O4 330 542-44-9 1.24 W
3 Palmitic acid 5.12 C16H32O2 256 57-10-3 5.94 W
4 Ethyl iso-allocholate 6.89 C26H44O5 436 NA 2.4 W
5 1-Monooleoylglycerol trimethylsilyl ether 9.09 C27H56O4Si2 500 54284-48-9 0.66 W
6 Oxiraneundecanoic acid, 3-pentyl-, methyl ester, cis 9.29 C19H36O3 312 1041-25-4 1.06 W
7 Astaxanthin 9.88 C40H52O4 596 472-61-7 1.18 M
8 α-D-mannopyranoside 10.61 C15H28B2O6 326 54400-84-9 1.63 W
9 2H-Pyran,tetrahydro-2-(12-pentadecynyloxy)- 10.73 C20H36O2 308 56666-38-7 0.69 M

10 D-Mannitol,1,1′-O-1,16-hexadecanediylbis- 10.82 C28H58O12 586 119049-16-0 0.86 W
11 Biocytin 12.15 C16H28N4O4S 372 576-19-2 9.51 Nist_msms
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Table 1. Cont.

N Compound Name R.T Formula M.W CAS % Peak Area Library

12 Ascaridole 13.58 C10H16O2 168 135760-25-7 2.28 M
13 (+)-delta-Cadinene 14.09 C15H24 204 12.88 M
14 N-Benzylideneisopropylamine 14.37 C10H13N 147 6852-56-8 19.11 R

15 2-(3,4-dimethoxyphenyl)-3,5-dihydroxy-7-methoxy-4H-1-
Benzopyran-4-one 15.1 C18H16O7 344 6068-80-0 1.08 W

16 3-Acetoxy-7,8-epoxylanostan-11-ol 16.18 C32H54O4 502 NA 0.37 W
17 5,8,11-Eicosatrienoic acid, (Z)-, TMS derivative 16.28 C23H42O2Si 378 NA 1.52 M
18 All-trans-beta-Carotene 18.01 C40H56 536.4 NA 1.19 M
19 1-Monooleoylglycerol, 2TMSderivative 18.45 C27H56O4Si2 500 54284-47-8 1.45 R

20 Tristrimethylsilyl ether derivative of 1,25-dihydroxy vitamin
D2 18.74 C37H68O3Si3 644 NA 0.63 W

21 4′-Apo-beta,psi-caroten-4′-al 19.12 C35H46O 628 482.3549 0.63 W
22 5,8,11-Eicosatriynoic acid,tert-butyldimethylsilyl ester 19.55 C26H42O2Si 414 NA 1.98 M

23 Octadecanoic acid,9,10-epoxy-18-(trimethylsiloxy)-,methyl
ester, cis- 19.61 C22H44O4Si 400 22032-78-6 0.66 M

24 10,12,14-Nonacosatriynoic acid 20.02 C29H46O2 426 NA 0.43 W

25 9,12-Octadecadienoic acid(Z,Z)-,
2,3-bis[(trimethylsilyl)oxy]propyl ester 20.55 C27H54O4Si2 498 54284-45-6 2 M

26 Rhodopin 20.69 C40H58O 554 105-92-0 1.37 W
27 Palmitic acid, methyl ester 21.37 C17H34O2 270 112-39-0 0.63 M

28 Methyl 2-O,3-O-bis(trimethylsilyl)-4-O,6-O-
(methylboranediyl)-β-D-glucopyranoside 22.81 C14H31BO6Si2 362 56211-07-5 3.44 R

29 Methyl 2-O,3-O-bis(trimethylsilyl)-4-O,6-O-
(methylboranediyl)-α-D-glucopyranoside 23.3 C14H31BO6Si2 362 54400-90-7 2.51 W

Cold Water Extract

30 Glycodeoxycholic acid 23.59 C26H43NO5 449 360-65-6 0.67 M

31 à-D-Glucofuranose, 6-O-(trimethylsilyl)-, cyclic
1,2:3,5-bis(butylboronate) 23.65 C17H34B2O6Si 384 72347-48-9 0.49 W

32 1,25-Dihydroxyvitamin D3, TMS derivative 24.03 C30H52O3Si 488 55759-94-9 0.63 M
33 Oleic acid, methyl ester 24.21 C19H36O2 296 18654-84-7 4.25 W
34 7-Methyl-Z-tetradecen-1-ol acetate 24.45 C17H32O2 268 0.84 M
35 Glyceryl 2-linoleate 24.62 C27H52O4Si2 496 55521-23-8 1.08 W
36 Stigmasterol 26.27 C32H56OSi 484 14030-29-6 1.05 M

37 à-D-Galactopyranose, 6-O-(trimethyl-silyl)-, cyclic
1,2:3,4-bis(butylboronate) 27.67 C17H34B2O6Si 384 72347-47-8 0.77 M

38 Trilinolein 32.84 C57H98O6 878 537-40-6 1.28 M
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Table 1. Cont.

N Compound Name R.T Formula M.W CAS % Peak Area Library

Autoclaved Water Extract

1 Linoleic acid, 2,3-bis-(OTMS) propyl ester (α-glyceryl
linoleate) 4.56 C27H54O4Si2, 498 54284-45-6 7.19 W

2 5-(2-propenyl)- 15.8 C13H18O2 206 73685-60-6 1.97 W
3 2-Oleoylglycerol, 2TMS derivative 18.45 C27H56O4Si2 501 56554-42-8 17.15 M
4 methylboronate 20.21 C14H31BO6Si2, 362 56211-08-6 2.1 M
5 Palmitic acid, methyl ester 21.38 C17H34O2 270 112-39-0 3.18 R
6 5,8,11-Eicosatriynoic acid, tert-butyldimethylsilyl ester 23.57 C26H42O2Si 414 NA 1.54 M
7 Digitoxin 23.7 C41H64O13 764 71-63-6 1.42 M
8 Methyl 9,9-dideutero octadecanoate 24.22 C19H36D2O2 300 19905-64-7 5.83 W
9 Doconexent, TBDMS derivative 24.46 C28H46O2Si 442 NA 1.68 M

10 Phthalate 24.62 C8H6O4 166 88-99-3 42.33 M
11 Hexa-t-butylselenatrisiletane 31.28 C24H54SeSi3 506 93194-15-1 1.86 M

12 trimethylsilyl (13e)-9,11,15-tris[(trimet
hylsilyl)oxy]prost-13-en-1-oate 34.79 C32H68O5Si4 644 55556-77-9 1.69 W

13 á-d-galactopyranoside, methyl 2,6-bis-o-(trimethylsilyl)-,
cyclic methylboronate 34.87 C14H31BO6Si2 362 56211-06-4 0.75 M

14 spirosolan-3-ol, 28-acetyl-, acetate (ester), (3á,5à,22á,25s)- 35.26 C31H49NO4 499 1181-86-8 1.17 W

15 à-d-glucopyranoside, methyl 2,3-bis-o-(trimethylsilyl)-,
cyclic methylboronate 35.36 C14H31BO6Si2 362 54400-90-7 1.97 W

16 5,8,11,14-Eicosatetraynoic acid, TBDMS derivative 36.3 C26H38O2Si 411 NA 1.68 M

17 à-D-Galactopyranose, 6-O-(trimethyl silyl)-, cyclic
1,2:3,4-bis(butylboronate) 36.35 C17H34B2O6Si 384 72347-47-8 0.88 M

18 o-tetrakis(trimethylsilyl)3,5-dihydroxy-2-(3-hydroxy-1-
octenyl)-cyclopenta-neheptanoate 36.49 C32H64O5Si4 640 NA 1.49 W

19 bis(trimethylsilyl)derivative
of3à,20à-dihydroxy-5à-pregnan-11-one 36.58 C27H50O3Si2 478 NA 1.49 M

20 Tristrimethylsilyl ether derivative of 1,25-dihydroxy vitamin
D2 36.64 C37H68O3Si3 644 NA 1.62 W
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Regarding CWE, n-benzylidene-isopropylamine was recorded as the main com-
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pound (9.51%) and 1,3-Dipalmitin, TMS derivative compound (6.61%). While phthalate 
(42.33%) was the main compound recorded in the AWE, followed by 2-Oleoylglycerol, 
2TMS derivative compound (17.15%), followed by linoleic acid, 2,3-bis-(OTMS) propyl 
ester (α-glyceryl linoleate) compound (7.19%), followed by methyl 9,9-dideutero octade-
canoate compound (5.83%) (Table 1). Moreover, each extract contained its unique and 
common phytochemical compounds that shared with others (Figure 1). For example, ME 
(A) had 48 unique compounds while shared with CWE and AWE by 11and 4 common 
compounds, respectively. Meanwhile, 5 common compounds were shared amongst all 
three leaf extracts. Furthermore, CWE (B) consisted of 21 unique compounds and one 
common compound shared with the AWE. On the other hand, AWE (C) contained 10 
unique compounds (Figure 1). Thereby the variation existed in extracts composition and 
consequently different chemical nature is extract-type dependent. 

 
Figure 1. Three-way Venn Diagram to show the number of unique and common compounds in the 
three phytochemical extracts from C. procera leaves (A), methanolic extract (ME), (B) cold water ex-
tract (CWE) and (C) autoclaved water extract (AWE). 

Figure 1. Three-way Venn Diagram to show the number of unique and common compounds in
the three phytochemical extracts from C. procera leaves (A), methanolic extract (ME), (B) cold water
extract (CWE) and (C) autoclaved water extract (AWE).

3.2. Effect of C. procera Leaf Extracts on the Growth Criteria of C. roseus under Irrigation and
Foliar Spraying Treatments

The shoot and root length of C. roseus increased significantly (p < 0.05 or p < 0.01)
upon irrigation and spraying treatments. These increments ranged between 18–46% and
18–105% for shoot and root length, respectively, when compared with the control (Table 2
and Figure 2). The difference between the different types of extracts is significant in most
cases (p ≤ 0.05) whereas their promoting effect was comparable regardless of the used
application mode. On the other hand, highly significant (p < 0.01) growth promotion in
terms of fresh and dry weight compared to control was registered by C. procera treatments
which ranged between 25–160% and 55–85% for shoot and root fresh weight, respectively,
when compared with the control. While dry weight increments ranged between 90–199%
and 73–160% for shoot and root, respectively, as compared with the control. This effect
upon fresh and dry weights was extract type and application mode independent as the
values of fresh and dry weight statistically showed no significant differences between
treatments (p > 0.05, bearing the same difference letters).
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The obtained promotion effect on growth criteria is in agreement with the data rec-
orded from studying the impacts of aqueous extracts of four medicinal plants (Eclipta pros-
trate, Wood fordia fructicosa, Ageratum conyzoides and Cannabis sativa) on the seed germina-
tion, seedling growth and biomass production of Triticum aestivum (wheat) and Pisum sa-
tivum (pea) [40]. Additionally, the obtained results are in line with Draz et al. [41] who 

Figure 2. Illustration of growth pattern of C. roseus shoots and roots treated with three leaves extracts of C. procera (ME,
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Table 2. Effect of three types of C. procera leaf extracts (ME, CWE and AWE) applied by two different application modes (irrigation and foliar spraying) on growth criteria of C. roseus. Each
value represents a mean value of four replicates ±SE. * and ** donate the difference significantly from the control at the probability levels of 0.05 and 0.01, respectively. Different letters
within row (a, b, c) indicate significant differences (p ≤ 0.05) between the types of extracts of the two application modes irrigation and spraying.

Parameters
Irrigation Foliar Spraying

Control ME CWE AWE ME CWE AWE

Shoot length (cm plant−1) 17.12 ± 0.11 25.01 ± 0.2 a ** 20.91 ± 0.43 b ** 20.33 ± 0.45 b ** 20.13 ± 0.56 b ** 23.09 ± 0.56 a ** 25.01 ± 0.44 a **
Root length (cm plant−1) 8.44 ± 0.13 13.98 ± 0.3 a * 11.21 ± 0.22 b * 9.99 ± 0.31 b * 14.10 ± 0.34 a * 10.76 ± 0.3 1b * 17.34 ± 0.32 a **

Shoot fresh weight (g plant−1) 7.31 ± 0.22 10.98 ± 0.32 b ** 9.13 ± 0.11 b ** 10.21 ± 0.32 b ** 13.63 ± 0.23 b ** 18.21 ± 0.42 a ** 19.01 ± 0.21 a **
Root fresh weight (g plant−1) 2.26 ± 0.18 3.75 ± 0.12 a ** 3.85 ± 0.41 a ** 3.56 ± 0.21 a ** 3.98 ± 0.41 a ** 3.85 ± 0.11 a ** 4.18 ± 0.22 a **
Shoot dry weight (g plant−1) 1.46 ± 0.04 4.09 ± 0.23 a ** 3.32 ± 0.23 a ** 3.89 ± 0.14 a ** 2.77 ± 0.14 b ** 3.91 ± 0.22 a ** 4.37 ± 0.11 a **
Root dry weight (g plant−1) 0.30 ± 0.02 0.78 ± 0.14 a ** 0.52 ± 0.02 b ** 0.59 ± 0.05 b ** 0.59 ± 0.043 b ** 0.54 ± 0.06 b ** 0.78 ± 0.061 a **

ME: methanolic extract; CWE: cold water extracts; AWE: autoclaved extract. * Significantly different from control (p < 0.05) assessed by LSD test. ** Very significantly different from control (p < 0.01) assessed by
LSD test.
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The obtained promotion effect on growth criteria is in agreement with the data
recorded from studying the impacts of aqueous extracts of four medicinal plants (Eclipta
prostrate, Wood fordia fructicosa, Ageratum conyzoides and Cannabis sativa) on the seed germi-
nation, seedling growth and biomass production of Triticum aestivum (wheat) and Pisum
sativum (pea) [40]. Additionally, the obtained results are in line with Draz et al. [41]
who demonstrated that the extracts from lantana, Lantana camara; henna, Lawsonia iner-
mis; pomegranate, Punica granatum; acalypha, Acalypha wilkesiana and chinaberry, Melia
azedarach significantly increased wheat yield components in terms of 1000-kernel and spike
weight compared to the non-treated control. Moreover, Shabana et al. [42] and Nagwa and
Iman [43] found that the foliar spraying of plant extracts (Brazilian pepper, pomegranate,
neem, garlic, cactus, and eucalyptus) significantly increased wheat yield components,
including spike weight and 1000-kernel weight. Naz and Bano [44] reported that C. procera
leaves extract has growth-promoting effects on maize crop and this was attributed to the
macro and micronutrients present in C. procera extracts easily absorbed by target plants
that exhibit an influential role in the vital metabolism within the plant [45].

3.3. Effect of C. procera Leaves Extracts on Physio-Biochemical Indices of C. roseus under
Irrigation and Foliar Spraying Treatments
3.3.1. Photosynthetic Pigments Content

The results derived from growth-performance screening of C. roseus leaves and roots
were depicted in Tables 3 and 4. All C. procera extracts induce significant (p < 0.05) stimulant
effect on photosynthetic pigments accumulation which recorded a considerable increment
ranged between 60–179%, 71–156% and 32–158% for chlorophyll a, chlorophyll b and
carotenoids, respectively, compared to control (Table 3). Statistically, in most cases, there is
no significant difference between treatments. Stimulation effect was comparable between
the different extracts of the two modes of application.

It is worthy to note that chlorophylls and carotenoids are ubiquitous and essential
photosynthetic pigments, which are intricately linked with plant growth criteria in terms
of shoot and root length, fresh and dry weight indicating enhancing carbon allocating
process [46]. Draz et al. [41] found that plant extracts of Acalypha wilkesiana, Melia azedarach,
Lawsonia inermis, Lantana camara and Punica granatum enhanced the total chlorophyll (a + b)
content in wheat leaves.
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Table 3. Effect of three types of C. procera leaves extracts (ME, CWE and AWE) applied by two different application modes (irrigation and foliar spraying) on physio-biochemical indices of
C. roseus. Each value represents a mean value of four replicates ± SE. * and ** donate the difference significantly from the control at the probability levels of 0.05 and 0.01, respectively.
Different letters (a, b, c) within row indicate significant differences (p ≤ 0.05) between the types of extracts of the two application modes irrigation and foliar spraying.

Physio-Biochemical Indices Tissue Type
Irrigation Foliar Spraying

Control ME CWE AWE ME CWE AWE

Pigments
(mg g−1 FW)

Chlorophyll a L 1.460 ± 0.43 2.320 ± 0.52 a * 2.59 ± 0.44 a * 4.080 ± 0.21 b ** 3.210 ± 0.11 a * 2.260 ± 0.12 a * 3.970 ± 0.16 b *
Chlorophyll b L 0.303 ± 0.01 0.519 ± 0.02 a * 0.527 ± 0.04 a * 0.777 ± 0.05 b ** 0.655 ± 0.07 b * 0.549 ± 0.03 a * 0.769 ± 0.05 b **
Carotenoids L 0.84 ± 0.11 1.812 ± 0.13 a * 1.497 ± 0.32 a 2.166 ± 0.021 b ** 1.391 ± 0.11 a 1.112 ± 0.09 a 1.944 ± 0.09 b

Primary
metabolites

(mg g−1 DW)

Carbohydrates L 15.916 ± 1.21 18.617 ± 1.55 a * 17.251 ± 0.92 a * 22.692 ± 1.87 b ** 16.342 ± 1.34 a * 19.632 ± 1.32 a * 24.019 ± 1.88 b **
R 9.524 ± 0.95 12.569 ± 1.12 a ** 10.227 ± 0.66 a * 13.079 ± 1.01 a ** 14.820 ± 0.99 b ** 16.212 ± 1.32 b ** 16.663 ± 0.93 b **

Free amino acids
L 2.061 ± 0.34 3.131 ± 0.44 a * 2.948 ± 0.21 a * 3.312 ± 0.55 a ** 3.210 ± 0.34 a * 3.017 ± 0.11 a * 3.219 ± 0.22 a *
R 0.934 ± 0.03 1.214 ± 0.06 a * 1.023 ± 0.09 a * 1.352 ± 0.11 a * 1.334 ± 0.09 a * 1.109 ± 0.10 a * 1.521 ± 0.08 a *

Proteins
L 12.352 ± 1.23 17.991 ± 1.01 b * 15.400 ± 0.91 a * 18.321 ± 0.81 b ** 18.201 ± 0.80 b ** 17.667 ± 0.72 b * 22.321 ± 0.92 c **
R 7.965 ± 0.45 10.870 ± 0.65 a * 9.112 ± 0.44 a * 11.442 ± 0.89 a ** 9. 14 ± 0.67 a * 9.632 ± 0.55 a * 13.521 ± 1.09 b **

Reactive oxygen
species and
membrane

damage trait

O2
−

(µg g−1 FW)
L 10.960 ± 0.55 9.101 ± 0.43 c * 8.674 ± 0.32 c * 7.001 ± 0.54 b ** 6.985 ± 0.44 b ** 6.642 ± 0.34 b ** 5.488 ± 0.63 a **
R 0.890 ± 0.01 0.690 ± 0.02 b ** 0.720 ± 0.03 b * 0.760 ± 0.02 b * 0.710 ± 0.01 b * 0.520 ± 0.02 a ** 0.420 ± 0.01 a **

OH
(µmol g−1 FW)

L 1.066 ± 0.22 0.508 ± 0.01 a ** 0.899 ± 0.03 b * 1.034 ± 0.32 b * 0.902 ± 0.04 b * 0.878 ± 0.01 b * 0.876 ± 0.02 b *
R 4.591 ± 0.09 1.235 ± 0.02 a ** 3.816 ± 0.04 b * 3.720 ± 0.03 b * 2.517 ± 0.03 a * 3.545 ± 0.04 b * 3.644 ± 0.04 b *

H2O2
(µmol g−1 FW)

L 8.626 ± 0.23 6.547 ± 0.43 b * 7.689 ± 0.11 c * 6.963 ± 0.23 b * 4.292 ± 0.11 a ** 7.380 ± 0.41 c * 4.983 ± 0.21 a *
R 2.369 ± 0.03 1.915 ± 0.01 b * 2.013 ± 0.02 b 2.054 ± 0.02 b 1.992 ± 0.03 b 1.563 ± 0.01 a * 1.201 ± 0.04 a *

MDA
(µmol g−1 FW)

L 34.783 ± 1.51 19.711 ± 0.91 a ** 19.084 ± 0.87 a ** 24.226 ± 1.23 a ** 24.354 ± 1.45 a ** 21.798 ± 1.33 a ** 22.919 ± 1.45 a **
R 72.466 ± 2.03 60.437 ± 1.35 b ** 53.620 ± 1.22 a ** 59.516 ± 2.22 a ** 53.733 ± 1.65 a ** 60.988 ± 2.06 b ** 59.210 ± 0.99 a **

L: leaves, R: roots, ME: methanolic extract, CWE: cold water extract, AWE: autoclaved water extract, H2O2: hydrogen peroxide, O2
•-: superoxide anion, •OH: hydroxyl radical, MDA: malondialdehyde. *

Significantly different from control (p < 0.05) assessed by LSD-test. ** Very significantly different from control (p < 0.01) assessed by LSD test.
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Table 4. Effect of three types of C. procera leaves extracts (ME, CWE and AWE) applied by two different application modes (irrigation and foliar spraying) on physio-biochemical indices of
C. roseus. Each value represents a mean value of four replicates ±SE. * and ** donate the difference significantly from the control at the probability levels of 0.05 and 0.01, respectively.
Different letters (a, b, c) within row indicate significant differences (p ≤ 0.05) between the types of extracts of the two application modes irrigation and foliar spraying.

Physio-Biochemical Indices Tissue Type
Irrigation Foliar Spraying

Control ME CWE AWE ME CWE AWE

Secondary
metabolites

(mg g−1 FW)

Anthocyanins L 0.613 ± 0.02 0.611 ± 0.03 a 0.678 ± 0.03 a 0.659 ± 0.04 a 1.019 ± 0.32 b * 0.899 ± 0.05 b * 1.147 ± 0.11 b *
Phenolics L 3.701 ± 0.13 4.073 ± 0.22 a 4.135 ± 0.14 a 4.022 ± 0.09 a 4.853 ± 0.11 a 3.938 ± 0.14 a 4.017 ± 0.21 a

R 0.498 ± 0.02 1.076 ± 0.05 b * 0.926 ± 0.04 b * 1.222 ± 0.12 b * 0.535 ± 0.01 a 1.161 ± 0.3 b * 0.518 ± 0.02 a
Flavonoids L 54.758 ± 2.41 60.870 ± 3.11 a * 80.818 ± 2.17 a * 65.110 ± 3.01 a * 130.641 ± 4.12 b ** 115.066 ± 1.33 b * 257.157 ± 6.03 c **

R 3.698 ± 0.54 7.100 ± 0.32 b ** 6.819 ± 0.21 b ** 6.646 ± 0.11 b ** 4.295 ± 0.43 a * 8.761 ± 0.42 c ** 4.901 ± 0.12 a *
Alkaloids L 0.561 ± 0.01 1.666 ± 0.04 c * 0.767 ± 0.01 a * 0.912 ± 0.04 b* 1.743 ± 0.06 c * 0.974 ± 0.02 b * 0.942 ± 0.03 b *

Non-enzymatic
antioxidants
(µg g−1FW)

Ascorbic acid L 0.293 ± 0.01 0.350 ± 0.02 a * 0.357 ± 0.02 a * 0.410 ± 0.01 a * 0.360 ± 0.03 a * 0.367 ± 0.01 a * 0.369 ± 0.02 a *
Reduced glutathione L 51.478 ± 2.11 55.068 ± 2.23 a * 52.662 ± 2.11 a 53.198 ± 3.10 a 55.056 ± 3.11 a * 55.167 ± 2.05 a * 51.309 ± 1.23 a

Tocopherol L 129.806 ± 5 662.786 ± 28 c ** 403.471 ± 16 a ** 552.740 ± 22 b ** 493.175 ± 21 a ** 467.679 ± 23 a ** 591.472 ± 30 b **

Enzymatic
antioxidants

CAT
(u mg−1 protein g−1

FW min−1)

L 10.379 ± 0.54 13.215 ± 0.43 a * 16.354 ± 0.65 a * 16.412 ± 0.56 a ** 14.650 ± 0.44 a * 15.321 ± 0.43 a *
16.219 ± 0.82 a *

R 0.95 ± 0.05 2.60 ± 0.1 b ** 2.63 ± 0.4 b ** 3.01 ± 0.5 b ** 1.01 ± 0.05 a * 1.11 ± 0.08 a * 1.02 ± 0.07 a *

APX
(µmol mg−1 protein

g−1FW min−1)

L 33.641 ± 1.56 35.210 ± 2.01 a 34.960 ± 1.78 a 39.250 ± 2.33 b * 40.130 ± 2.62 b * 41.320 ± 2.16 b *
41.710 ± 2.09 b *

R 10.632 ± 0.54 15.631 ± 0.65 b * 14.320 ± 0.43 b * 14.604 ± 0.55 b * 10.905 ± 0.43 a 11.231 ± 0.32 a 11.421 ± 0.43 a

PPO
(u mg−1 protein g−1

FW min−1)

L 4.365 ± 0.13 15.966 ± 0.97 a * 19.365 ± 0.99 b * 15.215 ± 0.77 a * 20.363 ± 0.99 b ** 16.325 ± 0.65 a *
21.325 ± 0.91 b **

R 8.251 ± 0.65 18.365 ± 0.96 b ** 19.325 ± 0.87 b ** 19.001 ± 0.87 b ** 11.325 ± 0.55 a * 10.251 ± 0.56 a * 15.965 ± 0.76 ab **

POD
(µmol mg−1 protein

g−1 FW min−1)

L 16.951 ± 0.91 19.000 ± 0.53 a * 19.642 ± 0.65 a * 22.632 ± 0.89 b ** 24.012 ± 1.09 b ** 26.352 ± 0.99 c **
28.112 ± 1.31 c **

R 5.479 ± 0.44 8.931 ± 0.33 b * 6.952 ± 0.82 a * 7.024 ± 0.41 a ** 7.950 ± 0.34 b ** 8.651 ± 0.63 b ** 9.167 ± 0.91 b **

PAL
(µmol mg−1 protein

g−1 FW min−1)

L 15.203 ± 0.87 19.362 ± 0.91 a * 18.952 ± 0.82 a * 20.325 ± 0.77 a * 19.362 ± 0.92 b * 24.252 ± 1.01 b **
24.633 ± 1.03 b **

R 18.025 ± 0.96 24.362 ± 1.22 b ** 26.365 ± 1.54 b * 29.362 ± 1.88 b ** 20.754 ± 1.54 a * 21.633 ± 1.20 a * 20.325 ± 1.11 a *

GST
(u mg−1 protein g−1

FW min−1)

L 6.325 ± 0.05 18.352 ± 0.62 a ** 14.633 ± 0.71 a ** 16.325 ± 0.56 a ** 23.366 ± 0.93 b ** 23.252 ± 0.82 b **
30.650 ± 1.20 c **

R 9.363 ± 0.57 9.997 ± 0.43 a * 9.51 ± 0.36 a 10.633 ± 0.78 a * 10.633 ± 0.75 a * 16.325 ± 0.88 b ** 20.325 ± 1.12 c **

L: leaves, R: roots, ME: methanolic extract, CWE: cold water extract, AWE: autoclaved water extract, CAT: catalase, APX: ascorbate peroxidase, PPO: polyphenol oxidase, POD: guaiacol peroxidase, PAL:
phenylalanineammonialyase, GST: Glutathione-S-transferase. * significantly different from control (p < 0.05) assessed by LSD-test. ** very significantly different from control (p < 0.01) assessed by LSD test.
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3.3.2. Primary Metabolites: Carbohydrates, Amino Acids and Proteins Content

Data illustrated in Table 3 revealed that three different types of extracts significantly
(p < 0.05 or p < 0.01) intensified the primary metabolites production in terms of carbohy-
drates, amino acids and proteins in both leaves and root with percent increase ranged
between 3–60%, 43–61% and 25–81% in leaves and 7–75%, 10–63% and 14–70% in root
for carbohydrates, amino acids and proteins, respectively, in comparison to control. The
overproduction of some primary metabolites (i.e., carbohydrates, amino acids and pro-
teins) and consequently investment in C. roseus shoot and root biomass may go in line
with the enhancing of chlorophyll content in the plant, presumably as a consequence of
improved levels of photosynthetic pigments, leading to an increased photosynthetic rate
have stimulated the source-to-sink transport of sugars thereby increasing carbohydrates
content. The increasing in amino acids content goes parallel with the enhancing of proteins
manufacturing indicating anabolism pathway under C. procera treatments.

These results were concomitant with Gamal et al. [47] who showed that the treatment
with aqueous extracts of Malva parviflora L. and Artemisia ludia L. significantly increased
the protein content, yield and growth of cowpea (Vigna unguiculata (L.) Walp.). Cheema
et al. [6] and Gamalero and Glick [48] found that the phytochemicals can promote growth
through optimum CO2 fixation upon normal conditions and they operate a positive role in
physiological processes such as chlorophyll accumulate, photosynthesis, leaf expansion,
translocation and genetic encodings, greater uptake and use efficiency of nitrogen resulting
in a greater synthesis of protein.

3.3.3. Superoxide Anion (O2
•−), Hydroxyl Free Radical (•OH) and Hydrogen Peroxide

(H2O2) Accumulation and Membrane Damage Trait (MDA)

Effect of Calotropis treatments on oxidative cell status of C. roseus was evaluated by
determination of the stress markers (ROS), such as superoxide radical (O2

•−), hydroxy rad-
ical (•OH), hydrogen peroxide (H2O2), besides ROS, oxidative burst to cellular membranes
(membrane damage trait) assessed as lipid peroxidation level (malondialdehyde concentra-
tion, MDA) all of these were significantly (p < 0.05 or p < 0.01) and interestingly lowered
than control by all applied treatments. Statistically (p ≤ 0.05) and in the most investigated
cases of Calotropis treatments a comparable effect on MDA reduction was pronounced
among all types of extracts submitting a comparable protective effect on C. roseus via
reducing the accumulation of each O2

•−, •OH and H2O2 [49,50] consequently low MDA
content in leaves and roots of C. roseus. In the present study, CLEs-devoid control plants
exhibited a substantial accumulation of ROS, including O2

•−, •OH and H2O2 which was
accompanied by a concomitant increase in MDA content indicating that the control plants
might have suffered from oxidative damage under field conditions. The reduction in ROS
level was concomitant with enhancing of membrane integrity and stability evidenced by
low MDA concentration that may be another main reason for growth improvement under
C. procera treatments compared to control reflecting high optimal condition for efficient
cellular metabolism and performance that can be ascribed to stabilization of cell redox
status [49,51]. The improving mechanism displayed by Calotropis treatments thus was
appraised by oxidative cell status maintenance ensuring normal cellular function and cell
metabolism by Calotropis that was associated with enhancing in growth criteria, advocating
bio-stimulant effect of Calotropis extracts upon C. roseus.

3.3.4. Anthocyanin, Phenolics, Flavonoid, Alkaloids, Ascorbic Acid, Reduced Glutathione
and α-Tocopherol Contents

Catharanthus roseus is one of the very extensively investigated medicinal plants due to
its powerful antioxidants. It produces a wide spectrum of secondary metabolites viz., an-
thocyanins, phenolics and alkaloids. We further elucidated the beneficiary role of CLEs by
quantifying the amount of non-enzymatic antioxidants. The protective impact of C. procera
was explained by exacerbation of low molecular weight non-enzymatic antioxidants viz.
ascorbic acid, reduced glutathione and α-tocopherol (which registered percent increase
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fluctuated between 19–40, 2–7 and 211–411, respectively) besides boosting of secondary
metabolites pathway as manifested by elevated leaves anthocyanins, phenolics, flavonoids
and alkaloids contents (Table 4) with percent increase ranging between 47–87, 6–31, 10–370
and 37–197, respectively, when compared to control. C. procera treatments significantly
(p < 0.05 or p < 0.01) increased the antioxidant potential of C. roseus plant whatever extract
type and application mode. These compounds play multiple functions concerning antiox-
idant properties and the ability to diminish free oxygen radicals conferring membrane
stability, in turn, restricts the dispersal of free radicals and minimizes membrane lipids per-
oxidation. This may be partly accounted for upholding the low level of lipid peroxidation
in plants subsequently higher membrane integrity compared to control plants [49,51]. That
was a promising result to approve C. procera as a prospective protective agent. Moreover,
the exacerbation of both primary and secondary metabolites production by C. procera
extracts indicates the highly prompted and efficiently up-regulated carbon metabolism
that may encourage the translocation of carbon to its sinks with an increment in the car-
bon pool ultimately allocated for secondary metabolism and thus greater production of
secondary metabolites as well as growth and development [52,53], the matter that may
catapult C. procera as an inducible agent. In the present work, the increase in the production
of secondary metabolites: anthocyanin, phenolics and flavonoids could be witnessed by
increasing in PAL activities submitting an up-regulation of plant secondary metabolite
production jointed with enhanced PAL activity that is efficiently prompted by CLEs. This
is mainly due to the fact that PAL is an enzyme, which synthesizes a precursor for various
secondary metabolites production and a crucial regulation factor between primary and
secondary metabolism [54]. On the other hand, the elevated amino acids content might be
legalized the availability of the phenylalanine (Phe) as an elite substrate for PAL thus more
Phe is available for secondary metabolites production [55].

3.3.5. Enzymatic Antioxidants

The alternations in the capacities of enzymatic antioxidant of C. roseus leaves and roots
under irrigation and spraying treatments with CLEs (ME, CWE and AWE) were showed in
Table 4. All C. procera treatments significantly (p < 0.05 or p < 0.01) triggered the enzymatic
antioxidants activities in C. roseus leaves and roots compared to control thus the stabilizing
of cell oxidative status may be due to boosting of quenching hydrogen peroxide enzymes
viz. CAT, APX, PPO, POD and GST. The highest increment in leaves enzymes activities was
registered for both enzymes PPO and GST and amounted to 389% and 384%, respectively,
when compared to control. In root CAT activity, the highest increment value that amounted
as 217% with respect to control was recorded.

The increment of various ascorbate–glutathione pathway enzymes, POD and GST,
could interpret the trapping of oxidative stress burst and healthiness of C. roseus plants [49].
The stimulation of PAL activity by various extracts was the main way for secondary
metabolites enhancement as phenolics, flavonoids and anthocyanins as was reported
by Ghasemzadeh et al. [53,54]. The activation of PPO could increase the plant defense
responses against the pathogen attack. C. procera extracts and whatever the method of
application efficiently induced the activity of PPO under natural conditions. Thus, further
studies should be done to evaluate the role of C. procera in induction biochemical changes
under biotic and a biotic stress.

Overall, The enhanced antioxidative capacity via increasing activities of CAT, APX,
PPO, POD, GST and PAL as well as healthy promoting non-enzymatic antioxidants such
as ascorbic acid, (AsA), glutathione (GSH), α-tocopherols, function together to maintain
membrane integrity which advocated by lower lipid peroxidation indicating the potential
role of phytochemicals in CLEs at the cellular level as modulators of gene expression, plant
growth regulators and in signal transduction [54,56,57] indicating that CLEs mediated
the promotion of antioxidant enzyme activities. These results were concomitant with
several studies that confirmed that many plants extracts have defense enzymes stimulation
properties. Goel and Paul [58] found that the PPO in tomato was stimulated by Azadirachta



Plants 2021, 10, 1623 18 of 23

indica aqueous fruit extracts. Additionally, PAL, POD and PPO in cotton were activated by
zimmu (Allium cepa L. and Allium sativum L.) [59], and PAL in barely prompted by aqueous
extract of leaves of Azadirachta indica [60].

3.4. The Interplay between Phytochemical Compounds from C. procera Extracts and Metabolism of
C. roseus Plant

Based on the statistical components accompanied with the data in Tables 2–4 where
comparable enhancing effects were achieved by either two modes of application regard-
ing growth criteria or antioxidants potential, it can be suggested that the behavior of
phytochemicals of the tested extracts in the soil (rooting medium) was not the dominant
factor determining the phytochemical performances but spraying (leave contact surface)
treatments can produce comparable results as well. Besides, the nature of phytochem-
icals mostly differs according to the type of extract however the same result was also
pronounced. Accordingly, the reaction between C. procera phytochemicals and of C. roseus
metabolism herein may be received plant species dependence regardless of the chemical
nature of phytochemical or contact surface (foliar spraying or rooting medium) explaining
the superiority of Catharanthus in cellular up-regulate, utilize and successful management
of Calotropis phytochemicals. Thereby, the current investigation could serve as a matrix for
further studies to seek elucidation of several plants’ responses to C. procera extracts as a
bio-stimulant agent.

In an attempt to reveal the mechanism of phytochemical components action and
mapping out how receiver plant could respond to them, we try to know the various
putatively biological activities of each component that has been identified in the used
extracts by comparing against the Chemical Entities of Biological Interest (ChEBI) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases [61].

3.4.1. Guanosine (C00387)

Guanosine is a purine nucleoside, including guanine attached to a ribose (ribofuranose)
ring through a β-N9-glycosidic bond, can be found in coffee plant, pollen of pines and
clover [62]. It can be converted into guanosine monophosphate (GMP; C00144), cyclic
guanosine monophosphate (cGMP; C00942), guanosine diphosphate (GDP; C00035), and
guanosine triphosphate (GTP; C00044) by phosphorylation reaction. The previous forms
have chief roles in biochemical processes such as proteins and nucleic acids synthesis,
photosynthesis and intracellular signal transduction (cGMP), through different biochemical
reactions such as (KEGG: R01227, R01228, R01677, R02145, R02147 and R02148) (KEGG:
https://www.kegg.jp/dbget-bin/www_bget?C00387 (accessed on 1 January 2020)).

Moreover, the guanosine triphosphate (GTP; C00044) that produced from a small
guanosine triphosphatases enzyme (small GTPases) are involved in nearly every aspect of
cell biology such as, source of energy, an activator of substrates in metabolic reactions and
it is one of the building blocks needed for the synthesis of RNA during the transcription
process that may be a prerequisite for enzyme synthesis and eliciting in C. roseus [62]

3.4.2. Biocytin (C05552)

Biocytinisan amide compound, a result from the vitamin biotin and the amino acid
L-lysine, plays an important role in various pathways such as (biotin metabolism; KEGG:
map00780, metabolic pathways; KEGG: map01100, vitamin digestion and absorption;
KEGG: map04977) through different biochemical reactions such as (KEGG: R01077 and
R04869) (KEGG: https://www.kegg.jp/dbget-bin/www_bget?C05552 (accessed on 1 Jan-
uary 2020)).

3.4.3. Palmitic Acid (PA)

Palmitic acidor hexadecanoic acid group (C00249) such as (palmitoyl glycerol; 1,3-
dipalmitin trimethylsilyl ether; palmitic acid, methyl ester and 1,2-dipalmitoyl-sn-glycerol-
palmitin, 1,2-di-) [63] (KEGG: https://www.kegg.jp/dbget-bin/www_bget?C00249 (ac-
cessed on 1 January 2020)). Palmitic acid (PA) group plays important roles in biosynthesis

https://www.kegg.jp/dbget-bin/www_bget?C00387
https://www.kegg.jp/dbget-bin/www_bget?C05552
https://www.kegg.jp/dbget-bin/www_bget?C00249
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of plant secondary metabolites and inducing PAL activity that the main reason herein
that interpreted the augmentation of C. roseus secondary metabolites; KEGG: map01060,
metabolic pathways; KEGG: map01100 and fatty acid metabolism; KEGG: map01212). They
are associated with phosphatidyl inositols and has a role in the structure and functions of
plant cell membranes [64].

3.4.4. Phthalates (C01606)

Phthalatesor phthalate esters, are esters of phthalic anhydride and used in numer-
ous applications especially as plasticizers to increase the durability, transparency, flex-
ibility and longevity of plastics. Furthermore, in some edible plants, the exposure of
phthalates has unequivocally affected the physiology, growth and development of edible
plants [65,66] (KEGG: https://www.kegg.jp/dbget-bin/www_bget?C01606 (accessed on
1 January 2020)). Arpna and Rajinder [67], found that the barley seedlings treated with
phthalate significantly increase the contents of proline, pigment, carbohydrate, soluble
protein in barley seedlings shoots and roots. Additionally, CAT, SOD, POD, GR and APX
activities were significantly increased in shoots and roots of barley seedlings after exposure
by phthalate.

3.4.5. Digitoxin (D00297)

Digitoxin is a phytosteroid and similar in structure to acetyldigitoxin (D01972), acetyld-
igoxin (D07556) and beta-Acetyldigoxin (D06881) (KEGG: https://www.kegg.jp/dbget-
bin/www_bget?PATH:map07233 (accessed on 1 January 2020)). Phytosteroids in plants
shoulder an important task as components of cell membranes and growth hormones
serving as safeguarding factor for membrane function and stability that evidenced by low
level of MDA in C. roseus by CLES supplementation [68]. Moreover, the digitoxin or other
similar structure play roles in principal biological functions as signaling molecules, and
can also modulate the activity of membrane-bound enzymes [69].

3.4.6. Terpene and Terpenoid Groups

Terpene and terpenoid groups are a large and diverse class of organic compounds,
produced by a variety of medicinal and aromatic plants [70]. Terpenes such as (+)-
delta-cadinene (C06394), phytol (C05427), ascaridole (EMBL-EBI: CHEBI:2866) play im-
portant roles in various pathways such as (sesquiterpenoid and triterpenoid biosyn-
thesis; KEGG: map00909, Biosynthesis of terpenoids and steroids; KEGG: map01062,
metabolic pathways; KEGG: map01100, biosynthesis of secondary metabolites; KEGG:
map01110, ubiquinone and other terpenoid-quinone biosynthesis; KEGG: map00130, ter-
penoid backbone biosynthesis; KEGG: map00900 and biosynthesis of plant secondary
metabolites; KEGG: map01060) through different biochemical reactions such as (KEGG:
R02311, R08371, R02063, R04795, R06284, R07500, R08756, R09067 and R12255) (KEGG:
https://www.genome.jp/dbget-bin/www_bget?C06394; https://www.kegg.jp/dbget-
bin/www_bget?C05427; EMBL-EBI: https://www.ebi.ac.uk/chebi/searchId.do?chebiId=
CHEBI:2866 (accessed on 1 January 2020)). Moreover, certain terpenes cause plant develop-
ment and growth hence considered primary rather than secondary metabolites [71].

3.4.7. Carotenoids

Carotenoids are mainly terpenoids, and synthesized in various organisms (algae,
bacteria, fungi and plants). Carotenoids such as astaxanthin (C08580), rhodopin (C19795),
all-trans-beta-carotene (C02094), 4′-apo-beta,psi-caroten-4′-al (C19892) and alpha-carotene
(C05433) play important roles in various pathways such as (carotenoid biosynthesis;
KEGG: map00906, metabolic pathways; KEGG: map01100, biosynthesis of secondary
metabolites; KEGG: map01110, retinol metabolism; KEGG: map00830, biosynthesis of
various secondary metabolites—part 1; KEGG: map00999, biosynthesis of plant secondary
metabolites; KEGG: map01060, biosynthesis of terpenoids and steroids; KEGG: map01062,
biosynthesis of plant hormones; KEGG: map01070 and vitamin digestion and absorption;

https://www.kegg.jp/dbget-bin/www_bget?C01606
https://www.kegg.jp/dbget-
bin/www_bget?PATH:map07233
https://www.genome.jp/dbget-bin/www_bget?C06394
https://www.kegg.jp/dbget-
bin/www_bget?C05427
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=
CHEBI:2866
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KEGG: map04977) through different biochemical reactions such as (KEGG: R07519, R07520,
R07527, R07834, R09790, R07572, R07573, R08102, R00032, R03823, R03824, R05345, R07558,
R07560, R07857, R08988, R09747, R10282, R10559, R12179, R09782 and R09783) (KEGG:
https://www.kegg.jp/dbget-bin/www_bget?cpd:C08580; https://www.kegg.jp/dbget-
bin/www_bget?cpd:C19795; https://www.kegg.jp/dbget-bin/www_bget?C19892; https
://www.kegg.jp/dbget-bin/www_bget?C05433; https://www.kegg.jp/dbget-bin/www
_bget?C02094 (accessed on 1 January 2020)).

Apocarotenoids also include many phytohormones with important functions in plant-
environment interactions such as abscisic acid (ABA) and strigolactones (SL), and signaling
molecules, such as β-cyclocitral that may help the acclimatization of C. roseus in its envi-
ronment [72,73].

4. Conclusions

Exploring the potential of new plant extracts as growth and quality improving sub-
stances could be a promising, cost-effective and substitute tool in achieving higher pro-
ductivity and quality without compromising environmental safety. Calotropis procera the
broadly distributed ineradicable plant mostly posted as a toxic plant. Our study focused
on exploring its inductive and protective properties that could be assessed by physio-
biochemical indices. The results revealed that all CLEs triggered the biomass accumulation
of Catharanthus roseus plant by the overproduction of primary metabolites, and upgrade
plant quality via augmentation the production of secondary metabolites such as antho-
cyanin, phenolics, flavonoid and alkaloids. Furthermore, the improving mechanism that
displayed Calotropis treatments was appraised by the oxidative status of Catharanthus cell.
The enhanced antioxidative capacity via elicitation activities of CAT, APX, PPO, POD,
GST and PAL as well as healthy promoting non-enzymatic antioxidants viz. ascorbic acid
(AsA), glutathione (GSH), α-tocopherols function together to maintain cell oxidative status
and were fostered from moderate to highly inducible rate to efficiently scavenge ROS this
reflected on enhancement of membrane integrity witnessed by low MDA content. All this
evidence directed us to approve C. procera as a bio-stimulant. Growth promotion imposed
by C. procera leaves extracts reduces the fertilizer requirement in soil which limits the risk
of overuse of fertilizer and outcoming fertilizer contamination in the environment. Appli-
cation of Calotropis leaves extracts on medicinal plants could be utilized as a viable and
sustainable green strategy for upgrading its medicinal property by augmenting secondary
metabolites production.
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