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Medical imaging systems often require image enhancement, such as improving the image contrast, to providemedical professionals
with the best visual image quality. This helps in anomaly detection and diagnosis. Most enhancement algorithms are iterative
processes that require many parameters be selected. Poor or nonoptimal parameter selection can have a negative effect on the
enhancement process. In this paper, a quantitative metric for measuring the image quality is used to select the optimal operating
parameters for the enhancement algorithms.A variety ofmeasures evaluating the quality of an image enhancementwill be presented
along with each measure’s basis for analysis, namely, on image content and image attributes. We also provide guidelines for
systematically choosing the proper measure of image quality for medical images.

1. Introduction

Mammography is noninvasive imaging that uses a low-dose
X-ray to photograph breast tissue. The result of mammog-
raphy is a mammogram, which is used as a screening test
for breast cancer. Mammography is a valuable screening
procedure that can detect breast cancer early, as long as two
years before a lump can be felt. Mammography also is used
to help clarify whether a suspicious breast lump is a cyst or
a tumor and whether a tumor is more likely to be benign or
malignant. Mammography misses breast cancer about 5% to
10% of the time, but the rate can be as high as 30% for women
with dense breast tissue [1]. The X-ray hardware limitation
and the high density breast tissue will affect the quality of
mammograms that can contribute to misdiagnosis of breast
cancer. Enhancing the contrast ofmammogram images could
improve the results of mammography significantly [2, 3].

There are many different techniques for enhancing the
quality of an image [2–7], which allow the observer to
better perceive the desirable information in the image. These
techniques often have parameters to control the enhancement
process and its outcome. To optimize these parameters,
feedback is required in the enhancement process, which

is a quantitative assessment of image quality, known as
measure of enhancement or image quality measure. There
have been different definitions of an adequate measure
of performance based on contrast [8–10]. Contrast based
measure of enhancement methods can be categorized as
either spatial or transform based domain measures [10]. The
spatial domain measures are calculated based on luminance
of pixels in different portions of an image, but the transform
domain measures work based on the Discrete Cosine Trans-
form (DCT), Discrete Fourier Transform (DFT), or Discrete
Wavelet Transform (DWT) of the image [11]. Most spatial
domain measures are derivatives of the Weber-Fechner law,
Michelson contrast measure [12], or Contrast Ratio (CR),
using statistical analysis to better evaluate the image contrast
enhancement. EME, EMEE, AME, AMEE, LogAME, and
LogAMEE are examples of such spatial domain measures
[4, 5, 13].

Performance of spatial domainmeasures is highly depen-
dent on image attributes such as image content, lighting,
uniform versus nonuniform background, texture, periodic
patterns, randomness, single versus multiple targets, noise,
and distortions. The choice of a measure of enhancement
method could affect the outcome of image enhancement
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algorithms. If a measure is not designed to handle a specific
image attribute properly, thatmeasurewill not provide a good
metric for properly evaluating the contrast enhancement for
that specific image.

In this paper, we explain the relationship between the
image properties and the commonly used spatial domain
measures of image quality. We will also provide guidelines
of how to choose the measure of enhancement based on
the image attributes and how to select the optimal operating
parameters that are used by these measures. Finally, rec-
ommendations are presented for determining which spatial
domain measure is best suited to assess the quality of
mammogram images.

2. Materials and Methods

When enhancing a digital image, there is a need for a
quantitative measure to evaluate the visual performance of
the enhancement process. In iterative automated enhance-
ment algorithms, one goal of the enhancement measure
is to provide a statistic to help optimize the enhancement
algorithm’s parameters. These measures are based on lumi-
nance contrast statistics of the image and generally have two
components. The first is comparing the difference between
the two luminance components in question (e.g., of a symbol
and its background). If the state of adaptation of the visual
system stays constant, larger luminance differences produce
larger brightness differences (higher brightness contrast).
The second component of any luminance contrast statistic
is some measure describing the adaptation state of the eye.
A luminance that produces a large brightness on a dim
background will produce a smaller brightness difference on a
brighter background due to visual adaptation. To capture this
behavior, designers of luminance contrast statistics generally
divide a numerator that describes the luminance change by a
denominator that describes the average luminance to which
the eye is adapted:

Luminance Contrast =
Luminance Change

Adaptation Descriptor
. (1)

Thevariety of popular statistics for luminance contrastmostly
reflects the fact that the adaptation state of the eye is affected
differently by different kinds of stimulus patterns. In the
following section, we provide the fundamentalmeasures used
to evaluate contrast.

2.1. Basic Measures of Image Contrast

2.1.1.Michelson Contrast. Thismeasure is commonly used for
patterns where both bright and dark features are equivalent
and cover similar fractions of the area, for example, periodic
patterns such as a sinusoidal grating. Michelson contrast is
defined as

𝐶
𝑀

=

𝐼max − 𝐼min
𝐼max + 𝐼min

(2)

with 𝐼max and 𝐼min representing the highest and lowest
luminance. The denominator represents twice the average

of the luminance [12]. For simple periodic patterns (e.g.,
textures) there is no large area of uniform luminance that
dominates the user’s brightness adaptation.The denominator
of C
𝑀

is twice the mean of the maximum and minimum
luminance; that is, the adaptation luminance estimate is based
on the space-average luminance.

2.1.2. Weber-Fechner Law. The Weber-Fechner law implies
a logarithmic relationship between physical luminance and
subjectively perceived brightness. Weber contrast measure
assumes a large uniform luminance background with a small
test target:

𝐶
𝑊

=

𝐼
𝑠
− 𝐼
𝑏

𝐼
𝑏

, (3)

where 𝐼
𝑠
is the luminance of the target and 𝐼

𝑏
is the luminance

of the immediately adjacent background. It is commonly used
in cases where small features are present on a large uniform
background; that is, the average luminance is approximately
equal to the background luminance. When the background
is lighter than the target 𝐶

𝑊
is negative and ranges from

zero to −1. When the background is darker than the target
𝐶
𝑊
is positive and ranges from zero to potentially very large

numbers.
The Weber-Fechner measure is used in cases where the

average luminance is approximately equal to the background
luminance.

2.1.3. Contrast Ratio. This measure has often been applied to
the stimulus class in either linear or logarithmic form:

𝐶𝑅 =

𝐼
𝑠

𝐼
𝑏

, log (𝐶𝑅) =
log (𝐼
𝑠
)

log (𝐼
𝑏
)

. (4)

This measure,𝐶
𝑅
, does not mathematically compare with the

Weber contrast since the numerator is not the luminance
difference between the target and the background.

2.1.4. Entropy. Entropy is calculated from the histogram of
an image and is calculated over the entire image. It is a
scalar value representing the entropy of an intensity image,
a statistical measure of randomness that can be used to
characterize the texture of the image:

Entropy = −∑𝑝 ∗ ln (𝑝) , (5)

where 𝑝 is the histogram count for a segment of image.
Since entropy is calculated over the entire image, rear-

ranging segments of the imagewould not change this contrast
measure. Also increasing the contrast in one part of an image
and decreasing it in another partmay result in similar entropy
as the original image.

2.2. ComplexMeasures of Contrast. Thesemeasures are based
on the basic contrast measures with additional optimization
parameters. Since the basic measures of contrast are highly
sensitive to image contents and attributes such as noise,
periodicity, texture, randomness, uniform background, and
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target size, often a combination of two basic measures in
a new quality measure could extend the application of this
new complexmeasure.The image contents should be visually
inspected to choose the optimal measure. Figure 1 shows
examples of different image attributes.

2.2.1. EME. Let an image 𝑥(𝑛,𝑚) be split into 𝑘
1
𝑘
2
blocks of

𝑊
𝑘,𝑙
(𝑖, 𝑗); the EME is defined as

EME
𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[20 ln(

𝐼max;𝑘,𝑙

𝐼min;𝑘,𝑙
)] , (6)

where 𝐼min;𝑘,𝑙 and 𝐼max;𝑘,𝑙 are the minimum and maximum of
the image inside the block 𝑊

𝑘,𝑙
. As defined in (4), for each

block of (𝑘, 𝑙) in (𝑘
1
, 𝑘
2
) blocks, the Contrast Ratio is

𝐶𝑅
𝑘,𝑙

=

𝐼max;𝑘,𝑙

𝐼min;𝑘,𝑙
. (7)

If 𝑘
1
𝑘
2
= 1 (image is divided into one block), this methodwill

return result similar to Contrast Ratio (𝐶
𝑅
):

EME
𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[20 ln (𝐶𝑅
𝑘,𝑙
)] . (8)

Dividing the image into 𝑘
1
𝑘
2
blocks will turn the complex

image into simple blocks assuming that there is only one tar-
get per block and 𝐼

𝑆
turns out to be 𝐼max and the background

(𝐼
𝑏
) carries 𝐼min.
The EME measure of enhancement is suitable for images

with the following properties:

(i) noncomplex segments (CR property);
(ii) uniform background in segments (Weber property);
(iii) small targets in segments (Weber property);
(iv) nonperiodic pattern in segments (Weber property);
(v) little to no randomness in segments (no entropy in

measure).

TheEMEmeasurewould not be a good choice for imageswith
these attributes:

(i) complex segments within an image or complex
images with large block size (CR property);

(ii) images with nonuniform background in each seg-
ment or images with large segment size (Weber
property);

(iii) large target in segments the way that the segment is
equally divided into high and low luminance areas;
this attribute also extends to periodic patterns and
images with random texture (Weber property).

2.2.2. EMEE. Let an image 𝑥(𝑛,𝑚) be split into 𝑘
1
𝑘
2
blocks

of𝑊
𝑘,𝑙
(𝑖, 𝑗); the EMEE is defined as

EMEE
𝛼𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[𝛼(

𝐼max;𝑘,𝑙

𝐼min;𝑘,𝑙
)

𝛼

ln(

𝐼max;𝑘,𝑙

𝐼min;𝑘,𝑙
)] .

(9)

Similar to entropy (5), for each block 𝑊
𝑘,𝑙

of the image, the
ratio

𝑝 = (

𝐼max;𝑘,𝑙

𝐼min;𝑘,𝑙
)

𝛼

(10)

represents the number of intensity levels in that block if block
is normalized by 𝐼min;𝑘,𝑙 if 𝛼 = 1. For each block, the Contrast
Ratio is defined as in (7); therefore the EMEE measure yields
to

EMEE
𝛼𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[𝛼 (𝐶𝑅
𝑘,𝑙
)

𝛼 ln (𝐶𝑅
𝑘,𝑙
)]

=

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[Entropy (𝐶𝑅𝛼)] .

(11)

Therefore, the EMEE is the entropy of the Contrast Ratio for
each block 𝑊

𝑘,𝑙
scaled by 𝛼, averaged over the entire image.

This association makes EMEE measure of enhancement
suitable for images with the following properties:

(i) noncomplex segments (CR property);
(ii) nonperiodic patterns in segments (Weber property);
(iii) being able to handle randomness in texture (because

of added entropy compared to EME);
(iv) using a larger “𝛼” parameter will help to handle more

randomness in image texture by emphasizing the
entropy term.

EMEE measure is not a good choice to handle

(i) images with complex segments or if segment size is
chosen too large to create a complex segment (CR
property);

(ii) periodic images or images where the high and low
luminance are equally spread in segments (Weber
property).

2.2.3. AME. Let an image 𝑥(𝑛,𝑚) be split into 𝑘
1
𝑘
2
blocks of

𝑊
𝑘,𝑙
(𝑖, 𝑗); the AME is defined as

AME
𝑘
1
𝑘
2

= −

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[20 ln(

𝐼max;𝑘,𝑙 − 𝐼min;𝑘,𝑙

𝐼max;𝑘,𝑙 + 𝐼min;𝑘,𝑙
)] . (12)

From the definition of Michelson contrast in (2) we have

AME
𝑘
1
𝑘
2

= −

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[20 ln (𝐶
𝑀,𝑘,𝑙

)] . (13)

This means that AME measure of enhancement for an image
is an average of Michelson contrast for each block 𝑊

𝑘,𝑙
, in a

logarithmic form, over the entire image. The AME measure
is suitable for images with the following properties:

(i) periodic patterns in segments (Michelson property);
(ii) no randomness in texture (lack of entropy).
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(a) (b) (c)

(d) (e) (f)

Figure 1: Examples of different image attributes. (a) Large uniform background, small targets, no randomness, and no peridic patterns;
(b) semiperiodic, nonuniform background; (c) large uniform background, textured in upper part of image, nonperiodic; (d) periodic,
nonuniform background; and ((e), (f)) random texture, nonpediodic, nonuniform background.

This measure lacks ability to analyze images with the follow-
ing attributes:

(i) images with uniform background (Michelson prop-
erty);

(ii) areas of large uniform luminance is segments
(Michelson property);

(iii) randomness in image texture (entropy property).

2.2.4. AMEE. Let an image 𝑥(𝑛,𝑚) be split into 𝑘
1
𝑘
2
blocks

of𝑊
𝑘,𝑙
(𝑖, 𝑗); the AMEE is defined as

AMEE
𝛼𝑘
1
𝑘
2

= −

1

𝑘
1
𝑘
2

×

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[𝛼(

𝐼max;𝑘,𝑙 − 𝐼min;𝑘,𝑙

𝐼max;𝑘,𝑙 + 𝐼min;𝑘,𝑙
)

𝛼

ln(

𝐼max;𝑘,𝑙 − 𝐼min;𝑘,𝑙

𝐼max;𝑘,𝑙 + 𝐼min;𝑘,𝑙
)] .

(14)

Using the definition ofMichelson contrast (2) and entropy (5)
we have

AMEE
𝛼𝑘
1
𝑘
2

= −

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[𝛼 (𝐶
𝑀,𝑘,𝑙

)

𝛼 ln (𝐶
𝑀,𝑘,𝑙

)]

=

1

𝑘
1
𝑘
2

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[Entropy (𝐶
𝑀,𝑘,𝑙

𝛼
)] .

(15)

In comparisonwith the relationship betweenEMEEandEME
methods, the AMEE is simply the entropy-base measure of
AME. In other words, AMEE is the average of entropy of
the Michelson law for each block 𝑊

𝑘,𝑙
over the entire image,

scaled by 𝛼.
The AMEE measure is suitable for images with the

following properties:

(i) periodic patterns in segments (Michelson property);
(ii) no area of large uniform luminance in segments

(Michelson property);
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(iii) being able to handle additional randomness in texture
(entropy).

The AMEE measure does not perform well for the images
with the following properties:

(i) images with large uniform background (Michelson
property).

2.2.5. LogAME. Let an image 𝑥(𝑛,𝑚) be split into 𝑘
1
𝑘
2
blocks

of𝑊
𝑘,𝑙
(𝑖, 𝑗); the LogAME is defined as

logAME
𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

⊗

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[

1

20

⊗ ln(

𝐼max;𝑘,𝑙 ⊖ 𝐼min;𝑘,𝑙

𝐼max;𝑘,𝑙 ⊕ 𝐼min;𝑘,𝑙
)] .

(16)

Thismeasure is similar to AMEmeasure, based onMichelson
contrast for each block 𝑊

𝑘,𝑙
, in a logarithmic form, over

the entire image. However, in this measure the arithmetic
operations (∗, +, and −) were replaced by the PLIP arithmetic
operations ⊗, ⊕, and ⊖ [5]. The coefficient changes and the
sign change are to provide a comparable numeric return to
AMEmethod. Using the log and the PLIP operations will put
more emphasis on areas with low luminance.

If we define a version of Michelson contrast that uses the
PLIP operators as

Log𝐶
𝑀

=

𝐼max ⊖ 𝐼min
𝐼max ⊕ 𝐼min

, (17)

we can rewrite the LogAME measure as

logAME
𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

⊗

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[

1

20

⊗ ln (Log𝐶
𝑀,𝑘,𝑙

)] . (18)

The LogAME measure is suitable for images with the follow-
ing properties:

(i) periodic patterns in segments (Michelson property);

(ii) unlike AME, LogAME can better handle areas with
large uniform luminance in blocks or between blocks
(PLIP property).

For images with small differences between target and back-
ground luminance, LogAME will behave similarly to AME.

The LogAME measure will not be the best choice for
measure of enhancement for images with the following
attributes:

(i) images with small targets and a large background
(Michelson property);

(ii) images with small difference between the background
luminance and the target luminance (PLIP property);

(iii) images with randomness in texture (entropy prop-
erty).

Image Smoothing filter
Sharp image+

+
+

+

− Edge image
+

Figure 2: Unsharp masking contrast enhancement.

2.2.6. LogAMEE. Let an image 𝑥(𝑛,𝑚) be split into 𝑘
1
𝑘
2

blocks of𝑊
𝑘,𝑙
(𝑖, 𝑗); the LogAMEE is defined as

logAMEE
𝛼𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

⊗

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[(

𝐼max;𝑘,𝑙 ⊖ 𝐼min;𝑘,𝑙

𝐼max;𝑘,𝑙 ⊕ 𝐼min;𝑘,𝑙
)

∗ ln(

𝐼max;𝑘,𝑙 ⊖ 𝐼min;𝑘,𝑙

𝐼max;𝑘,𝑙 ⊕ 𝐼min;𝑘,𝑙
)] .

(19)

This measure is similar to AMEE measure; it is an entropy-
base measure of AME which is the average of entropy of
the Michelson law for each block 𝑊

𝑘,𝑙
over the entire image,

but the arithmetic operations were replaced by the PLIP
arithmetic operations. Using the log and the PLIP operations
will put more emphasis on areas with low luminance.

Combining the same techniques that we used in LogAME
and EMEE measures we get

logAMEE
𝛼𝑘
1
𝑘
2

=

1

𝑘
1
𝑘
2

⊗

𝑘
1

∑

𝑙=1

𝑘
2

∑

𝑘=1

[entropy (Log𝐶
𝑀,𝑘,𝑙

)] .

(20)

The LogAMEE measure is suitable for images with the
following properties:

(i) periodic patterns in segments (Michelson property);
(ii) unlike AMEE, it can better handle areas with large

uniform luminance in segments (PLIP property);
(iii) in comparisonwith LogAME, it can handle additional

randomness in texture (entropy property);
(iv) for images with small differences between target

and background luminance, LogAMEE will behave
similarly to AMEE.

The LogAMEE measure is not a good measure for images
with these properties:

(i) images with small targets and a large background
(Michelson property);

(ii) images with small difference between the background
luminance and the target luminance (PLIP property).

2.3. Choosing the Measure for Mammograms. In a mammo-
gram image, the large black area beside the breast is not
considered the image background (the adaptation state of the
eye); instead we consider the breast itself as the background
and the malignant tissues, cysts, and calcifications as the
target. Hence, the image does not include a large uniform
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(a) Original image (b) Unsharp mask scale = 0.5 (c) Unsharp mask scale = 0.8

(d) Unsharp mask scale = 1.1 (e) Unsharp mask scale = 1.4 (f) Unsharp mask scale = 1.7

Figure 3: Image enhancement using unsharp masking. Higher unsharp mask scale results in higher contrast in enhanced image.

background, which makes EME and EMEE measures inap-
propriate quality measures to use for these images. The lack
of the presence of a large uniform backgroundmakesMichel-
son contrast base measures (AME, AMEE, LogAME, and
LogAMEE) good candidates for mammograms. Considering
the small difference between the luminance of breast tissue
and the luminance of the area containing the abnormality,
it is not recommended to use the LogAME and LogAMEE
measures, which are best suited for images with the large
luminance difference between the target and the background.
Also, because of the display of soft tissues in X-ray images,
mammograms tend to be textured and have a fair amount
of randomness in the target area of the image. This attribute
aligns with the properties of entropy-base measures, which
can handle images with randomness and texture better.
Therefore, considering the above argument about the nature
of the mammograms, we recommend using AMEE measure
of image quality when evaluating these images.

In the next section, we compare the performance of these
measures on a database of mammogram images.

3. Results

For our study, we used mammograms from “the mini-MIAS
database ofmammograms” [14]. To evaluate the performance
of differentmeasures, eachmammogramwas enhanced using
unsharp masking contrast enhancement (Figure 2), alpha-
rooting, CLAHE, and Lee’s enhancement algorithm [15, 16].
As demonstrated in Figure 3, increasing the unsharp mask
scale will result in enhancement of image contrast. We used
this scale as the ground truth for studying the performance
of different quality measures.The enhanced images from [14]
were tested using different quality measures.

Figure 4 shows an example of images from Figure 3
evaluated by the AMEmeasure using different segment sizes.
As the scaling constant increases, the image will have higher
contrast. A lower AMEE measure also shows higher image
contrast. For an optimal segment size, 𝑘 > 16 × 16 pixels, a
monotonic decrease in the AMEE indicates that the measure
is correctly evaluating the image quality. Controlling the
parameter 𝛼 in the AMEEmeasure can help to better address



International Journal of Biomedical Imaging 7

Table 1: Average Pearson correlation for all 1932 images fromMIAS database of mammograms (322 images with 6 enhanced versions of each
image). The AMEE measure shows the best performance between the measures we tested.

Quality measure EME EMEE AME AMEE LogAME LogAMEE
Average correlation with enhancement 0.0781 0.0222 0.7854 0.9974 0.7851 0.3254

0.06

0.05

0.04

0.03

0.02

0.01

0

−0.01
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Image enhancement

A
M

EE

Segment size = 4 × 4

Segment size = 8 × 8

Segment size = 16 × 16

Segment size = 32 × 32

Segment size = 64 × 64

Segment size = 128 × 128

Figure 4: Enhanced image from Figure 3 was tested by AMEE
measure. Higher image index (𝑥-axis) means higher image contrast;
also lower AMEEmeasure (𝑦-axis) indicates more enhanced image.

𝑤 randomness in images. In our study, we set the parameter
𝛼 to 0.1.

To quantify the overall performance of each quality
measure over the entireMIAS database [14], we computed the
Pearson correlation between each enhanced image and each
quality measure and averaged over the entire database. There
are 322 mammogram images in MIAS database [14] and we
introduced 6 enhanced versions for each mammogram. For
each measure of enhancement, we averaged the Pearson cor-
relation for the 1932 images and results are shown in Table 1.
When the average correlation is close to 1, it means that the
measure and the enhancement are closely agreeing with each
other, and a negative correlation indicates that the measure
was not able to correctly evaluate the image enhancement.
As shown in Table 1, the AMEE measure exhibits the best
performance by predicting the image enhancement correctly
in over 99.7% of images.

4. Conclusions

Like most medical imaging systems, mammography requires
enhancement of low quality images due to the X-ray hard-
ware limitations. Almost all image enhancement processes
require reliable evaluation of the image quality to help with
the parameter selection and optimization of enhancement
process. In this study, we examined several image quality
measures against a database of mammograms using different

enhancement processes. We provided our recommendation
for the optimal image quality assessment and its parameters
for this category of images.
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