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Abstract: Circulating tumor cells (CTCs) and immune status are strongly related to cancer
prognosis, although few studies have examined both factors. This prospective observational study
(ClinicalTrials.gov: NCT02420600) evaluated whether CTCs, circulating cancer stem-like cells (cCSCs),
and peripheral lymphocytes with/without Programmed cell death protein 1 (PD-1) expression were
associated with prognosis among patients receiving palliative chemotherapy for initially unresectable,
recurrent/metastatic head and neck squamous cell carcinoma (rmHNSCC). Thirty-four patients were
enrolled between January 2015 and June 2016. Overall survival (OS) was associated with a higher CTC
number (hazard ratio [HR]: 1.01, p = 0.0004) and cCSC ratio (HR: 29.903, p < 0.0001). Progression-free
survival (PFS) was also associated with CTC number (HR: 1.013, p = 0.002) and cCSC ratio (HR: 10.92,
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p = 0.003). A CD8+ proportion of ≥ 17% was associated with improved OS (HR: 0.242, p = 0.004).
A CD4: CD8 ratio of >1.2 was associated with poorer trend of PFS (HR: 2.12, p = 0.064). PD-1
expression was not associated with survival outcomes. Baseline CTCs, cCSC ratio, and CD8+ ratio
may predict prognosis in rmHNSCC.

Keywords: circulating tumor cells; cancer stem-like cells; PD-1; peripheral lymphocytes; head and
neck cancer

1. Introduction

There are >500,000 new cases of head and neck squamous cell carcinoma (HNSCC) annually,
with approximately 400,000 deaths worldwide [1,2]. Furthermore, the rates of new HNSCC cases
and its incidence are 60,000 cases/year and 11.0/100,000 population in the USA, 63,500 cases/year and
11.2/100,000 population in Europe, and 7200 cases/year and 20.72/100,000 population in Taiwan [3,4].
Chemotherapy with or without targeted therapy remains a standard treatment for patients with initially
unresectable, recurrent or metastatic HNSCC, although salvage surgery and re-irradiation may be
possible for potentially resectable cases [5]. However, survival after disease progression or distant
metastasis is relatively short, compared to other cancers [6], which contributes to the limited ability to
switch chemotherapies. Moreover, the lack of useful and validated biomarkers to predict response is a
major challenge during front-line palliative chemotherapy.

One promising biomarker is circulating tumor cells (CTCs), which can predict prognosis before
starting therapy for various types of cancer [7–9]. These CTCs are shed from the primary tumor and
can be detected in the patient’s bloodstream, where they often express epithelial markers, such as
epithelial cell adhesion molecule (EpCAM) [10] or cytokeratins [11], but typically do not express white
and red blood cell markers, such as CD45 [12] and CD235a [13]. One exception is CTCs that are
undergoing epithelial-mesenchymal transition processes [14]. Many investigators have found that
CTCs can predict treatment response and have proposed monitoring CTC counts during anticancer
therapy [15]. Moreover, a small subset of CTCs expresses stem cell markers, such as CD133 [16] or
CD44 [17]. These cells can be referred to as circulating cancer stem-like cells (cCSCs), and are thought to
be partially related to chemotherapy resistance [18–20]. Kantara et al. have reported several methods
for identifying cCSCs using their expression of DCLK1, Lgr5, ANXA2, and PG, rather than CD44, and
found that cCSCs were consistently related to chemotherapy resistance [21]. Nevertheless, the role of
cCSCs in HNSCC remains unclear, especially regarding whether they are associated with prognosis
or chemoresistance.

The relationship between host immune status and cancer cells is incompletely understood, and
there has been a significant recent interest in the interaction between cancer and the host’s immune status
(e.g., CD4+ count, CD8+ count, CD4: CD8 ratio, and CD56+ fraction of peripheral lymphocytes) [22–27].
Programmed cell death protein 1 (PD-1) is a 55-kDa transmembrane protein with one extracellular
IgV-like domain and a 97-amino acid cytoplasmic tail consisting of one immunotyrosine switch motif
and one immunotyrosine inhibitory motif. PD-1 can be expressed on activated T cells, B cells, and
myeloid cells. The function of PD-1 has been revealed to be an inhibitory role and a potential role in
regulating tolerance and autoimmunity. PD-L1 is commonly upregulated on many different tumor
types, where it inhibits anti-tumor T cell responses, and that PD-1 is expressed on the majority of
tumor-infiltrating lymphocytes That is an important rationale to block this pathway as novel cancer
immunotherapies. One study has revealed that PD-1 expression on lymphocytes is significantly
correlated with cancer prognosis. [22] For example, PD-1 expression on peripheral CD4+ lymphocytes
reflects impaired T-cell function and predicts poor clinical outcomes [23,24].
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However, no studies have examined the associations of survival with PD-1 expression on
peripheral lymphocytes (i.e., host immune status) plus the patient’s CTC and cCSC status (i.e., markers
for cancer aggressiveness). Therefore, this study aimed to evaluate whether CTCs, cCSCs and
peripheral lymphocytes with/without PD-1 expression were associated with prognosis and therapy
response among patients who were receiving palliative chemotherapy for initially unresectable,
recurrent/metastatic HNSCC.

2. Results

2.1. Patient Enrollment

Between January 2015 and June 2016, 34 patients were enrolled after receiving a detailed
explanation regarding the study’s design, methods, and potential risks (Figure 1). The patients’ basic
characteristics are shown in Table 1, and all patients were followed until September 2017. The median
follow-up time was 5.6 months ranging from 1.0–29.0 months. The median patient age was 50 years
(range: 37–73 years), and most patients were male (85.3%). The most common primary sites were
the oral cavity (55.9%) and oropharynx (23.5%). Most patients had an Eastern Cooperative Oncology
Group performance status of 0–1 (61.4%), and a smaller subgroup had a performance status of ≥2
(38.6%). The cases were classified as initially unresectable or recurrent (n = 4) or metastatic (n = 30), and
no radiation was delivered during this study, although all patients received ≥2 full cycles of palliative
chemotherapy. The most common sites of distant metastasis were the lungs (53.3%) and distant lymph
nodes or soft tissue metastasis (36.7%). The chemotherapy regimens mainly involved cisplatin-based
regimens with or without cetuximab (82.4%). Not all patients were evaluated for p16 expression, which
was only detected in 8.8% (3/34) of the total population and 27.3% (3/11) in evaluated cases.
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Table 1. The patients’ characteristics.

Characteristic n % Baseline CTCs (mean
± SD) p a

Age (median, range), years 50 (37–73) 56.0 ± 56.4
Sex

Male 29 85.3% 51.0 ± 52.4
Female 5 14.7% 84.8 ± 76.2 0.252

Primary site
Oral cavity 19 55.9% 55.9 ± 55.9

Oropharynx 8 23.5% 54.0 ± 68.3
Hypopharynx 5 14.7% 68.1 ± 56.3

Larynx 1 2.9% 40.0
Paranasal sinus 1 2.9% 29.8 0.974

p16 status *
Positive 3 8.8% 72.4 ± 25.6

Negative 8 23.5% 22.8 ± 13.2
Not examined 23 67.6% 52.0 ± 10.8 0.306

Stage IVb/IVc (AJCC 7th edition) 4/30 46.6 ± 66.1/61.1 ± 51.3 0.482
Metastatic site (n = 30)

Lung 16 53.3% 59.0 ± 14.8
Distant lymph node or soft tissue

metastasis 11 36.7% 37.5 ± 11.3

Bone 11 36.7% 33.6 ± 10.1
Skin carcinomatosis 9 30.0% 68.6 ± 22.9

Liver 2 6.70% 30.9 ± 21.9 0.610
First-line palliative chemotherapy 34 100.0%

Cisplatin-based therapy ± cetuximab 28 82.4% 63.1 ± 59.5
Non-platinum regimens

(cisplatin-refractory) 6 17.6% 22.8 ± 17.1 0.114

* p16 immunohistochemistry staining for p16 expression was examined in 11 patients, including eight oropharyngeal,
three hypopharyngeal, and one laryngeal cancer patients. AJCC = American Joint Committee on Cancer. CTC = circulating
tumor cells. a. The P values were calculated by independent Mann-Whitney U tests.

2.2. Multivariate Analysis of Survival Outcomes

The CTC and cCSC analyses were performed using both cell line controls and samples from
patients with HNSCC (Figures 2 and 3). The lymphocytes’ PD-1 expression status is shown in Figure S1,
as well as for the white blood cells (WBC) controls that underwent polyhydroxyalkanoate induction.
Multivariate analyses revealed that disease progression was independently predicted by the baseline
CTC number (hazard ratio [HR]: 1.01, 95% confidence interval [CI]: 1.005–1.022) and the cCSC ratio
(HR: 10.92, 95% CI: 2.295–51.957) (Table 2). The multivariate analyses revealed that overall survival
(OS) was independently predicted by the baseline CTC number (HR: 1.01, 95% CI: 1.003–1.017),
the cCSC ratio (HR: 29.90, 95% CI: 5.420–164.992), and the baseline CD8+ proportion (HR: 0.24, 95%
CI: 0.091–0.640). The Kaplan-Meier survival curves revealed that a high baseline CD8+ proportion
(≥17%) predicted prolonged PFS and OS (Figure 4a,b), while a higher CD4: CD8 ratio predicted
shorter Progression-free survival (PFS) and OS (Figure 4c,d). The details of CTC, cCSC, CD4, CD8, and
CD4:8 ratios before and during chemotherapy were shown in Table S1. Their correlations among basic
characteristics were listed in Table S2.
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Table 2. Univariate and multivariate analyses of survival.

Factor
PFS OS

Univariate Multivariate Univariate Multivariate
HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Age 1.001 (0.962–1.041) 0.968 1.005 (0.965–1.047) 0.805
Primary site 1.059 (0.799–1.404) 0.688 0.986 (0.759–1.280) 0.913

ECOG 1.341 (0.856–2.100) 0.200 1.571 (1.062–2.326) 0.024
CTC 1.008 (1.000–1.015) 0.036 1.013 (1.005–1.022) 0.002 1.005 (0.999–1.010) 0.12 1.010 (1.003–1.017) 0.004

cCSC ratio 4.367 (1.206–15.808) 0.025 10.920 (2.295–51.957) 0.003 9.788 (2.300–41.661) 0.002 29.903 (5.420–164.992) <0.0001
PD1 on CD4+ 1.001 (0.985–1.017) 0.897 0.995 (0.977–1.013) 0.58
PD1 on CD56+ 1.013 (0.991–1.035) 0.235 1.001 (0.982–1.020) 0.918
PD1 on CD8+ 0.997 (0.971–1.024) 0.828 1.002 (0.979–1.025) 0.872

CD4+ 1.022 (0.991–1.054) 0.174 1.003 (0.975–1.031) 0.837
CD56+ 0.961 (0.922–1.002) 0.060 0.965 (0.922–1.010) 0.123

CD8+ proportion ≥17% vs. <17% 0.319 (0.124–0.821) 0.018 0.236 (0.094–0.595) 0.002 0.242 (0.091–0.640) 0.004
CD4:CD8 ratio ≥1.2 vs. <1.2 2.538 (1.230–5.237) 0.012 2.120 (0.959–4.688) 0.064 2.403 (1.130–5.109) 0.023

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; PFS, progression-free survival; OS, overall survival; CTC, circulating tumor cells; cCSC,
circulating cancer stem-like cells; cCSC ratio, CD133+EpCAM+Hoechst+CD45− cells divided by EpCAM+Hoechst+CD45− cells.



Cancers 2019, 11, 540 6 of 15
Cancers 2019, 11, x 6 of 15 

 

 
Figure 2. Detecting circulating tumor cells (CTCs) and circulating cancer stem-like cells (cCSCs) using 
immunofluorescence (Patient No.16 and Patient No.21). (a) HCT116 as the demonstrated cell line for 
EpCAM+/CD133+ cells. (b) The OECM-1 as the demonstrated cell line for EpCAM+/CD133− cells. (c) In 
Patient No. 16, the image showed the EpCAM+/CD133− and EpCAM−/CD133− CTCs. (d) In Patient No. 
21, the image showed the EpCAM+/CD133+ and EpCAM+/CD133− CTCs. 

 
Figure 3. Detecting circulating tumor cells (CTCs) and circulating cancer stem-like cells (cCSCs) using 
flow cytometry. Panel (a–e) shows the isotype control (Hoechst and mouse IgG isotypes for EpCAM 
and CD133) for CTC and cCSC analysis. Panel (f–j) demonstrates real cancer patients’ CTC and cCSC 
by staining with Hoechst, EpCAM, and CD133 antibodies after red and white blood cells depletion 
protocol. The gating algorithms are SSC and FSC for whole cell distribution in panel (a) and (f). Then 
we gated cells with positive Hoechst expression nucleated cells population in panel (b) and (g). Based 
on positive Hoechst situation, EpCAM positive cells were selected and defined as CTCs in panel (c) 
and (h). Panel (d) and (i) shows the gating rationale for CD133+ cells based on positive Hoechst 
situation. For the definition of cCSCs, CD133-positive cells were gated based on EpCAM+Hoechst+ 
cells as illustrated in panel (e) and (j). The cell count of CD133+EpCAM+Hoechst+ after negative 
selection strategy was 17 cells (e) and 220 cells (j). 
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Figure 3. Detecting circulating tumor cells (CTCs) and circulating cancer stem-like cells (cCSCs) using
flow cytometry. Panel (a–e) shows the isotype control (Hoechst and mouse IgG isotypes for EpCAM
and CD133) for CTC and cCSC analysis. Panel (f–j) demonstrates real cancer patients’ CTC and cCSC
by staining with Hoechst, EpCAM, and CD133 antibodies after red and white blood cells depletion
protocol. The gating algorithms are SSC and FSC for whole cell distribution in panel (a,f). Then we
gated cells with positive Hoechst expression nucleated cells population in panel (b,g). Based on positive
Hoechst situation, EpCAM positive cells were selected and defined as CTCs in panel (c,h). Panel (d,i)
shows the gating rationale for CD133+ cells based on positive Hoechst situation. For the definition of
cCSCs, CD133-positive cells were gated based on EpCAM+Hoechst+ cells as illustrated in panel (e,j).
The cell count of CD133+EpCAM+Hoechst+ after negative selection strategy was 17 cells (e) and 220
cells (j).
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Figure 4. Kaplan-Meier curves for the survival analyses. A higher baseline CD8+ proportion was 
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baseline CD4: CD8 ratio was associated with better (c) PFS and (d) OS. 
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2.3. The cCSC Ratio May Contribute to Chemoresistance

We had hypothesized that a high cCSC ratio might predict a poor response to chemotherapy,
based on the chemoresistance of cCSCs. Figure 5 and Table 2 show that a higher baseline cCSC ratio
predicted disease progression within the first three months of chemotherapy (p = 0.003 based on the
Mann-Whitney U test).
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2.4. PD-1 Expression on CD4+, CD8+, and CD56+ T Lymphocytes

There were no significant associations between the survival outcomes and PD-1 expression on
CD4+, CD8+, or CD56+ T lymphocytes.

3. Discussion

This prospective study evaluated 34 patients with initially unresectable, recurrent/metastatic
HNSCC to examine whether chemotherapy response could be predicted using CTC, cCSC, and
peripheral lymphocyte expression of PD-1. The results indicate that CTCs and cCSCs were independent
predictors of cancer progression and OS and that patients with a high baseline CD8+ proportion had
longer OS, while patients with a lower CD4: CD8 ratio had longer PFS. However, PD-1 expression
on peripheral lymphocytes was not a significant predictor of the survival outcomes. To the best of
our knowledge, this is the first study to examine CTC/cCSC and immune status using a single blood
sample from patients with HNSCC.

Many studies have addressed the role of CTCs in HNSCC [25–30], including our previous study [8].
The results of the present study support the findings of the previous studies and indicate that CTC
independently predicts prognosis in cases of HNSCC. In a previous stud [8], we cannot identify
the prognostic role from CTC alone. One of the plausible reasons might be the improved stability
and internal controls for the platform, which makes the enumerated CTC number more clinically
and biologically significance by exclusion false positive signal. In addition, several studies have
examined the role of cCSCs in cancer cases, which were examined using RT-PCR [31,32], counting
with a gradient protocol [17,33], or flow cytometry [34,35]. Those results indicate that cCSCs are
linked to a poor prognosis in cases of colorectal cancer [31,36], gastric cancer [17], prostate cancer [37],
lung cancer [34,38], and hepatocellular carcinoma [32]. However, to the best of our knowledge, this
is the first report to indicate that cCSCs reflect a positive prognosis in cases of HNSCC. In contrast,
Park et al. [39] used a similar methodology and reported that the presence of CD133+EpCAM+ cells
was associated with a poor prognosis in 10 cases of colorectal cancer. It is possible that the small
sample sizes and different cancer types may explain the discrepancy between our findings and those
of Park et al. Furthermore, studies have used different definitions of cCSCs, which we defined as
expressing both CD133 and EpCAM after CD45 depletion. Thus, the different definitions might also
explain the conflicting findings regarding the roles of cCSCs. For example, Toyoshima et al. defined
cCSCs as CD44+ cells and reported that they had tumorigenicity [17], while Rentala et al. [40] defined
cCSCs as cells that were CD133+CD44+. The most commonly used marker for identifying cCSCs
is likely CD133 [31], and we included this marker to improve the ability to compare and validate
our findings.

The present study revealed that high baseline peripheral CD8+ cells and low CD4: CD8 ratio were
associated with a good prognosis. However, there is debate regarding the usefulness of peripheral
lymphocytes versus tumor-infiltrating lymphocytes (TILs), as some investigators believe that TILs
reflect the true tumor microenvironment and are correlated with prognosis and treatment response,
despite the difficulty of repeated biopsy [41,42]. However, other reports have indicated that CD8+

TILs have no prognostic value in cases of HNSCC [39]. Therefore, we selected peripheral lymphocytes
rather than TILs for the present study, as they are easier to monitor and may be useful as a follow-up
marker (we hope to publish follow-up data in a later report).

Our results support the positive effects of higher baseline peripheral CD8+ T-cell proportions [40,43]
and lower CD4:8 ratios [44,45] in cancer cases, especially among patients with HNSCC [46].
Nevertheless, our results are different from those reported by Dewyer et al., who found that
pre-induction chemotherapy CD4+ T-cells but not CD8+ T-cells were correlated with a good prognosis
and treatment response [47]. These differences may be related to the fact that we mainly enrolled
patients with oral cavity cancer, while Dewyer et al. enrolled patients with laryngeal cancer, which
suggests that the primary site may influence the prognostic markers. In addition, we examined the
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relative proportion of CD8+ cells, while Dewyer et al. performed absolute counting of lymphocytes.
Thus, the different measurement units may explain the different findings.

The expression of PD-1 on lymphocytes has been widely discussed during recent years, and Waki
et al. have reported that PD-1 expression on CD4+ and CD8+ T lymphocytes was correlated with
OS among patients with lung cancer who received personalized peptide vaccination [22]. However,
our study failed to detect significant relationships between the survival outcomes and the expression
of PD-1 on CD4+, CD8+, or CD56+ T lymphocytes. It is possible that our negative findings are related
to the small sample size and/or an insufficient cut-off for PD-1 positivity. For example, it may be
more appropriate to use the difference between PD-1 staining and polyhydroxyalkanoate induction
of control cells (Figure S1), and further adjustment of PD-1 staining or methodology standardization
should be considered in future studies. However, Lyford-Pike et al. found that PD-1 expression on
CD4+ T-cells and CD8+ T-cells was higher in tonsil tissue, compared to the peripheral blood, of patients
with HNSCC [48], which indicates that PD-1 expression on peripheral blood lymphocytes may not be
clinically significant, and our results support that possibility. Thus, PD-1 expression may only have
prognostic value when it is observed on TILs.

The present study has several limitations. First, the sample size was small and a larger prospective
study is needed to validate our findings. Second, despite the benefits of dynamic follow-up using
peripheral lymphocytes, there is debate regarding whether they reflect the whole body’s immune
status, as their properties are easily disturbed. Third, although we used a clear and strict definition for
cCSCs, we did not isolate these cells and confirm that they possessed in-vivo tumorigenicity, invasion,
or self-renewal, which is why we referred to them as “stem-like” cells.

4. Materials and Methods

4.1. Study Design

This prospective observational study examined baseline CTCs, cCSCs, and PD-1 expression
on peripheral lymphocytes, as well as progression-free survival (PFS) and overall survival (OS)
among patients with initially unresectable, recurrent/metastatic HNSCC. The analyses were performed
when more than half of the events had occurred, and the ratio of cCSC to CTC was selected to
evaluate its ability to predict cancer progression and cancer-related death. Two CTC samplings were
performed, with the first being performed at baseline (seven days before the first dose of chemotherapy)
and the second being performed at 14–28 days after the first dose of chemotherapy. Study results
were reported according to the Reporting Recommendations for Tumour Marker Prognostic Studies
(REMARK) guidelines.

4.2. Patient Enrollment

Patients were enrolled at the Chang Gung Memorial Hospital (Linkou, Taiwan), and the
observational protocol was approved by the institutional review board of Chang Gung Memorial
Hospital (103-5322B). All patients provided written informed consent before being enrolled. Patients
were considered eligible if they had: (1) histologically or cytopathologically confirmed stage IVb
HNSCC (initially unresectable or recurrent) or stage IVc HNSCC (metastatic), based on the 7th edition
of the American Joint Committee on Cancer criteria, (2) were ≥20 years old, (3) provided informed
consent, and (4) had adequate liver and renal functions with a sufficient white blood cell count (WBC)
to tolerate the anticancer therapies (especially chemotherapy). Patients were excluded if they had
synchronous cancer or previous cancers within the last five years.

Blood samples were drawn within seven days before the first dose of chemotherapy. Disease
staging, disease management, and treatment response evaluations followed the standard treatment
protocols and institutional guidelines and were based on the findings from computed tomography,
pan-endoscopy, magnetic resonance imaging, and positron emission tomography. Chemotherapy was
scheduled and delivered by medical oncologists who were part of the head and neck tumor board at
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Chang Gung Memorial Hospital. Based on the Response Evaluation Criteria in Solid Tumors guidelines
(version 1.0), treatment response was classified as complete remission, partial response, stable disease,
or progressive disease. Disease-specific PFS was calculated from the date of the first CTC sampling to
the first instance of cancer-specific disease progression or death, and OS was calculated from the date
of the first CTC sampling to the date of death from any cause.

4.3. Chemotherapy Regimens

Palliative chemotherapy regimens were selected after full discussions with the patient’s family.
The regimens mainly contained cetuximab (400 mg/m2 and then 250 mg/m2 weekly for three consecutive
months; Merck, Darmstadt, Germany), cisplatin (50–75 mg/m2 biweekly to triweekly), and 5-fluorouracil
(700–1000 mg/m2/day as a continuous infusion during days 1–4 every 28 days). Other treatments option
involved methotrexate (40 mg/m2 or a fixed weekly dose of 50 mg), bleomycin (15 mg weekly), and
oral tegafur-uracil (300 mg/m2/day; TTY Biopharm Co. Ltd., Taipei, Taiwan) according to institutional
guideline at Chang Gung Memorial Hospital.

4.4. Identifying CTCs and cCSCs

The CTCs were identified using negative selection and positive detection strategies, which were
validated in our previous studies [49]. The first step involves a negative selection protocol that depletes
red blood cells using lysis and leukocytes using a CD45 depletion kit (STEMCELL Technologies Inc.,
Vancouver, BC, Canada). The second step involves using flow cytometry to quantitatively identify
CTCs (EpCAM+Hochest+CD45−) and cCSCs (CD133+EpCAM+Hochest+CD45−). The ratio of cCSCs
to CTCs was calculated and reported as a percentage.

The CTC tests were performed using 4 mL of peripheral blood after discarding the first 4 mL
of blood to avoid epithelial contamination. Red blood cell lysis was performed within 72 h, and
further negative selection was performed using the EasySep CD45 Depletion Cocktail (25 µL/mL;
STEMCELL Technologies Inc., Vancouver, BC, Canada) and EasySep Magnetic Nanoparticles (50µL/mL;
STEMCELL). The immunomagnetically enriched samples were subsequently spiked with OECM1
cells, labelled using an Alexa Fluor® 488-conjugated monoclonal antibody to EpCAM (1:400; Cell
Signaling Technology Inc., Danvers, MA, USA), and stained with Hoechst 33342 (1:500 in washing
solution; Thermo Scientific, Waltham, MA, USA) for the nuclear staining. An isotype control antibody
was used as an internal control, as well as peripheral blood samples from healthy individuals (4 mL)
that were and were not spiked with 1000 OECM1 cells, which had been purchased from Taiwan’s Food
Industry Research and Development Institute (Hsinchu, Taiwan). Performance recovery was defined
as the proportion of OECM1 cells detected using flow cytometry (BD FACSCalibur; BD Biosciences,
San Jose, CA, USA) to the number of spiked OECM1 cells, and a stable coefficient of variation (CV)
value has been calculated in a previous report [49,50]. To be brief, the platform can have a recovery
rate of 44.6 ± 9.1% and a % coefficient of variation (CV) of 20.4%. The previous platform reported in
2015 would detect 13.1 ± 0.9 cells/mL in healthy individuals (n = 20) [49], which was confusing and
might be background signal (false positive). In this revised platform, isotype control was used for each
sample, which resulted in a range of 0.0–3.0 cells/mL in healthy individuals in this study cohort (n = 20).
CTCs were defined as cells that were positive for both EpCAM and Draq5. Immunohistochemistry
was performed to detect p16 using a prediluted mouse monoclonal antibody (CINtec p16INK4a [clone
E6H4]; Roche Laboratories Inc., Westborough, MA, USA) [51] and a Dako Autostainer (Dako North
America Inc., Carpinteria, CA, USA), according to the manufacturer’s protocol.

4.5. PD-1 Staining and Controls

Peripheral blood mononuclear cells were isolated from 4 mL of healthy volunteers’ blood using
a Ficoll-Hypaque density gradient. The cells were then cultured in RPMI medium containing 10%
fetal bovine serum (FBS) for 72 h with or without stimulation using 2% phytohemagglutinin (M form;



Cancers 2019, 11, 540 11 of 15

Thermo Fisher GIBCO, Waltham, MA, USA.) (Figure S1). The harvested cells were subsequently used
in the immunoassays as controls that were positive and negative for PD-1 expression.

4.6. Immune Activity Assay

After red blood cell lysis, WBCs were collected from 2 mL of the patients’ blood and subjected
to flow cytometry after surface staining using a CD4-FITC antibody (eBiosciences; San Diego, CA,
USA), a CD8a-PE-Cy7 antibody (eBiosciences), and a PD-1-PE antibody (BD Pharmingen, San Jose, CA,
USA). A total of 2 × 105 WBCs were resuspended in 100 µL of RPMI medium with 10% FBS, 0.25 µg
of the CD4-FITC antibody, 0.06 µg of the CD8a-PE-Cy7 antibody, and 20 µL of the PD-1-PE antibody.
The corresponding isotype control antibodies were used under the same conditions. After staining
for 1 h, the cells were washed using 2 mL of phosphate-buffered saline solution containing 10% FBS
and 1 mM EDTA. The fluorescence measurements were performed using a CytoFLEX Flow cytometer
(Beckman Coulter, Brea, CA, USA). The gating strategies were (1) 2 × 104 events for CD4+/CD8+-gated
cells, (2) positive and negative signals for PD-1 expression were based on the CD4+ or CD8+ cursors to
yield positive signals after subtracting the signal from the PE-conjugated isotype control, and (3) the
percentages of CD4+ and CD8+ cells were calculated, as well as the proportions of CD4+ and CD8+

cells that were positive for PD-1.

4.7. Statistical Analysis

The patients’ demographic data were reported as number (percentage) for categorical variables,
and median (range) for continuous variables. Univariate and multivariate analysis were used, all
factors used in the univariate analysis were examined in multivariate analysis but only those factors
with statistical significance were displayed. A multivariate Cox’s proportional hazard model using
the forward stepwise approach was used to examine the variables’ associations with OS and PFS. A
risk model was also developed from the multivariate analysis. Kaplan-Meier curves and the log-rank
test were used to examine any differences in the OS and PFS outcomes and determine the cutoffs,
including the ratio of CD8+ and CD4: CD8. All analyses were performed using SPSS software (version
18; SPSS Inc., Chicago, IL, USA), and p-values of <0.05 were considered statistically significant.

5. Conclusions

This prospective study revealed that baseline CTCs and the cCSC ratio (i.e., cancer status), as well
as the CD8+ proportion and the CD4: CD8 ratio (i.e., host immune status), were significantly associated
with the prognosis of HNSCC. Furthermore, the baseline cCSC ratio could predict chemotherapy
response during the first three months, which suggests that these cells are involved in chemoresistance.
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Figure S1: Phytohemagglutinin induction for PD-1 expression as controls and the PD-1 expression on CD4+ and
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peripheral lymphocytes with chemotherapy responses, Table S2. Correlations among basic characteristics and
baseline cCSC, CD8% and CD4:8 ratio.
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