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Staphylococcus aureus (S. aureus) infections are often difficult to cure

completely. One of the main reasons for this difficulty is that S. aureus

can be internalized into cells after infecting tissue. Because conventional

antibiotics and immune cells have difficulty entering cells, the bacteria can

survive long enough to cause recurrent infections, which poses a serious

burden in healthcare settings because repeated infections drastically increase

treatment costs. Therefore, preventing and treating S. aureus internalization

is becoming a research hotspot. S. aureus internalization can essentially be

divided into three phases: (1) S. aureus binds to the extracellular matrix (ECM),

(2) fibronectin (Fn) receptors mediate S. aureus internalization into cells, and

(3) intracellular S. aureus and persistence into cells. Different phases require

different treatments. Many studies have reported on different treatments at

different phases of bacterial infection. In the first and second phases, the latest

research results show that the cell wall-anchored protein vaccine and some

microbial agents can inhibit the adhesion of S. aureus to host cells. In the third

phase, nanoparticles, photochemical internalization (PCI), cell-penetrating

peptides (CPPs), antimicrobial peptides (AMPs), and bacteriophage therapy

can effectively eliminate bacteria from cells. In this paper, the recent progress

in the infection process and the prevention and treatment of S. aureus

internalization is summarized by reviewing a large number of studies.

KEYWORDS

Staphylococcus aureus, bacterial persistence, internalization, nanoparticles, cell-
penetrating peptides

Introduction

S. aureus is a significant human pathogen that causes a variety of clinical illnesses. It
is a prominent cause of bacteremia, infective endocarditis, osteoarthritis, skin and soft
tissue infections, pleuropulmonary infections, and device-related infections (Tong et al.,
2015). S. aureus infection has a significant socioeconomic impact in both developed and
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poor countries (Balasubramanian et al., 2017). For instance, a
thorough analysis of skin and soft tissue infections between
2001 and 2009 revealed that hospitalized patients’ treatment
expenditures in the United States ranged from $12,000 to
$23,000 (Suaya et al., 2014). Sometimes, it is difficult to
cure these infections completely, especially when they become
chronic. The internalization of S. aureus by cells and bacterial
biofilms is the major cause of persistent and difficult-to-treat
infections (Richter et al., 2016). Recently, some studies have
summarized the formation of and treatment strategies for
biofilms in detail (Bhattacharya et al., 2015; Moormeier and
Bayles, 2017; Suresh et al., 2019), and this paper will not
elaborate any further on that topic.

There is growing evidence that S. aureus has the ability to
invade and persist within eukaryotic cells. S. aureus has been
found in many non-phagocytic cells, such as human osteoblast
cell lines, normal chick osteoblasts, mouse fibroblasts, mouse
renal cells, bovine mammary epithelial cells, and human
bronchial epithelial cells (Alexander and Hudson, 2001; Richter
et al., 2016). S. aureus intracellularity has been proposed as an
immune-evasive strategy to avoid identification by professional
phagocytes (Fraunholz and Sinha, 2012). One of the most
challenging aspects of treating intracellular S. aureus infections
is getting enough antibacterial medicines to the intracellular
bacteria. Many antibiotics have limited cell membrane
penetration (β-lactams and aminoglycosides), intracellular
unabiding retention (fluoroquinolones and macrolides),
insufficient intracellular distribution, and low intracellular
concentration (Zhou et al., 2018). Therefore, there is an
urgent demand to develop novel therapies to treat intracellular
S. aureus infections. The process of S. aureus internalization can
essentially be divided into three phases (Figure 1): (i) S. aureus
binds to the extracellular matrix (ECM), (ii) fibronectin (Fn)
receptors mediate S. aureus internalization into cells, and (iii)
intracellular S. aureus and persistence into cells (Wen et al.,
2020). We will use osteoblasts as an example to illustrate the
process of S. aureus internalization.

The process of osteoblastic
infection by Staphylococcus
aureus

Staphylococcus aureus binding to the
bone extracellular matrix

S. aureus’s ability to infect bone, and more especially
the osteoblast, is closely tied to its ability to bind the bone
extracellular matrix (BEM) components (Heilmann, 2011).
All of the proteins and glycans in the BEM are possible
S. aureus binding sites. The extracellular matrix can foster the
accumulation of S. aureus near osteoblasts. I collagen (Cn),

bone sialoprotein, osteopontin, and fibronectin are the most
studied because they interact directly with S. aureus (Josse et al.,
2015). S. aureus binds to the BEM through its cell wall-anchored
(CWA) proteins while contacting bone tissue in preparation
for subsequent internalization. Cn represents approximately 90–
95% of the organic fraction of the BEM, and the Cn adhesin
(Cna) protein on the surface of S. aureus plays a function
by adhering to Cn in the process of S. aureus infection in
bone tissue (Patti et al., 1994). The N-terminal A domain
(containing of N1, N2, and N3), the B repetitive sequence,
the cell wall anchoring domain, and a brief cytoplasmic region
comprise Cna proteins (Zong et al., 2005; Herman-Bausier
et al., 2016). Cna primarily binds to Cn via a tightly wrapped
mechanism (the “collagen hug” mechanism) (Herman-Bausier
et al., 2016). The N1 and N2 domains of the N-terminal
A domain (which has an IgG fold-like structure) and the B
repetitive sequence are now known to be involved in this
mechanism. S. aureus proteinaceous surface adhesins can be
covalently attached to the cell wall peptidoglycan or surface-
associated via various mechanisms such as ionic or hydrophobic
interactions (Heilmann, 2011).

Fibronectin receptors mediate
Staphylococcus aureus internalization
into cells

The capacity of fibronectin to bind with α5β1 integrin is
now thought to be the most prevalent mechanism for S. aureus
internalization in endothelial cells and osteoblasts (Khalil et al.,
2007).

Fibronectin functions as a bridge between S. aureus and
osteoblasts. On the one hand, S. aureus has two proteins on
its surface that may bind to fibronectin: fibronectin-binding
proteins A and B (FnBP A/B). Fibronectin, on the other hand,
binds to osteoblasts via the α5β1 integrin (Hauck and Ohlsen,
2006). This “Fn bridge” enables S. aureus to enter osteoblasts via
internalization. S. aureus mutants lacking FnBPs have trouble
internalizing in host osteoblasts (Ahmed et al., 2001). Besides,
cells missing the integrin β1 subunit do not internalize S. aureus
in substantial numbers, highlighting the critical function of
integrin α5β1 for the uptake process (Fowler et al., 2000). FnBPs
bind to Fn via a tandem β-zipper structure, which causes a
conformational shift in Fn, exposing a cryptic integrin-binding
site in Fn, which then interacts with the α5β1 integrin with
great affinity (Prystopiuk et al., 2018). Fn creates mechanically
strong bridges between FnBPAs on the surface of S. aureus
and purified integrins that can sustain substantially higher
stresses (∼800 pN) than the conventional Fn-α5β1 integrin
interaction (∼100 pN). This great mechanical stability lends
itself to an invasion model in which binding of Fn to FnBPA
via a -zipper results in force-induced unfolding and allosteric
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FIGURE 1

The process of S. aureus internalization into cells and the potential treatments. The process of S. aureus internalization can essentially be
divided into three phases: (1) S. aureus binds to the extracellular matrix (ECM), (2) fibronectin (Fn) receptors mediate S. aureus internalization into
cells, and (3) intracellular S. aureus and persistence into osteoblasts. In addition to binding to the ECM, S. aureus can also directly stimulate
osteoblasts through its PAMPs, resulting in a variety of cellular reactions. In the first and second phases, immunotherapy and some microbial
agents can effectively interfere with bacterial adhesion. Besides, some agents could enhance the antimicrobial defense of the host cells by
inducing the production of antimicrobial peptides and decreasing the secretion of inflammatory cytokines. In the third phase, some treatments
such as nanoparticles, photochemical internalization, cell-penetrating peptides, antimicrobial peptides, and bacteriophage therapy have
significant bactericidal effects against intracellular S. aureus.

activation of FnIII domains. This exposes hidden integrin-
binding sites, which engage in a robust, high-affinity contact
with integrins (Liang et al., 2016). The local recruitment of
structural proteins like tensin, vinculin, and zyxin as well
as signaling enzymes like Src family protein tyrosine kinases
(PTKs) and focal adhesion kinase (FAK) at the site of bacterial
attachment is caused by bacteria-induced clustering of integrins.
Multiple downstream effectors, including cortactin, are tyrosine
phosphorylated as a result of FAK and Src’s joint activity.
The effect of cortactin on cytoskeleton rearrangements via the
Arp2/3 complex or the control of endocytosis by dynamin is
most likely how it functions in the internalization of bacteria
(Hauck and Ohlsen, 2006).

Receptors involved in the interaction
between Staphylococcus aureus and
osteoblasts

In addition to binding to the BEM, S. aureus can
also directly stimulate osteoblasts through its pathogen-
associated molecular patterns (PAMPs), resulting in a variety

of cellular reactions. PAMPs can bind to pattern recognition
receptors (PRR) on osteoblasts, such as toll-like receptors
(TLR) and the tumor necrosis factor receptor 1 (TNFR-
1). TLRs are a family of 13 mammalian members, each of
which mediates an intrinsic signaling pathway and induces
specific biological responses against microorganisms (Uematsu
and Akira, 2006). TLR-2, TLR-4, and TLR-5 have been
observed in osteoblasts. For S. aureus infections, TLR2, which
can induce the release of antimicrobial peptides (AMPs)
(Varoga et al., 2009), is an important relevant receptor
involved in this process (Fournier, 2012). TLR2 can recognize
ligands with a wide range of structural variations, including
proteins, glycopolymers, peptidoglycans, lipoarabinomannan,
and lipoproteins/lipopeptides (Oliveira-Nascimento et al.,
2012). There is increasing evidence that lipoproteins play an
important role in TLR2 activation by staphylococci (Fournier,
2012). TLR-4 and TLR-5 participate in responses against
gram-negative bacteria by recognizing lipopolysaccharide and
flagellin, respectively, but are not involved in the interaction
between S. aureus and osteoblasts (Madrazo et al., 2003).
According to current research, apart from PRRs like TLRs,
S. aureus can also interact with epithelial cells and osteoblasts
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through the extracellular TNFR-1 receptor (Gomez et al., 2004;
Claro et al., 2013). TNFR-1 interacts with the protein
A of S. aureus, which can result in the production of
cytokines, osteoblast death, or an imbalanced bone homeostasis
(Claro et al., 2011, 2013). Besides, the iron-regulated surface
determinant-B (IsdB) of S. aureus was involved in invasion, and
IsdB most likely interacts with integrins that bind ligands with
the RGD motif (Zapotoczna et al., 2013); however, the endocytic
pathway has not been discovered.

Intracellular Staphylococcus aureus
and persistence into osteoblasts

In bone infection, S. aureus internalization in osteoblasts
is crucial. Intracellular persistence process depends on the
total number of infected cells (Bongiorno et al., 2020).
This transformation from acute to chronic bone infection
indicates the initiation of persistent infection caused by survival
bacteria in cells. S. aureus can survive in osteoblasts following
internalization due to two factors (Figure 1): vesicle escape and
small-colony variant (SCV) formation. The co-localization of
fluorescent intracellular S. aureus and a lysosomal-associated
membrane marker in osteoblasts revealed the trafficking of
live bacteria into late endosomal/lysosomal vesicles, implying
that S. aureus survives inside the vesicles (Jauregui et al.,
2013). The survival and proliferation of S. aureus within cells
were via preventing combination of phagosome and lysosome,
subversion autophagy, and others. A recent study shows that
internalization of S. aureus is higher in macrophages than in
osteoblasts, but the proportion of S. aureus that survives in
osteoblasts is higher than that in macrophages (Hamza and Li,
2014). This disparity results from non-professional phagocytes’
incapacity to remove bacteria from vesicles, allowing S. aureus
to persist in osteoblasts for long time (Hamza and Li,
2014).

At the same time, these surviving bacteria also transform
into SCVs. The SCVs are a slow-growing bacterial
subpopulation with abnormal colony shape on agar plates
and atypical metabolic properties, which are related to the
resistance of S. aureus, reinfection, and chronic infections.
Such SCVs were produced mostly as a result of antibiotic-
induced or spontaneous mutations in particular metabolic
genes such as har, hemB, ctaA, and thyA (Chen et al., 2021).
Approximately 70% of patients who had long-term antibiotic
treatment have S. aureus SCV infection (Melter and Radojevic,
2010). SCVs have higher intracellular persistence and lower
antibiotic susceptibility than wild-type bacteria (Tuchscherr
et al., 2016). In vitro exposure to various antibiotics has been
demonstrated to produce S. aureus SCVs from their parental
strains (Zhang G. et al., 2018). The membrane potential of
the SCV is lowered, which indirectly lowers the bactericidal
efficacy of antimicrobial drugs, because transmembrane

potential is necessary for the uptake of positively charged
AMPs and antibiotics. In addition, the cell membrane is
hydrophobic, yet most antibiotics are hydrophilic, making
antibiotic entry into the cell problematic and allowing bacteria
to evade the activity of most antibiotics. Furthermore, after
escaping the original cells and infecting new cells, SCVs quickly
revert to the wild-type, extremely toxic, invasive phenotype,
which explains why chronic osteomyelitis patients suffer
recurring infections.

Phase I and II treatment strategies

The first and second phases of treatment focus on killing off
free bacteria and preventing their adhesion and internalization
into cells. Adhesion and internalization are immediate events.
However, given the good bactericidal effect of conventional
antibiotics on free S. aureus, the current research focuses
on preventing the adhesion and internalization of bacteria.
S. aureus adhesion to the ECM is achieved mainly by
its cell wall-anchored (CWA) proteins. CWA proteins are
essential virulence factors for the survival of S. aureus in
the commensal state and during invasive infections. CWA
proteins have a variety of functions, including adhesion and
invasion of host cells and tissues, escape from immune
responses, and biofilm formation (Foster et al., 2014). Therefore,
CWA proteins have attracted much attention as therapeutic
targets. Moreover, some microbiological agents have been
shown to inhibit the adhesion of S. aureus. Because the
bacteria are free in the first phase, traditional antibiotic use
is also necessary.

Immunotherapy

Recombinant CWA proteins were recently used as the
specific vaccines against S. aureus infection mainly through
antibody-mediated protective immunity (Foster et al., 2014).
After being injected into the body, the recombinant CWA
protein causes the body to produce antibodies that attack
specific CWA proteins on S. aureus, thereby inhibiting their
function. Many specific vaccines have been developed against
various CWA proteins, but most have not yet been subjected to
clinical testing. Clumping factor A (ClfA), which is produced
by most clinical isolates of S. aureus, has been regarded as
an important vaccine candidate (Scully et al., 2015; Li et al.,
2016). It has been shown to provide partial protection against
S. aureus infections including lethal bloodstream infections
and septic arthritis (Josefsson et al., 2001; Scully et al., 2015;
Schneewind and Missiakas, 2019). Similarly, the corresponding
vaccines that target clumping factor B (ClfB), or S. aureus
surface protein X (SasX) have all demonstrated certain abilities
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to reduce infectivity and/or colonization by S. aureus (Liu et al.,
2015; Lacey et al., 2019).

However, given the myriad of virulence factors produced by
the pathogen, the effect of combinations of CWA antigens is
superior to that of a single antigen (Delfani et al., 2016), which
supports the use of a combination of antigens in vaccines for
future clinical trials (Foster et al., 2014). Yang L. et al. (2016)
designed the novel chimeric vaccine IsdB151−277ClfA33−213

(IC), which is based on the immune-dominant areas of the
iron surface determinant B (IsdB) and ClfA. This vaccine
induced higher protection in an S. aureus sepsis model
compared with the single components alone and showed broad
immune protection against several clinical S. aureus isolates.
A surface protein vaccine (containing ClfA, fibrinogen binding
protein B, serine-aspartate repeat D, and SpA) raised antigen-
specific immune responses that protected leukopenic mice
against S. aureus bloodstream infections (Rauch et al., 2014).
Whereas, some active immunization techniques have not yet
proven effective in humans. In a Phase III experiment, an
IsdB vaccine that was protective in animals failed to protect
patients from major infections following cardiothoracic surgery
for unknown reasons (Fowler et al., 2013). There are some
possible reasons for the negative findings of clinical trials.
Preclinical findings with antigens evaluated in clinical trials
were probably exaggerated by vaccine producers. Furthermore,
because all human S. aureus vaccines developed to date have
only targeted one antigen, they are unlikely to protect against
complex bacterial infections. Finally, new generation adjuvants,
which may be essential in boosting antibody formation and
guiding the T-cell response toward the proper profile of cytokine
release, were not present in the vaccines (Bagnoli et al.,
2012).

Other monoclonal antibodies have also shown good
antimicrobial effects. Yang Y. et al. (2016) demonstrated that
2H7, a protective monoclonal antibody targeting the conserved
domain of S. aureus surface protein A (SasA), could recognize
wild-type S. aureus and promote the opsonophagocytic killing
of S. aureus. Besides, Tkaczyk et al. (2016) tested a monoclonal
antibody combination targeting alpha toxin (AT) and ClfA
that neutralized AT-mediated cytotoxicity, blocked fibrinogen
binding by ClfA, prevented bacterial agglutination, targeted
the bacteria for opsonophagocytic killing, and provided broad
isolate coverage in a lethal-bacteremia mode.

Microbiological agents

Recently, some microbiological agents have shown excellent
effects in inhibiting the invasion of S. aureus. Bouchard et al.
(2013) demonstrated that Lactobacillus casei reduced S. aureus
Newbould 305 and RF122 internalization by 60–80% without
modifying cell viability and morphology. An extracellular anti-
inflammatory drug, serratiopeptidase, can reduce the invasion

and internalization of S. aureus to osteoblasts by 75% (Papa
et al., 2013; Selan et al., 2017). In an in vitro and in vivo
experiment, Wang X. et al. (2018) found that the plectasin
derivatives MP1102/NZ2114 had a good effect on intracellular
S. aureus clearance. The inhibition of S. aureus internalization
by microbiological agents likely involves such means: (a)
direct effect on S. aureus, including coaggregation, as observed
for vaginal lactobacilli (Younes et al., 2012); (b) inhibition
of S. aureus virulence expression, including major virulence
regulators (Papa et al., 2013).

Enhance the antimicrobial defense of
the host cells

Some agents could enhance the antimicrobial defense of
the host cells by inducing the production of AMPs and
decreasing the secretion of inflammatory cytokines. Sodium
butyrate has been shown to increase the expression of tracheal
antimicrobial peptide (TAP), β-defensin, and inducible nitric
oxide synthase (iNOS) mRNAs in bovine mammary epithelial
cells (bMECs), as well as the production of nitric oxide (Ochoa-
Zarzosa et al., 2009). Short-chain fatty acids (propionic and
hexanoic) have similar actions. Propionic and hexanoic reduced
bacterial internalization into bMECs, which ranged 27–55
and 39–65%, respectively. And they up-regulated TAP mRNA
expression; however, bovine neutrophil β-defensin 5 (BNBD5)
mRNA expression was not modified or was down-regulated
(Alva-Murillo et al., 2012). Besides, bMECs treated with 17β-
Estradiol (E2) (50 pg/mL, 24 h) reduced S. aureus internalization
(∼50%). E2 also decreased the secretion of TNF-α and IL-1β

as well as IL-6 production. Furthermore, E2 also increased the
expression of AMPs DEFB1, BNBD5, and psoriasin S100A7
(Medina-Estrada et al., 2016).

Phase III treatment strategies

After S. aureus adheres to the cell surface, it begins to be
internalized into the host cell. The S. aureus internalization was
an active process that was mainly mediated by the FnBPs and
integrin α5β1 of host (Sinha et al., 2000; Hauck and Ohlsen,
2006; Alva-Murillo et al., 2014) cells. There are two main results
after S. aureus invades host cells: (a) virulence factors produced
by the bacteria or the inflammatory reaction induced by the
bacteria cause most host cells to rapidly lyse and die; and (b)
some S. aureus bacteria transform from the wild type into a
less toxic small colony variant type and live in host cells for a
long time (Proctor et al., 2014). At present, more research is
aimed at this phase of treatment, and many types of treatments
have been demonstrated to have a good bactericidal effect on
intracellular S. aureus.
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Nanoparticles

The effectiveness of nanoparticles loaded with antibiotics
to treat bacterial infections has been studied for many
years due to their excellent characteristics including
their nano size, surface charge, and large specific surface
area. Nanoparticles have contributed to great progress in
research on antibacterial biofilms, and they can effectively
penetrate thick biofilms and bacterial membranes and
disrupt these membranes to kill bacteria (Mu et al., 2016;
Mihu et al., 2017). Furthermore, because nanoparticles
can effectively penetrate the cell membrane and improve
the concentration and bactericidal activity of antibiotics in
cells, the field of nanotechnology provides novel approaches
for tackling internalized S. aureus (Maya et al., 2012; Mu
et al., 2016). Given the different types of nanoparticle
carriers, the corresponding bactericidal effect is not the
same.

Nanoparticles can improve the permeability and
accumulation of their payload drug within cells. Increased
cellular uptake and the subsequent controlled release of the
nanoparticle-adsorbed antibiotics can effectively enhance
their antibacterial effects, which makes them more effective
for treating intracellular infection (Zhou et al., 2018). Silver
nanoparticles (AgNPs) and their combination with antibiotics
have demonstrated high extracellular and intracellular bacterial
killing abilities and present unique aspects for potential clinical
applications (Kang et al., 2019). Maya et al. (2012) developed
biocompatible, 200-nm-sized tetracycline-encapsulated
O-carboxymethyl chitosan nanoparticles (Tet-O-CMC
Nps). These Tet-O-CMC Nps were capable of delivering
Tet intracellularly and showed a sixfold increase in antibacterial
activity over that of free Tet against intracellular S. aureus.
To improve the efficiency of delivery and target specificity,
Yang Y. et al. (2016) reported a unique intracellular antibiotic
delivery nanoparticle that is composed of (a) a mesoporous
silica nanoparticle core loaded with gentamicin, (b) an infected
microenvironment (bacterial toxin)-responsive lipid bilayer
surface shell, and (c) the bacteria-targeting peptide ubiquicidin
(UBI29.41), which is immobilized on the lipid bilayer shell
surface. BI29.41 showed high sensitivity, specificity, and
accuracy for detecting bacterial infection.

Due to their unique biologic performance, nanoparticles
armed with antimicrobial agents are used as a potential
weapon against S. aureus infection and have demonstrated more
advantages than the conventional preparations. However, study
on nanosystems’ ability to treat S. aureus infections is still
ongoing, and we must contend with issues like reasonable large-
scale production and the premature release of nanoparticles.
Besides, there are currently few nanoparticles designed to treat
the SCV phenotype of S. aureus. New approaches for the
production of nanoparticles should be established in order to
eradicate the SCV phenotype (Zhou et al., 2018).

Photochemical internalization

Photochemical internalization (PCI) is a physical-targeting
technique in which amphoteric photosensitizers located in
endocytic vesicles undergo a series of chemical reactions based
on light excitation at a specific wavelength. This in turn
causes the vesicle to burst, and the large molecules in the
vesicle are released into the cytoplasm. PCI has been shown
to facilitate entry into the cytoplasm of most large molecules,
including nucleic acids and proteins, and other molecules that
cannot easily penetrate cell membranes (Jerjes et al., 2020a,b;
Sosic et al., 2020).

Zhang X. et al. (2018) demonstrated for the first time
that PCI can effectively enhance the cytosolic release of
antibiotics from endocytic vesicles after internalization, thus
providing a good clearance effect of intracellular S. aureus. First,
antibiotics, together with photosensitizers, are internalized
through endocytosis or phagocytosis. This process encases
the internal antibiotics in vesicles. The photosensitizer is
localized in the membrane of the intracellular vesicle, and the
drug may be isolated inside the vesicle. Upon illumination,
these photosensitizer-bound membranes are disrupted,
causing the drugs to be released from the vesicles into the
cytoplasm and allowing them to reach their intracellular
targets. Thus, with PCI, a lower antibiotic dose can be
used for treating (intracellular) staphylococcal infection.
Whereas, there are relatively few studies about PCI for
treating intracellular S. aureus at present, and more research
is needed in the future to overcome issues such as PCI
toxicity.

Cell penetrating peptides

CPPs are a family of various peptides, typically comprising
5–30 amino acids, that can pass through tissue and cell
membranes (Guidotti et al., 2017). These peptides have been
extensively shown to be capable of transporting a wide variety
of biologically active conjugates (cargoes) into cells including
proteins, peptides, DNAs, siRNAs, and small drugs, and thus
they are considered efficient drug delivery vehicles (Mahmood
et al., 2016). Cargoes can be conjugated to CPPs either by
covalent bonds or by non-covalent complex formation (Guidotti
et al., 2017). The mechanism of how CPPs transport cargoes
from outside the cell to inside the cell has been extensively
studied in recent years, but it is still not completely clear.
Nonetheless, these mechanisms of entry can be roughly divided
into two categories: energy-independent direct penetration of
the plasma membrane and energy-dependent endocytosis; most
CPPs and CPP–cargo conjugates enter cells via endocytosis
(Guidotti et al., 2017). However, precisely determining the
transmembrane pathway of a CPP is not that simple. Even for
the same CPP, the transmembrane efficiency and pathway may
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be affected by the concentration, temperature, and cell type
(Fretz et al., 2007).

Randhawa et al. (2016) investigated the effects of two
CPPs (P3 and P8) in combination with four antibiotics (viz.
oxacillin, erythromycin, norfloxacin, and vancomycin) against
MRSA strains. They found that this combination of CPPs and
antibiotics showed high toxicity against MRSA compared with
antibiotics alone. In addition to binding with antibiotics, CCIs
can cooperate with some molecules to create an intracellular
bactericidal effect. Peptidoglycan hydrolases (PGHs) have good
bactericidal activity against both drug-sensitive and -resistant
S. aureus bacteria. Based on this finding, Rohrig et al. (2020)
reported that synergistically active PGH-CPP cocktails reduced
both intracellular and drug-resistant S. aureus. JDlys is a cell wall
hydrolase (also called lysin) derived from staphylococcus phage
JD007. The results of an experiment showed that CPP-JDlys
can enter keratinocytes and effectively eliminate intracellular
MRSA. In further experiments in mice, CPP-JDlys efficiently
inhibited the proliferation of MRSA in murine skin and thus
shortened the course of wound healing (Wang Z. et al., 2018).
However, the clinical effectiveness of CPPs as drug delivery
vehicles is hampered by a number of characteristics. The
biggest obstacles for CPP-based medications are physiological
instability, a lack of selectivity, and low efficacy (Kim et al.,
2021).

Antimicrobial peptides

AMPs, which are small proteins with potent antibacterial,
antiviral, and antifungal activity, are widely found in nature.
More than 3,100 different AMPs have been described thus far
(Lazzaro et al., 2020). AMPs are secreted by cells in the body
as the first barrier of defense against microbial invasion. Some
of these AMPs are present constitutively while others may
be induced in response to infection (Alcayaga-Miranda et al.,
2017). AMPs have a positive charge, which attracts them to
the generally negatively charged membranes of bacteria; this
results in pore formation and membrane perturbation, leakage
of cellular components, and cell death (Stallmann et al., 2006;
Lazzaro et al., 2020).

Recently, some short synthetic AMPs have demonstrated
highly effective intracellular antimicrobial activity. Bormann
et al. (2017) reported that short artificial AMPs that contain
three arginine residues and one lysine residue might be
responsible for the effective cell penetration observed and
killing of internalized bacteria without harming the host cells.
Cathelicidin LL-37 is amphiphilic in nature and is comprised
of hydrophobic and hydrophilic residues aligned on opposite
sides of the peptides. Noore et al. (2013) found that LL-37
was more effective in killing extra- and intracellular S. aureus
than commonly used conventional antibiotics. However, the
cell-penetrating mechanism of AMPs is not fully understood
and might occur by direct translocation, endocytotic uptake,

or the formation of inverted micelles (Bormann et al., 2017).
Besides, natural AMPs are difficult to produce because of
their low yield and undesirable impurities. Many AMPs have
high antibacterial activity, but some of them have undesirable
properties that make them unsuitable for clinical use (Biswaro
et al., 2018).

Bacteriophage therapy

In addition to the more advanced treatments studied above,
other new approaches have emerged. A phage is a type of
bacteria-targeting virus that has extremely high specificity and
is easy to apply. A specific phage can only kill the targeted
bacteria but does not affect the normal bacteria and body
cells (Grunenwald et al., 2018). Phages infect their specific
bacterial hosts and during the lytic (or virulent) lifestyle highjack
the machinery of the host cell to replicate and ultimately
destroy the host, thus simultaneously producing progeny and
killing the host. When used as a bactericidal drug, phages
have the following characteristics (Nikolich and Filippov, 2020):
(a) phages are effective against multi-drug resistant pathogens
and can therefore be used in combination with antibiotics,
often with synergistic effects; (b) phages are highly specific and
usually infect only one bacterium or subgroup, so they have
little effect on the normal microflora; (c) a phage is a self-
replicating drug because it can replicate on the target bacteria
and concentrate precisely where the pathogen cells at the site of
infection must be destroyed; (d) since phages coevolve with their
hosts, they can adapt to newly emergent resistant strains of the
host bacterium; (e) phages are usually weak immunogens; thus,
adverse immunologic responses are unlikely; and (f) when the
targeted bacteria disappear, the phage disappears and does not
remain in the body.

Through genetic engineering, modified phages can be
used for targeted drug delivery and new material assembly,
thus extending the field of phage therapy and further
expanding the medical community’s understanding of phages
(Pires et al., 2016). Kim et al. (2012) found that efficient
internalization and cytosolic localization of 3D8 VL transbody-
displayed phages provides a useful tool for the intracellular
delivery of polar macromolecules. This study also proves that
phage internalization occurs via a physiological endocytotic
mechanism through specific cell surface receptors rather than
non-specific transcytotic pathways. By fluorescent labeling of
the phage and S. aureus, the phage was shown to penetrate
bovine mammary epithelial cells and remove S. aureus from the
cells (Zhang et al., 2017). Phages can also enter macrophages
by infecting MRSA, killing the intracellular MRSA, and
significantly reducing the cytotoxic damage caused by MRSA
(Capparelli et al., 2007; Kaur et al., 2014). Previous studies
have shown a synergistic effect between bacteriophages and
antibiotics or CCP (Gutierrez et al., 2018; Wang Z. et al.,
2018). JDlys is a cell wall hydrolase (also called lysin) derived
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from Staphylococcus phage JD007. CPPTat-JDlys, a fusion of
CPPTat to JDlys, was able to effectively eliminate intracellular
MRSA bacteria and alleviate the inflammatory response and
cell damage caused by MRSA (Wang Z. et al., 2018). Similarly,
the combination of lytic protein CF-301 and daptomycin and
endolysin MR-10 and minocycline was found to significantly
increase survival from bacteremia in mice (Gutierrez et al.,
2018). However, up to now, the phage therapy has limitations
related to the bacterial resistance to phage (Caflisch et al., 2019),
quality and safety requirements, stability of phage preparations,
fast phage screening methods, and unsatisfactory regulatory
framework (Pires et al., 2020). More research is needed in the
future to refine phage therapy.

Conclusion

Staphylococcus aureus internalization can be divided into
three different phases, each with its own characteristics.
Once S. aureus is internalized into cells, it is difficult
to treat even with antibiotics. In the first and second
phases, immunotherapy and some microbial agents can
effectively interfere with bacterial adhesion. In third phase,
nanoparticles, photochemical internalization, cell penetrating
peptides, antimicrobial peptides, and bacteriophage therapy can
effectively eliminate bacteria from cells. However, it is worth
noting that most of these treatments are only in the experimental
phase at present and have not entered the clinical trial phase.
Significant efforts must be made to verify the therapeutic effect
and safety of these drugs.
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