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Abstract: One of the main problems in graph analysis is the correct identification of relevant nodes
for spreading processes. Spreaders are crucial for accelerating/hindering information diffusion,
increasing product exposure, controlling diseases, rumors, and more. Correct identification of
spreaders in graph analysis is a relevant task to optimally use the network structure and ensure a
more efficient flow of information. Additionally, network topology has proven to play a relevant
role in the spreading processes. In this sense, more of the existing methods based on local, global,
or hybrid centrality measures only select relevant nodes based on their ranking values, but they do
not intentionally focus on their distribution on the graph. In this paper, we propose a simple yet
effective method that takes advantage of the underlying graph topology to guarantee that the selected
nodes are not only relevant but also well-scattered. Our proposal also suggests how to define the
number of spreaders to select. The approach is composed of two phases: first, graph partitioning; and
second, identification and distribution of relevant nodes. We have tested our approach by applying
the SIR spreading model over nine real complex networks. The experimental results showed more
influential and scattered values for the set of relevant nodes identified by our approach than several
reference algorithms, including degree, closeness, Betweenness, VoteRank, HybridRank, and IKS.
The results further showed an improvement in the propagation influence value when combining our
distribution strategy with classical metrics, such as degree, outperforming computationally more
complex strategies. Moreover, our proposal shows a good computational complexity and can be
applied to large-scale networks.

Keywords: complex networks; spreaders selection; communities

1. Introduction

Networks are being increasingly used for representing, analyzing, and explaining
complex systems. According to Gartner, graph analysis can efficiently model, explore,
and query data with complex interrelationships across data silos, and it will grow at
100 percent annually through 2022 to continuously accelerate data preparation and enable
more complex and adaptive data science [1]. A key area in the network science field is
related to the study of information spreading in a network [2].

Identification of influential nodes (also called propagators, relevant nodes, or vital
nodes) that can help accelerate or interrupt a propagation process is one of the main
research interests in complex network analysis. A correct spreader identification is a core
need in applications, such as marketing, rumor spreading, identifying target points in
power grids or main streets, preventing connectivity failures in large networks, such as
Cellphone, Telephone, and the Internet, and, even more importantly, helping to prevent
the spread of diseases or pandemics [3].

The problem of choosing a set of relevant nodes to achieve the maximum spreading
flow is defined as the Influence Maximization Problem [4]; its main open issue is identifying
the smallest number of influential nodes, from which the diffusion leads to broad network
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coverage. However, identifying vital nodes is not a trivial task. First, each propagation
problem may specify a different criterion to define a node as relevant. Second, graphs mod-
eling real and complex phenomena have nontrivial statistical and topological properties
that do not occur in simple networks (lattices or random networks). Thirdly, most of the
existing methods in the literature are designed to optimize the efficient dissemination of a
single node, and not a set of nodes, although the latter is more relevant in real applications,
e.g., in a spreading disease scenario, the aim is to immunize a group of users and not just
one. However, it has been shown that selecting two or more good independent spreaders
does not guarantee having the best set of spreaders as their influences may overlap [5].

The main approaches in the literature to identify influential nodes in a network come
from three fields: operations research, evolutionary computation, and network science.
Approaches from operation research aim to find a set of spreaders based on natural greedy
strategies evaluated on independent cascade and linear threshold models [6]. From the evo-
lutionary computation perspective, many algorithms have been recently proposed, either
heuristics with provable guarantees (general greedy, high degree, and single discount) or
metaheuristics, such as Evolutionary Algorithms (essentially genetic algorithms) [7,8]. In
network science, distinct centrality indices have been proposed to address the identification
of relevant nodes in a network. The most used metrics can be classified into three types:
local, global, and random-walks [5,9]. Most known methods to identify relevant nodes use
only structural information, which allows their application to phenomena that are different
from those considered in their design [5]. In addition, the design of methods for some
special types of networks, such as spatial, temporal, and multilayer networks, is a novel
task in this research domain [6,10].

In social networks, as in other complex phenomena modeled as complex networks, the
organization of the vertices, i.e., the topology of the network, plays a more prominent role
in the identification of spreaders than a simple evaluation based on nodes connectivity. For
example, a highly connected node located on the network boundary plays a less relevant
role than a node with few connections but placed in the network core. By decomposing a
network with the k-shell decomposition method, Kitsak et al. [11] showed that the node
diffusion spread is affected by its network location. They found that the most influential
nodes, namely the network core, could be identified in the largest k-core values.

In general, approaches designed to identify individual spreaders do not perform well in
choosing a larger set of spreaders. Therefore, identifying a set of relevant spreaders for real
phenomena modeled in large complex networks is still a significant, yet difficult, challenge.

In this paper, we propose a simple yet effective method that takes advantage of the
underlying graph topology to guarantee that the selected nodes are not only relevant
(efficient spreaders) but also are well scattered among the whole graph, which, according
to our experimentation, allows us to obtain better diffusion values.

Our proposal is composed of two phases: first, a graph partitioning using a commu-
nity detection algorithm; and second, the identification and distribution of relevant nodes
for each community. Taking full advantage of induced partitions from the intrinsic clusters
of the graph enhances the scatter of the relevant nodes allowing their distribution propor-
tionally to the group sizes. With our proposal, the number of relevant nodes assigned per
community is directly proportional to its size. Moreover, the number of communities can
be used as a starting point to define a suitable number of spreaders since selecting the best
spreader from each community helps to reach a wider network coverage.

The main contribution of this work is our strategy called Partition-Based Spreaders
Identification (PBSI), which allows us to identify and scatter multiple influential spreaders
more accurately than a relevant set of benchmark methods reported in the literature. The
main advantages of our proposal can be summarized as follows: (1) It is computationally
efficient, which makes it suitable to be applied to large real systems; (2) it helps to define
a suitable number of nodes to be included in the set of spreaders; and (3) our proposed
scattering strategy has been shown to improve most of the existing metrics.
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2. Related Work

Many classic centrality methods can be used to characterize and classify a set of
propagators in a complex network. Local metrics based on the node degree are simple and
efficient, but they are the least effective, as they omit the overall structure of the network.
On the other hand, global metrics, such as betweenness centrality and closeness centrality,
perform well in identifying relevant spreaders but are highly computationally complex,
making them unsuitable for large-scale networks [12,13]. Metrics based on Random walks,
such as PageRank, ProfileRank, LeaderRank, and SpreadRank, have shown significant
performance; however, information diffusion processes are not only based on random
walks, as described in Reference [14].

It is worth mentioning that the influence capacity of the nodes is largely affected by
their topological position. In this regard, the k-shell decomposition method performs a
decomposition analysis selecting the spreaders set from nodes located within the network
core. The k-shell method is found to be better than many local centrality metrics in
many real networks. However, nodes within the same shell often have distinct influences.
Moreover, nodes in the core-shell commonly show the rich club phenomenon, i.e., they are
close together, and their influence is highly overlapped [15].

Several methods have been proposed to improve the k-shell decomposition. Zeng and
others proposed a modification of the k-shell method called the mixed degree decomposi-
tion (MDD). Their method is based on a degree decomposition using the information of
both residual degrees (number of links connected to the remaining nodes) and exhausted
degrees (number of links connected to the removed nodes).

An approach to improve the performance of the k-shell decomposition algorithm is
presented by Liu et al. [16]. They describe an efficient method to find the real influential
spreaders based on link diversity of shells to distinguish the true core and core-like group.
Liu et al. provide a method for improving the k-shell centrality by removing the redundant
links that lead to densely connected core nodes, but they have low diffusion importance.
The redundant links are identified by measuring the diffusion importance for each edge
based on the number of out-leaving links of both ends. Ma et al. [17] proposed a gravity
centrality index to identify the influential spreaders in complex networks. The authors use
the idea of Newton’s gravity formula to measure the influence of nodes. Given two nodes
v, w, and the value of a calculated metric mv, mw, the metric values mv and mw are used as
the masses in the gravity formula, and the shortest path between v and w is substituted as
the distance value in the gravity formula. Authors apply this adapted gravity formula to
achieve their graph ranking.

Zhang et al. [18] presented an iterative method to select a set of decentralized spreaders
with high spreading capacity. In their method, called VoteRank, the influential spreaders
are elected one by one according to voting scores obtained from their neighbors. In each
iteration, all neighbors cooperate in the voting round with a percentage of their vote. The
voting percentage of a node is reduced if one of its neighbors is selected as relevant.

More recently, Ahajjam et al. [19] proposed the HybridRank method to detect the
influential spreaders in the network. Their method is based on the combination of two
centrality metrics, Improved Coreness and Eigenvector, to obtain a hybrid value. Similarly,
Yu et al. [20] presented an influential spreading method based on node indirect spreading.
Their proposal considers indirect infections in the neighborhood of the nodes with a tradi-
tional direct infection strategy. However, in their proposal, to rate the indirect contribution
of nodes, an alpha value must be defined for each network through a computationally
expensive procedure, making the strategy unfeasible for large networks.

Lastly, Wang et al. [15] proposed an improved k-shell strategy called IKS. Their
method employs a combination of node information entropy and k-shell decomposition
to identify influential spreaders. Information entropy is used as a ranking metric, and the
k-shells are used as a grouping strategy.

Although it has been found in the literature that the spreading process is dependent
on the network topology, usually, spreading and choosing influential nodes are addressed
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independently. The methods mentioned above only rely on the computed metrics to rank
and select the set of influential nodes. However, they do not consider that selected nodes
can have a high relationship between them, causing a waste of resources/time influencing
each other and not the rest of the network. Therefore, the strategy to select the set of
relevant nodes must consider both their ranking value and their topological location.

3. Proposed Method

In general, an unweighted simple network is represented as G(V, E), where V is the
set of vertices (or nodes), E is the set of edges (or ties) connecting some vertex pairs in V, n
is the number of vertices n = |V|, and m is the number of edges m = |E|. In this section,
we firstly introduce our proposal to enhance the ranking performance, and then several
frequently used centrality indices and their potential applications are described.

Our PBSI method can be split into two processes: (1) the identification of influential
spreaders using the gravity k-shell centrality and (2) the identification and scatter of a
set of nodes that are susceptible to maximize the propagation of influence when working
together. The details of our algorithm are described as follows.

3.1. Measuring the Relevance of the Vertices

The first step combines the improved version of the k-core centrality and the partition-
ing induced by a non-overlapping community detection algorithm to generate ranking
values. Let G = (VG, EG, C) be an undirected graph in which every vertex has been labeled
with a community identifier by a community detection algorithm. Let us consider that C is
the set {c1, c2, . . . , cnc} of non-overlapping communities identified in the graph.

The measurement of the relevant vertices is carried out for each community, i.e., a list
of ranked vertices is obtained per each community of the graph. To rank the vertices, we
use the Gravity k-Shell metric that is defined as follows:

GKSW(v) = ∑
w∈ψ3

ks(v)× ks(w)

d2
vw

, (1)

where ks(v) is the k-shell value for node v, ψ3 are all the neighbors of v (without considering
any structural partitioning) at most three steps away, and dvw is the shortest path length
between v and w. The k-shell decomposition method was performed as defined by Batagelj
and Zaversnik [21] and Kitsak et al. [11].

Equation (1) allows discriminating between the nodes of a graph, ranking them
according to the value obtained for the gravity k-shell weighted metric. Once the number
of spreaders per community has been defined, relevant spreaders can be selected and
labeled accordingly to the ranking generated by the process described above.

3.2. Spreaders Distribution

As pointed out by Kitsak et al. [11], the range of propagation can be greatly improved
if the set of selected spreaders are less connected between them (or also disconnected),
especially when compared with a simple set ranked according to a centrality metric that
does not consider the dispersion of the nodes to grant the ranking values.

In order to maximize the spread of influence, we propose to select the desired set of
relevant nodes from each partition proportionally to the size of the community. Based on
those assumptions, the separation of relevant nodes could accelerate the dissemination
of information, and the selection of spreaders by the communities can lead us to affect as
many nodes as possible. As in step one, the selection and distribution of spreaders are
performed for each community. However, in the allocation, the communities are processed
in size-order, from the smallest to the largest one.

Given P number of spreaders, the allocation is performed iteratively, assigning at
least one spreader for small communities and a larger number for the bigger ones. If a
community is small, it can be efficiently influenced by a single relevant node; however, it
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becomes evident to use more than one spreader to influence larger communities that show
more complex structures.

Let us consider that we have to allocate P spreaders among a set C of communities.
Let cu be the community with the less number of vertices, and let nu be the total number
of vertices in all the unallocated communities. The number of spreaders allocated to cu is
computed by the following equation.

pcu ← max{1,
⌊

Pr ×
|cu|
nu

⌉
}, (2)

where Pr is the number of unallocated spreaders, |cu| is the size of the community u, and
nu is the number of vertices of the graph which has not been considered by the spreader
allocation process.

Let G = (VG, EG, C) be a graph in which every vertex has been labeled with a commu-
nity identifier by a community detection algorithm. Let us consider that C is the ordered
set {c1, c2, . . . , cnc} of communities in increasing order by community size. Assuming that
we want to distribute P spreaders over the |C| communities, we wish to do that considering
the following:

1. If a community is small, then we assign one spreader.
2. The number of spreaders assigned to a community is proportional to its size.

At the beginning of the process, cu is equal to the smallest community that has not
been allocated some spreaders, i.e., cu corresponds to c1. Similarly, nu is equal to |VG|
because no vertex has been processed yet. Likewise, Pr is initialized with P because no
spreader has been allocated yet. Then, for each community cu ∈ sorted(C), pcu is calculated,
and the pcu nodes with higher rank value from than community are selected. After each
allocation, the values of nu and Pr are updated using: nu ← nu − |cu| and Pr ← Pr − pcu .

Following the described process, all the P spreaders are allocated through all the
communities of a given graph, guaranteeing at least one spreader and that the number of
allocated spreaders are proportional to the community size. Of course, to fulfill the above
description, P should be greater than |C|.

When P is smaller than |C|, the communities are sorted in descending order (by
community size), and the nodes with higher ranking value for the first |P| communities
are selected as spreaders. When all communities have been processed, the graph with the
allocated spreaders is returned.

4. Evaluation Design

To evaluate our proposal, we build a prototype that performs all tasks presented in
Section 3 by using the python programming language and the python-igraph3 library. In
addition, we built prototypes for the set of benchmarks methods presented in the following
sections (Our code is available at: https://github.com/jedidiah-yanez/PB-Spreaders-
Identification) (accessed on 9 September 2021).

Each method was evaluated using the SIR diffusion model by assessing three per-
formance metrics. The experimentation was carried out using a set of nine real complex
networks of increasing size to evaluate the quality of the selected diffusers, as well as the
scalability of the methods.

4.1. Benchmark Methods

The following is a description of the benchmark methods that will be used to compare
with our proposal. For each method, its name and the acronym used across the following
sub-sections are given.

4.1.1. Degree Centrality (DEG)

It is the degree of a vertex. Degree weighs the vertex relevance based on the number
of links that it has. For directed graphs, two different metrics can be defined corresponding

https://github.com/jedidiah-yanez/PB-Spreaders-Identification
https://github.com/jedidiah-yanez/PB-Spreaders-Identification
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to the vertex incoming and outgoing degree. Degree centrality is an indicator for local
spreading, and their influence is limited to their direct environment [22,23].

4.1.2. Closeness Centrality (CLO)

Closeness centrality measures the closeness of one user to all other users. The closeness
centrality of vertex u, Cc(u), is inversely proportional to the sum of the distances of u to
every other vertex in the graph.

Cc(u) =
1

∑v∈V duv
. (3)

If a vertex has a high closeness centrality, then that vertex can reach more easily other
vertices on the graph, i.e., the vertex is closer or near to others. Closeness centrality is
usually positively associated with other measures, such as degree, because it gives higher
values to more central vertices, i.e., those with shortest-path length [22,24].

4.1.3. Betweenness Centrality (BET)

It is a measure that quantifies the frequency or number of times a vertex participates
as a bridge along the shortest path between two other vertices and is defined as:

Bc(u) = ∑
v,w∈V,v 6=w

σ(u, v, w)

σ(v, w)
, (4)

where σ(u, v, w) is the number of shortest paths between v and w that pass through u,
∀v, w ∈ V, v 6= w; and σ(v, w) is the total number of shortest paths between v and w,
∀v, w ∈ V, v 6= w. In a real-world network, the greater the number of shorter paths in
which a vertex participates, the greater its importance. Additionally, a similar metric can be
applied to the graph edges, measuring the proportion of shortest paths that pass through
an edge [22,23]. Betweenness centrality not only takes into account the direct relationships
but also the indirect ones, thus being indicators for global relevant nodes.

4.1.4. VoteRank Method (VR)

It is a heuristic proposed by Liu et al. [18]. The VoteRank method brings to each node
the ability to vote. In each round, the node that receives the most votes from its neighbors
is selected as influential and does not vote in subsequent rounds. The voting ability vav of
nodes that vote for the selected influential spreader is decreased. The voting score vsv of
node v is determined by its neighbors as vsv = ∑u∈δv vau. In each round, the node with
the largest voting score is selected as a relevant, and the voting ability of all its neighbors
u ∈ δv is weakened by a factor f = 1/〈k〉, where δv are the neighbors of v, and 〈k〉 is the
average degree. Spreaders are selected sequentially until the desired number is reached.

4.1.5. HybridRank Centrality (HC)

This heuristic method is proposed by Ahajjam et al. [19]. The HybridRank strategy
is divided into two stages: First, the hybrid centrality given by HCv = ICCv × ECv is
computed for each node. This method uses the Improved Coreness Centrality (ICC) and
the Eigenvector Centrality (EC). Second, to avoid the selection of adjacent neighbors when
selecting the relevant nodes, after the first spreader is selected, their adjacent neighbors are
removed from the ranked list, and the next spreader is the one with the highest rank in the
remaining list.
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4.1.6. Indirect Spreading (SC)

This measure is proposed by Yu et al. [20]. The SC metric considers the direct and
indirect infection spreading into account. Authors define the spreading strength cij of an
edge eij as

cij = 1 + kout
j

[
1 +
|Dij,2|

22

]α

, (5)

where kout
j is the number of edges {ejl |l /∈ δi and l 6= i}, i.e., node l lies outside of the

neighborhood δi of node i. Dij,2 is the number of paths from node i and node j whose
length are 2, and the parameter α serves to tune the contribution of 1 + |Dij,2| to the direct
and indirect infection spreading from node i to node j. The spreading strength of node i is
defined as

SCi = ∑
j∈δi

cij. (6)

4.1.7. Improved K-Shell (IKS)

This method is proposed by Wang et al. [15]. Having ki as the degree of node i, the
node information entropy is defined as

ei = − ∑
j∈δi

k j

∑N
h=1 kh

· ln
[

k j

∑N
h=1 kh

]
, (7)

where δi is the set of neighbors of node i, and k j/ ∑N
h=1 kh characterizes the importance

of node i. The IKS method is conducted using the following procedure: (1) Decompose
the network into shells by the k-shell decomposition algorithm; (2) for all nodes, compute
the node information entropy, according to (7); (3) for each shell, sort nodes descending
according to their information entropy; (4) for nodes in the highest k-shell value, select
the node which has the largest information entropy, and then select the node in next to
the highest shell which has the largest node information entropy; (5) repeat Step 4 and
select the residual nodes until all nodes have been selected. When the value of the node
information entropy is equal in the specific shell for two or more nodes, randomly choose
one of them.

4.2. Spreading Model

A way to evaluate the spreading capabilities of a set of nodes is by using a spreading
model. To evaluate our method, we apply the standard susceptible-infected-recovered (SIR)
model, which has been extensively studied in many epidemics spreading processes [3,25]. In
the SIR model, a node may belong to one of three states: Susceptible (S), Infected (I), and
Recovered (R). The susceptible state (S) represents nodules that are likely to be infected
but have not yet been infected. Infected (I) denotes nodes that can infect their susceptible
neighbors. Recovery (R) involves individuals who were infected but have recovered and
will never be re-infected.

At the beginning of the simulating process, all nodes are in susceptible status, except
for an initial set of ρ infected nodes selected as source spreaders. At each time step, each
infected node randomly contacts a neighbor and transmits the disease to it with probability
β, if the latter one is susceptible. At the same time, each infected node will get recovered
with a probability of µ. For generality, in this paper, we set µ = 1.

The process terminates if there is not any infected node in the network. The final
spreading scope FSS of the initial set ρ of spreaders is computed by counting the number
of recovered nodes over 100 simulations. We set the value of infection probability β to be
slightly larger than the network epidemic threshold βth ≈

〈k〉
〈k2〉 , where 〈k〉 is the average

degree [3].
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4.3. Performance Metrics

We use three metrics to evaluate the performance of tested methods. The first two are
based on the spreading scale under SIR spreading model, and the third is based on the
structural properties of selected relevant nodes.

In order to compare the spread level for different methods at distinct moments of the
SIR simulation, we use the Spreading Scope SS at time t defined as:

SS(t) = |ρ|+ I(t), (8)

where ρ is the set of nodes that are initially in the infected state, and I(t) is the number of
newly generated infected nodes at time t.

To compute the final scale of affected nodes, we use the Final Spreading Scope FSS,
which is defined as:

FSS = |ρ|+ I, (9)

where ρ is as above, and I is the number of newly generated infected nodes when the
spread process achieves the steady-state.

To evaluate the structural properties between each pair of selected relevant nodes, we
compute the average shortest path length LS, defined as:

LS =
1

|V|(|V| − 1) ∑
u,v∈V
u 6=v

du,v, (10)

where du,v is the length of a shortest path from node u to v.

4.4. Data Description

To verify the performance of our proposal, we have applied it to nine real networks
with different sizes that are commonly used for efficiency comparison. The involved net-
works are the following: USAir, American aviation network [26]; NetSci, Co-authorship
network of scientist [27]; Email-EU-core, core of the email data from a European research
institution [28]; PGP, Confidential communication network using the Pretty Good Privacy
encryption algorithm [29]; CondMat, represents Arxiv Condense Matter Physics collabora-
tion network [30]; Email-EU, email data from a European research institution [28]; Amazon,
network collected by crawling Amazon website [31]; DBLP, co-authorship network where
two authors are connected if they publish at least one paper together [32]; and YouTube, on
the YouTube social network, where users form friendships with each other, and users can
create groups that other users can join [32]. For the definition of the community structure
of each real network, the multi-level modularity optimization algorithm, also known as the
Louvain algorithm, was applied [33].

Table 1 summarizes the main characteristics of the nine networks. As shown in the
table, the networks are horizontally divided into three groups according to their size,
ranging from hundreds of nodes and thousands of edges in the first group to millions of
nodes and edges in the third group. For simplicity, these networks are treated as undirected
and unweighed networks in this work.
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Table 1. Summary of basic topological properties of the 9 real networks. V and E are the total number
of nodes and edges, respectively. 〈k〉 is the average degree. L is the average shortest path. 〈Cc〉
is the average clustering coefficient. ksmax is the maximum k-shell value, and C is the number of
communities identified in the graph.

Network V E 〈k〉 L 〈Cc〉 ksmax C

USAir [26] 332 2,126 12.807 2.738 0.749 26 7
NetSci [27] 379 914 4.82 6.042 0.798 8 18

Email-EU core [28] 1,005 25,571 50.88 2.586 0.399 56 41

PGP [29] 10,680 24,316 4.55 7.463 0.440 31 117
CondMat [30] 23,133 93,497 8.51 5.352 0.633 25 62
Email-EU [28] 265,214 420,045 3.03 4.118 0.486 39 115

Amazon [31] 262,111 1,234,877 9.42 8.831 0.420 10 214
DBLP [32] 317,080 1,049,866 6.62 6.792 0.632 113 573

YouTube [32] 1,134,890 2,987,624 5.27 5.279 0.080 51 9635

5. Results and Discussion

We compared the performance of the proposed approach PBSI with the benchmark
methods described above using the previously mentioned performance metrics. The
evaluation was carried out by applying the SIR model and calculating the three metrics to
the real networks. First, a set of relevant nodes is selected by using each benchmark method.
Then, using each set of selected nodes as source spreaders, the spreading simulation is
performed according to the SIR model described above.

Figure 1 shows the final spreading scope FSS achieved by the different methods on the
nine networks for different spreading rates β, from 0.01 to 0.15. For the first two groups
of real networks (small and midsize), the SIR process was repeated 500 times using each
method, achieving results reliability and reducing computation time. For the last group,
the SIR process was repeated 100 times, an average value that is used in the literature.

The results shown in Figure 1 reveal that the set of relevant nodes identified and as-
signed by our proposal achieved a higher influence value than their counterparts, reaching
a higher number of nodes in a broad region of β, especially for β ≥ 0.05. In the widely
used complex network PGP (Figure 1d), the set of relevant nodes selected by the PBSI
method can reach more vertices than any other almost for all the spreading probabilities. A
comparable result can be seen for the NetSci (Figure 1b), Email-Core (Figure 1c), Amazon
(Figure 1g), and YouTube (Figure 1i) graphs, in which our approach performs with similar
results than betweenness centrality but with less computational effort, as it will be shown
later. For Figure 1d,f,i, our proposal stands out from β = 0.05. When β = 0.15, our proposal
achieves a final spreading scope of 42,145.62 for the Email-All network (Figure 1f), while the
nearest benchmark method (IKS) reaches on average 41,923.84. Similar results are achieved
for Amazon (Figure 1g) and YouTube (Figure 1i), two of the biggest analyzed networks. For
Amazon, PBSI reached a spreading of 38,151 and 262,814.44 for YouTube, while its nearest
contender averages a spreading of 36,384.78 (HC) and 253,233.46 (VoteRank), respectively.

When the propagation probability is low (e.g., β < 0.04), the spreading initiated from
selected nodes are more likely to be confined in local regions. In this case, the greater the
degree of nodes, the more neighborhood would be directly activated since a high degree
provides a greater chance to spread, i.e., methods based on degree would perform better
than others.
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Figure 1. The final spreading scope for PBSI and benchmark methods on nine real networks when varying the spreading
rates (β). The number of initial source spreaders ρ are defined as follows: ρ = 20 for (a,b); ρ = 50 for (c,d); ρ = 100 for (e,f);
ρ = 200 for (g,h); and ρ = 10k for (i). SIR model with µ = 1. The influence spread (FSS) on the y-axis against propagation
probability β on the x-axis. Acronyms are defined in Section 4.1.

In Figure 2, the effects of varying the number of spreaders ρ for the benchmarks
methods and PBSI using three different information transmission rates (β) are reported.
In the x-axis, the ρ spreaders are plotted, and, in the y-axis, the FSS value for each given ρ
is plotted. Figure 2 is composed of three groups of each one of the six plots. Each group
shows the SIR results for the real networks of mid and large sizes using a distinct value of
β, namely 0.07, 0.10, and 0.13. The first six plots (Figure 2a–f) show results for β = 0.07; the
next group of plots (Figure 2g–l) shows results for β = 0.1, and last group (Figure 2m–r)
shows results for β = 0.13.

From Figure 2, it can be seen that PBSI has an advantage over the reference methods
for a wide rho region in the three beta values analyzed, mainly in the PGP, CondMat, DBLP,
and YouTube networks. As can be seen in all the plots, the influence spread of our approach
continues to grow with an increase of ρ in all networks. In cases, such as the PGP and
CondMat networks, the influence spread of degree heuristic almost ceased to grow, and
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their result curves are nearly parallel to the X axis (mainly for β equal to 0.1 and 0.13). This
shows that the source nodes selected by traditional heuristic algorithms tend to have larger
overlaps, which leads to the redundancy of propagation [34].
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Figure 2. The final spreading scope for PBSI and benchmark methods on six real networks and three spreading rates (β)
when varying the number of spreaders (ρ). SIR model with µ = 1, ρ ranges up to 100 in PGP, CondMat, and Email-All, up
to 400 and 600 in Amazon and DBLP, and up to 15k in the YouTube network. Plots (a–f) were computed with β = 0.07, plots
(g–l) with β = 0.10, and plots (m–r) with β = 0.13. ρ spreaders in x-axis against FSS in y-axis. Acronyms are defined in
Section 4.1.
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To verify the effectiveness when scattering the relevant nodes selected by the PBSI
metric compared to the scattering achieved by benchmark methods, we evaluate the
average shortest path length metric LS. As can be seen in Figure 3, the selected influential
spreaders obtained using the PBSI method have larger LS values than most of the achieved
by the benchmark methods, especially in the larger networks and for higher ρ values.
Compared with the benchmark methods, the source spreaders selected by PBSI are more
decentralized in the whole network. Actually, as described in Reference [35], the higher the
values of LS, the more effective the distribution. Due to the computational complexity of
calculating all the shortest paths lengths in big graphs and for a large number of spreaders,
Figure 3 shows only the average shortest path lengths for the first eight real networks
presented in Table 1.

Figure 3 shows LS of source spreaders selected by different methods under different
scales of source spreaders, 1 to 50 in USAir (Figure 3a), 1 to 100 for NetSci (Figure 3b) to
Email-All (Figure 3f), 50 to 400 in Amazon (Figure 3g), and 50 to 600 in DBLP (Figure 3h).
It can be observed that, in the three smaller networks, the distances between each pair of
spreaders achieved by the proposed method are smaller than the ones obtained by IKS
and HC metrics, but they are greater than all the other applied methods. In addition, it
can be seen in Figure 3 that, in most of the cases, the LS value achieved by PBSI has three
sections: first, an increasing behavior, then a slight descent, and, finally, it recovers its
increasing trend. This behavior is associated with the distribution strategy. When ρ ≤ |C|,
the spreaders are assigned to each community, reaching the maximum distribution value
(LS) when ρ = |C|. For the cases when ρ ≥ |C|, the spreaders are assigned proportionally to
the community sizes. Having more than one spreader per community reduces the average
distance between spreaders of the same community, reflecting a slight decrease.

This trend can be observed in Amazon (Figure 3g), which has 214 communities. In
Amazon’s case, we can observe the growing trend for values of ρ ≤ 214, the peak when
ρ = 214, and a decreasing trend for the subsequent values. Less noticeable, the DBLP’s case
in (Figure 3h), with 573 communities, shows the increasing trend until ρ ≤ 573, a slight
peak when ρ = 573, and a less abrupt drop for later values. CondMat (Figure 3e), having
62 communities, shows the same behavior. In the cases of PGP (Figure 3d) and Email-All
(Figure 3f), only the increasing trend can be observed since the number of communities,
117 and 115, respectively, are outside the plotted range.

Despite the above, it can be observed that the trends obtained by PBSI show a better
profit of LS regarding the benchmark methods in the whole analyzed ranges. In summary,
the results of the average shortest path length metric, in combination with the results of the
SIR simulation experiments, show that our method not only improves the diffusion from
the selected source nodes but also ensures that they are well scattered.

Finally, we test the profit generated by the distribution strategy (Step 2 of the proposal)
when it is combined with the benchmark methods. As mentioned above, taking advantage
of the community partitioning not only helps to guarantee a good vertex distribution but
also contributes to use the number of communities as a guide to define the number of
relevant nodes that can have a good spreading of the information. For this experimentation,
the number of spreaders was set as the number of communities obtained by Louvain’s
algorithm [33], i.e., ρ = |C| (last column of Table 1).
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Figure 3. The average shortest path length LS among the source spreaders selected by PBS and the benchmark methods on
eight real networks when varying the number of spreaders (ρ). ρ ranges from 1 to 50 in USAir (a), 1 to 100 in the next five
networks (b–f), 50 to 400 in Amazon (g), and 1 to 600 in DBLP (h). The average shortest path length on the y-axis against
the number of multiple spreaders ρ on the x-axis. Acronyms are defined in Section 4.1.

The SIR simulation was performed using µ = 1 and β = 0.13. Each reference method
was calculated in its simple form and using the distribution scheme of our proposal,
i.e., using the communities as a base and calculating the values of the method for each
community. Finally, for each community, the vertex with the highest value according to the
selected metric was used.

In the columns of Table 2 the results are shown for eight of the nine real networks
used. In turn, rows show the results obtained by each method. The highest value for
each network is shown in bold. The combination of our distribution proposal with each
benchmark method is marked with the symbol “?”.

In addition to the results obtained for the benchmark methods, in the table, we include
the results achieved when selecting the spreaders based on the node’s True Spreading
Ability (TSA). The TSA of each node is calculated by evaluating the SIR model using that
node as a spreader. The ranking based on TSA is considered in the literature as the ideal
ranking; therefore, in several works, it has been used as a base to perform correlation
evaluations of the rankings generated by other strategies. However, as shown in the results
of Table 2, the spreaders selected using the TSA strategy are far from reaching the best
diffusion values.

As shown in the table, almost all the diffusion values achieved by the benchmark
methods improve when combined with our distribution strategy. Furthermore, the DEG
method, which is considered the simplest and least relevant, overcame the diffusion
achieved by nearly all methods in its simple version when combined with our distribution
strategy (DEG?) (only in the case of the two smaller networks this was not fulfilled).

Table 2 also shows that, in five of the eight evaluated networks, the maximum coverage
value is reached using our strategy (cells in bold). For the remaining networks where
PBSI does not achieved the highest value, the maximum coverage value was obtained
by methods combined with our distribution strategy HC?, DEG?, and IKS? for USAir,
PGP, and CondMat, respectively. This shows that both the selection of relevant nodes and
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distribution strategy of our proposal overcome the results achieved by the benchmarks
methods, which are commonly used in the literature.

Further, it can be seen that the spreading results achieved by TSA fail to improve
any metric in any of the analyzed networks. Despite having evaluated all the nodes in
the network and knowing their diffusion value, it can be observed that the Top-C ranked
spreaders do not necessarily have the best performance.

Figure 4 shows the percentage of profit (∆) of the metrics combined with the distri-
bution strategy compared to the simple metrics. These values were obtained by applying
∆(metric) = metric ? /metric. If Delta(metric) > 1 means a profit over the simple metric;
on the other hand, if Delta(metric) < 1, it means that the combined metric performed
worse than the simple metric. Figure 4 shows that only in the USAir (BET?) and Amazon
(HC? and VR?) networks is a worse performance of the combined metrics observed. As
can be seen in the figure, the highest gains were achieved in the NetSci and PGP networks,
where a gain of more than 30% can be observed. In the figure, the greater the value above
one, the greater the gain obtained by the combined metric. The average profit considering
all the networks and methods is 5.95%.

Although the profit obtained from the combined schemes may seem low, it is necessary
to point out that, except for USAir and NetSci, the profit obtained for the DEG? metric was
enough to exceed the results achieved by more complex and specialized metrics, such as
BET, VR, HC, and IKS, as can be observed from Table 2.

Table 2. Comparison between the final spreading scope achieve by the simple benchmark methods and their version
combined with our proposed scattering method, which distributes the relevant nodes according to the partitioning induced
by a community scheme. The highest values for each graph are shown in bold. (+) means a higher value than the simple
metric. (−) means lower value than the simple metric. Acronyms are defined in Section 4.1.

USAir NetSci Email-Core PGP CondMat Email-All Amazon DBLP

BET 155.04 66.75 756.28 1401.24 7221.25 36,498.84 19,928.94 72,673.86
BET? 154.19 − 70.28 + 775.36 + 1526.5 + 7311.28 + 36,852.86 + 21,368.11 + 73,896.33 +

CLO 153.75 53.10 755.08 1203.53 7221.54 35,627.50 18,996.47 72,647.98
CLO? 153.87 + 72.76 + 774 + 1533.98 + 7283.41 + 36,825.19 + 21,317.18 + 73,863.33 +

DEG 151.42 70.38 755.76 1242.64 7205.79 36,464.72 20,892.47 72,679.94
DEG? 154.78 + 74.21 + 774.91 + 1565.75 + 7307.24 + 36,863.84 + 21,825.99 + 74,039.21 +

HC 152.47 50.74 755.74 1157.59 7205.75 36,500.04 21,131.07 72,650.26
HC? 157.49 + 71.79 + 775.35 + 1562.12 + 7278.66 + 36,707.82 + 19,646.13 − 73,661.48 +

VR 153.28 76.04 755.63 1494.00 7224.53 36,581.93 21,176.56 72,753.74
VR? 153.66 + 76.06 + 775.69 + 1557.41 + 7284.29 + 36,672.45 + 19,709.25 − 73,621.61 +

SC 151.63 41.13 757.19 1147.16 7221.50 35,647.38 19,173.56 72,715.13
SC? 157.22 + 55.81 + 772.16 + 1529.56 + 7333.97 + 36,750.59 + 21,600.94 + 73,680.69 +

IKS 150.78 63.94 757.34 1392.66 7264.97 36,811.25 20,041.84 73,038.16
IKS? 153.72 + 71.13 + 776.06 + 1504.31 + 7336.69 + 36,845.56 + 18,993.88 − 74,100.79 +

TSA 153.97 51.91 758.44 1154.72 7197.31 35,597.56 18,806.53 72,612.16
TSA? 154.47 + 61.09 + 776.5 + 1427.03 + 7270.59 + 36,744.88 + 19,728.44 + 73,735.09 +

PBSI 156.10 76.40 776.85 1556.82 7316.78 36,868.83 21,857.31 74,277.69
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Figure 4. The profit margin achieved by the reference methods combined with the distribution strategy compared to their
simple versions on eight real complex networks. Acronyms are defined in Section 4.1.

Computational Efficiency

The proposed method PBSI is composed of two steps: (1) the centrality calculation and
(2) the identification of a set of influential spreaders in the networks. The computational
complexity of the ranking method depends on the size of the neighborhood covered,
which in our method is bounded by O(|V| × 〈k〉 × d), where 〈k〉 is the average degree
of the network, and d is the order (ratio) of the neighborhood. We use d = 3; therefore,
the resulting time complexity for first step is O(3× |V| × 〈k〉), which is dominated by
O(|V| × 〈k〉), and this, in turn, for O(|V|) if considering that, in most complex networks,
the average degree 〈k〉 is less than the number of nodes, i.e., 〈k〉 � |V|.

The second stage, on the other hand, performs a sort operation based on the commu-
nity sizes, having O(|C|log|C|) time complexity. Then, a sort of all nodes based on their
ranking value is performed, and a scan for the nodes of each community is performed,
i.e., O(|V|log|V|+ |C| × |V|). As |C| � |V|, the resulting time complexity is defined as
O(|V|log|V|). Thus, the final time complexity is O(|V|+ |V|log|V|), which is dominated
by O(|V|log|V|).

Figure 5 shows the execution times of the methods analyzed. Each axis depicts the
time consumed for each method for a specific network. Axis are in log scale from the
innermost value 1× 10−6 to the outermost 1× 105. Correspondingly, lines describe the
time consumed. The figure compares the time consumed by the two stages of our proposal
PBSI regarding the time consumed by the benchmark methods when analyzing five of the
largest networks presented in Table 1.

From the figure, it can be observed that the behavior of PBSI-STP2 (the distribution
proposal) have a minor impact in time, as it only grows two orders of magnitude from the
smaller graph (PGP) to the bigger one (YouTube), which matches to the size of the graphics,
whose difference in the number of vertices and edges is two orders of magnitude. On the
contrary, algorithms, such as BET, HC, and SC, have a temporary growth of more than four
orders of magnitude for the same graphs in similar scenarios. The smallest amounts of
time are achieved by DEG, IKS, and PBSI-STP2, as shown in the figure.
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Figure 5. Time in seconds, consumed by the two steps of PBSI, and the benchmark methods for the mid-size and large-size
networks. Axes are in log scale. On the five axes are the five networks, and each line corresponds to each evaluated method.
Acronyms are defined in Section 4.1.

6. Conclusions

Identifying a set of relevant nodes to maximize the spread of influence in complex
networks is an important task in areas, such as social network analysis and viral marketing.
The most used strategy to solve this issue is to compute a simple centrality method and to
select as relevant nodes the set of top-ranked nodes. Although many methods have been
proposed in the literature to select relevant nodes from a complex network, most of them
use the idea of ranking the vertices accordingly to a defined metric. However, when more
than one node needs to be selected as a spreader, it has been shown that neglecting the
network topology and using a greedy selection of the top-ranked nodes will not achieve
the best spreading capabilities. Furthermore, we have found that even in the simple and
computationally effortless method, the degree, can outperform some of the more complex
metrics when the network topology is considered.

In this paper, we presented a methodology based on data science that aims to identify
relevant nodes in a complex network according to the partitioning of a graph given by a
ground truth or a community detection algorithm. In our method, the set of influential
spreaders is chosen not only based on a centrality method but also proportional to the com-
munity sizes; the proposal allows the selected nodes not to be adjacent, thus maximizing
the spread, even of existing centrality methods.

Our proposal is composed of two stages. First, the relevance of the vertices belonging
to each induced partition is measured. Second, given an ρ number of relevant nodes to be
selected, they are selected from the partitions and proportionally to their size. The selection
of relevant nodes is performed based on two premises: (1) to select good spreaders and
(2) to have a high scattering. The performance of our method was evaluated in nine real
networks under the Susceptible-Infected-Recovered (SIR) model.
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Experimental results for the nine processed networks in the SIR model show that
the proposed method outperforms several benchmark methods using different metrics in
both (1) spreading capabilities and (2) distribution of relevant nodes. Furthermore, our
method to scatter the relevant nodes allowed us to improve the results obtained by the
benchmark metrics used. Results confirm that it is possible to take advantage of the graph
topology, i.e., the partitioning induced by the communities to achieve a good scattering of
the relevant nodes.

In addition, we show that the complexity of our proposal makes it suitable to process
large complex networks with lower computational effort when compared with other
metrics, such as Betweenness centrality and HybridRank.
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