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Abstract
Objective: To evaluate the diagnostic performance of artificial intelligence (AI)–
based algorithms for identifying the presence of interictal epileptiform discharges 
(IEDs) in routine (20-min) electroencephalography (EEG) recordings.
Methods: We evaluated two approaches: a fully automated one and a hybrid ap-
proach, where three human raters applied an operational IED definition to assess 
the automated detections grouped into clusters by the algorithms. We used three 
previously developed AI algorithms: Encevis, SpikeNet, and Persyst. The diag-
nostic gold standard (epilepsy or not) was derived from video-EEG recordings of 
patients' habitual clinical episodes. We compared the algorithms with the gold 
standard at the recording level (epileptic or not). The independent validation data 
set (not used for training) consisted of 20-min EEG recordings containing sharp 
transients (epileptiform or not) from 60 patients: 30 with epilepsy (with a total of 
340 IEDs) and 30 with nonepileptic paroxysmal events. We compared sensitivity, 
specificity, overall accuracy, and the review time-burden of the fully automated 
and hybrid approaches, with the conventional visual assessment of the whole 
recordings, based solely on unrestricted expert opinion.
Results: For all three AI algorithms, the specificity of the fully automated ap-
proach was too low for clinical implementation (16.67%; 63.33%; 3.33%), despite 
the high sensitivity (96.67%; 66.67%; 100.00%). Using the hybrid approach sig-
nificantly increased the specificity (93.33%; 96.67%; 96.67%) with good sensitivity 
(93.33%; 56.67%; 76.67%). The overall accuracy of the hybrid methods (93.33%; 
76.67%; 86.67%) was similar to the conventional visual assessment of the whole 
recordings (83.33%; 95% confidence interval [CI]: 71.48–91.70%; p > .5), yet the 
time-burden of review was significantly lower (p < .001).
Significance: The hybrid approach, where human raters apply the operational 
IED criteria to automated detections of AI-based algorithms, has high specificity, 
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1   |   INTRODUCTION

Interictal epileptiform discharges (IEDs) are well-
documented electrophysiological biomarkers for epilepsy 
and they are broadly used in clinical practice.1 In skilled 
hands, IEDs provide valuable information in the diagnos-
tic workup of patients suspected for seizures and epilepsy.2 
However, this expertise is scarce, and the increasing num-
ber and duration of EEGs recorded worldwide have led 
to an increased workload.1 In the past 45 years, many at-
tempts at automated IED detection have been published.3 
Despite the significant development, automated detection 
of IED has not yet been widely implemented in clinical 
electroencephalography (EEG) reading, and compel-
ling evidence for their accuracy and performance is still 
lacking.3

Artificial intelligence (AI) is increasingly recognized 
as a useful tool in health care applications, including ep-
ilepsy.4 With the development of deep learning methods, 
interest in using AI algorithms for IED detection is grow-
ing.3 An alternative approach to fully automated detec-
tion of IEDs is using hybrid (semi-automated) systems, 
in which human raters evaluate the IED candidate waves, 
automatically detected and clustered (grouped) by the al-
gorithm into IED types.5 This approach potentially com-
bines the high sensitivity of automated detection with the 
high specificity from the human experts, and is expected 
to significantly decrease the workload.

Most of the previously published validation studies 
were affected by numerous sources of bias: very small 
data sets, lack of control and of distractor data, and using 
the same data set for training and testing.3 Even well-
conducted studies avoiding these flaws bear important 
potential sources of error, due to a lack of an unequiv-
ocal external gold standard, and evaluating short EEG 
segments instead of the whole recording. Using expert 
opinion as gold standard for single IEDs in short EEG seg-
ments is questionable, because inter-rater agreement is 
low,6 it is uncertain that the majority decision is correct,7 
and when most raters are trained in the same school, a 
systemic (institutional) bias may become inherent in the 
data set. In addition, exaggeratedly optimistic estimates of 
specificity may occur when short EEG segments are eval-
uated instead of the whole EEG recording.

In an EEG recording some IEDs appear well defined, 
whereas others are distorted to different degrees by su-
perimposed background activity and lower amplitude 
of the IEDs.8 Evidence for these “hidden” IEDs has 
been provided from studies analyzing topographic volt-
age maps, compared with IED-related hemodynamic 
changes in EEG-fMRI (functional magnetic resonance 
imaging), and from comparison with intracranial re-
cordings.9–11 Hence, there is a considerable gray zone 
between IEDs and nonepileptiform sharp transients, 
and the question “is this discharge an IED” is ill-posed 
from a clinical point of view. A more meaningful clini-
cal question is rather “does this EEG recording include 
IEDs?”12 In other words: does the EEG recording have 
the biomarker for epilepsy?

Cutoff values (decision thresholds) are adjustable in 
IED-detection algorithms. Although receiver-operating 
characteristic (ROC) curves are useful to determine the 
optimal cutoff values in training data sets, validation 
studies must use pre-defined cutoff values.13 In the vali-
dation data set, choosing the cutoff value post hoc (after 
the analysis and comparison with the gold standard) re-
sults in overfitting and overoptimistic evaluation of the 

good sensitivity, and overall accuracy similar to conventional EEG reading, with 
a significantly lower time-burden. The hybrid approach is accurate and suitable 
for clinical implementation.
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Key points
•	 We evaluated the diagnostic performance of 

artificial intelligence (AI) algorithms for iden-
tifying the presence of interictal epileptiform 
discharges in routine electroencephalography 
(EEG) recordings

•	 We evaluated two approaches: a fully automated 
one and a hybrid approach, where human raters 
assessed the automated detections

•	 The fully automated approach had high sensi-
tivity but low specificity

•	 The hybrid approach had high specificity, good 
sensitivity, and accuracy similar to that of con-
ventional assessment

•	 The time-burden of review was significantly 
lower for the hybrid approach compared with 
the conventional reading of the whole recording
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algorithms. Therefore, in this study we used predefined 
cutoff values for validating the previously developed 
algorithms.

In this study we present an external validation of fully 
automated and semi-automated (hybrid) IED detection. 
We performed head-to-head comparison of three previ-
ously developed AI-based algorithms. Two of them were 
using convolutional neural networks: SpikeNet14 and the 
commercially available software package Encevis using 
the DeepSpike algorithm for IED detection.15  The spike 
detector in the commercially available software program 
Persyst uses extracted features and a feed-forward neural 
network.16 In the hybrid approach, clusters of IED can-
didate waves, detected by the algorithms, were visually 
evaluated by experts using the criteria in the operational 
definition of the International Federation of Clinical 
Neurophysiology (IFCN) for IEDs,17 which were shown 
previously to provide high specificity, essential in clini-
cal EEG reading.18  To circumvent the shortcomings and 
potential bias described above, we used an external di-
agnostic gold standard, derived from assessment of the 
patients´ habitual clinical episodes (epileptic or not), and 
we evaluated continuous 20-min recordings, correspond-
ing to routine EEG.1 We determined diagnostic accuracy 
(sensitivity and specificity) at the recording level (EEG in-
cluding IEDs or not), and calculated the change in time 
consumption of EEG reading.

2   |   METHODS

2.1  |  Patients and EEG recordings

Inclusion criteria were: patients 1 year or older, who 
had their diagnosis (epilepsy or non-epileptic paroxys-
mal events) based on video-EEG recordings of their ha-
bitual clinical episode, and who had sharp transients 
(epileptiform or not) recorded during a 20-min EEG—
corresponding to a routine EEG recording.1 Sharp tran-
sients were defined as having pointed peak and amplitude 
higher than the background activity. These were marked 
in the 20-min EEG recordings by two of the authors (MAK 
and SB) who did not participate in the subsequent, blinded 
rating of the EEG recordings. Patients with epilepsy had 
an additional inclusion criterion: the marked sharp tran-
sients in their routine (20-min) EEG recording had to be 
concordant with the ictal event in the gold standard (ie, 
bilateral synchronous IEDs for generalized seizures in 
patients with generalized epilepsies, and focal with peak 
negativity located in the same sub-lobar region as the ictal 
recordings acquired in patients with focal onset seizures). 
Patients with inconclusive video-EEG recordings and 
patients having both epileptic and nonepileptic seizures 

were excluded, because we needed unequivocal diagnos-
tic gold standard for each patient.

We aimed for an equal number of patients with and 
without epilepsy, because the analysis outcome was a di-
chotomous classification (epilepsy or not). The distrac-
tors (nonepilepsy patients) had paroxysmal nonepileptic 
events, and to challenge (stress test) the algorithm, their 
EEG recordings included nonepileptiform sharp tran-
sients (such as: spiky fluctuations of the background, 
wicket waves, small sharp spikes, and artifacts). We ana-
lyzed 60 EEG recordings (of 20 min each) from 30 consec-
utive patients with epilepsy and 30 consecutive patients 
with nonepileptic paroxysmal events who fulfilled the 
inclusion criteria. The median age of the 60 patients (33 
female) was 36  years (range: 2–77  years). The group of 
nonepileptic patients included psychogenic nonepileptic 
seizures (12 patients), sleep disorders (10 patients), par-
oxysmal movement disorders (4 patients), and syncope 
(4 patients). A total of 340 IEDs were marked by the ex-
perts who did not participate in the subsequent, blinded 
rating of the EEG studies (MAK and SB). Three hundred 
six IEDs were focal (recorded in 26 patients with tempo-
ral lobe and 2 patients with extratemporal lobe epilepsy), 
and 34  IEDs were generalized (recorded in 2 patients). 
The nonepileptic sharp transients recorded in 30 patients 
with nonepileptic paroxysmal events included: spiky fluc-
tuation of the background/wicket spikes (n = 58), spiky 
artifacts (n = 12), small sharp spikes (n = 5), spiky ver-
tex sharp-waves (n  =  2), and small sharp transients in-
termixed with hypnagogic hypersynchrony (n = 2). EEG 
was recorded at the Danish Epilepsy Center and Aarhus 
University Hospital (Denmark), using the IFCN array of 
25 electrodes, including the inferior temporal electrode 
chain,19 using NicoletOne EEG equipment (Natus Neuro), 
at a sampling frequency of 0.5  kHz. The regional eth-
ics committee reviewed the protocol. Written informed 
consent from the patients was not needed for this non-
interventional study, using retrospective analyses of de-
identified data.

2.2  |  Diagnostic gold standard and 
index tests

To avoid circular thinking and the uncertainty of identify-
ing IEDs (see Introduction), the diagnostic gold standard 
was external, that is, based on a modality different from 
IEDs: video-EEG recordings of the patient´s habitual clini-
cal events (epileptic seizure or paroxysmal nonepileptic 
events), which is the most reliable diagnostic method in 
these patients.1 Ictal EEG and semiology were evaluated 
as part of the patients' diagnostic workup, and then re-
evaluated by two of the authors (MAK and SB) for this 
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study. Classification (epilepsy or not) was based on con-
sensus discussions of the authors.

In diagnostic accuracy studies,20 the term index test 
refers to the methods evaluated in the study, which are 
compared with the diagnostic gold standard (reference 
standard). In this study, the index tests were: conventional 
reading of routine (interictal, 20  min) EEG, fully auto-
mated IED detection, and the hybrid approach.

2.3  |  Conventional EEG reading

Three expert raters (BJ, EQ, and SF), board certified in 
clinical neurophysiology, with more than 10 years of ex-
perience in EEG reading, independently evaluated the 
20-min EEG recordings, blinded to all other data. They 
visually evaluated the whole EEG recordings and marked 
IEDs solely based on their expert opinion. Time for the 
visual assessment was recorded for each EEG and each 
rater. In this article, we refer to this as the conventional 
EEG reading. Majority consensus scorings were used for 
further analysis.

2.4  |  Fully automated IED 
detection and the hybrid method

We used three different, previously developed, AI-based 
IED-detection algorithms. Encevis is a Conformité 
Européenne (CE) marked and Food and Drug 
Administration (FDA) cleared EEG software package 
that uses the DeepSpike algorithm for detection of IEDs. 
DeepSpike was developed using the Fast Region-based 
Convolutional Network method (Fast R-CNN).15 It uses 
deep regression for estimating the position of EDs (negative 
peaks)21,22 followed by classification of EDs.15 Supervised 
and unsupervised learning was used to train DeepSpike. 
For supervised learning, 447 000 labeled EEG epochs from 
166 patients and synthetic data sets were used.15 For unsu-
pervised learning, 590 000 epochs from 289 patients of the 
publicly available EEG Corpus of the Temple University 
were used.23  The cutoff value for detection was 0.3. 
Detections were clustered using the maximum electrode 
position and EEG waveforms were presented as overlay 
plots in Encevis (Appendix S1). SpikeNet14 was developed 
using a convolutional neural network, with an architec-
ture similar to that in Hannun et al.24 It was trained in 
two steps, using 9571 scalp EEG records with and without 
IEDs.14The detection threshold was a score of 0.4. For this 
project, we augmented SpikeNet with two new features. 
First, a background rejection method was developed spe-
cifically for this project, and its threshold parameter was 
set to θb = 50. Second, a clustering method was developed 

wherein detected IEDs were clustered according to the 
leading channel (Appendix S2). Persyst P13 spike detec-
tor is commercially available (Persyst). It was developed 
using 20 feedforward neural network rules to describe the 
morphology, field, and context of each event.16,25 Artifact 
reduction was activated and the cutoff perception value 
was set to 0.5 (medium sensitivity) in this study. Detected 
events were clustered according to the electrode with the 
peak negativity.

In the hybrid method, the three expert raters (BJ, EQ, 
and SF) independently reviewed the automated detections, 
with IED candidate waves clustered into IED types by the 
algorithms, as described above and in Appendixes S1 and 
S2. They were instructed to implement the six criteria of 
the operational definition of IEDs (Kane et al. 2017),17 and 
decide whether the automated detections in each cluster 
were IEDs or not. They did not review the whole EEG, 
but only the detected and clustered waveforms. The raters 
were allowed to change montages (bipolar and common 
average), digital filters, and gain, when reviewing the EEG 
recordings. Voltage maps and the inferior temporal elec-
trodes were available in Encevis and Persyst, but not in 
SpikeNet. Time for the visual assessment was recorded for 
each EEG and each rater and algorithm. The raters evalu-
ated detections of each algorithm in different, randomized 
order, with at least 2 months between reading sessions. 
Majority consensus decisions for each recording and each 
algorithm were considered for further analysis.

2.5  |  Evaluation of the analysis 
results and statistics

To circumvent the shortcomings related to the lack of 
a gold standard for individual IEDs, we evaluated the 
accuracy at the EEG recording level. For the fully au-
tomated method, EEG recordings were labeled positive 
if they had automated detections and negative if they 
did not. For the hybrid method, EEG recordings were 
labeled positive if they had automated detections con-
firmed by the expert raters (BJ, EQ, and SF) and nega-
tive if they did not. Then we compared them with the 
diagnostic gold standard: recordings labeled positive 
were considered true positives (TPs) if the patients had 
epilepsy and the detections coincided with the markings 
of the experts who did not rate the index tests (MAK 
and SB) or had the same voltage topography. They were 
considered false positives (FPs) if the patients had no-
nepileptic paroxysmal events or if the detections were 
not concordant with the expert markings (either coin-
cidence in time or with the same voltage distribution) 
in a patient with epilepsy. Recordings labeled negative 
were considered true negatives (TNs) if the patients had 
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paroxysmal nonepileptic events, and false negatives 
(FNs) if they had epilepsy. We used the conventional 
formulas for the diagnostic accuracy measures: sensitiv-
ity  = TP/(TP  +  FN), specificity  =  TN/(TN  +  FP), ac-
curacy = (TP  +  TN)/(TP  +  TN  +  FP  +  FN), and we 
calculated area under the ROC (AUROC) curve from 
the scorings of the three blinded raters.26 Because EEG 
over-reading (ie, over-interpretation of nonepileptiform 
sharp transients) is the most common cause of misdiag-
nosing epilepsy, our goal was to achieve a high specific-
ity (over 90%).27–29

We calculated 95% confidence intervals (CIs) for the 
diagnostic accuracy measures using Wilson´s method.30 
We compared the diagnostic accuracy measures of the 
different analysis methods using McNemar's test.31 After 
analyzing the data distribution using the Kolmogorov-
Smirnov test for normality, we used t tests for dependent 
samples to compare the time consumption of conven-
tional EEG reading with the hybrid methods.32

3   |   RESULTS

Figure 1 shows examples with the automated detections, 
grouped into clusters by the three software packages. 
Table 1 summarizes the diagnostic accuracy measures 
of the fully automated analysis and the hybrid approach 
(applying the IFCN IED criteria on the automated de-
tections), compared with the conventional EEG reading 
(expert opinion based on visual analysis of the whole re-
cording, unrestricted by any criteria).

For all three AI algorithms, specificity of the fully auto
mated approach was too low for clinical implementation—
only SpikeNet approached a reasonable specificity, 
although at the cost of lower sensitivity (Table 1 and Figure 
2). Specificity increased significantly for all three algo-
rithms when using the hybrid approach, reaching a high 
level (93%–97%) for all three algorithms (Table 1 and 
Figure 2). Sensitivity of the fully automated approach 
was high (67%–100%) for all three algorithms (Table 1). 
Although this decreased when using the hybrid approach, 
the decrease was significant only for Persyst, which had a 
100% sensitivity with the fully automated approach (Table 
1 and Figure 2).

The accuracy of the hybrid approaches was between 
77% and 93% (Table 1), with AUROC between 0.76 and 
0.93 (Encevis = 0.935; Persyst = 0.871; SpikeNet = 0.757), 
which is similar to the conventional evaluation of the EEG 
recordings by experts (accuracy: 83%; AUROC: 0.837), and 
suitable for clinical implementation (Appendixes S3 and 
S4). The mean time consumption for conventional EEG 
assessment was 160 s per recording (95% CI: 146–172 s). 
This was reduced by 26%–91% using the hybrid approach: 

14 s (95% CI: 11–16 s) with SpikeNet, 59 s (95% CI: 50–67 s) 
with Persyst, and 118 s (95% CI: 103–134 s) with Encevis. 
Time burden was significantly shorter for the hybrid ap-
proach (in all three software packages) as compared with 
the conventional reviewing of the entire EEG (p <  .001, 
for all three software packages).

4   |   DISCUSSION

In current practice, clinical EEG reading is based on vis-
ual assessment of the whole EEG recordings.1 However, 
this is time-consuming and requires extensive train-
ing to classify EEG patterns correctly.33  We have dem-
onstrated that hybrid systems combine high sensitivity 
from the AI-based algorithms with high specificity from 
human raters, and significantly reduce the time-burden 
of reviewing the EEG recording. Humans do not need 
to browse the whole recording: they inspect only the 
IED-candidate waves detected and clustered by the algo-
rithms. Implementing the operational IED definition of 
the IFCN in this decision-making yields high specificity, 
surpassing conventional EEG reading. Previous studies 
showed that trainees could easily learn the IFCN crite-
ria, significantly improving their accuracy and interrater 
agreement.34 Hence, using the hybrid approach in clini-
cal practice could help improve the quality of care and 
decrease the workload.

Although many algorithms for automated IED detec-
tion have been developed in the past 45  years, they are 
rarely used in clinical practice.3 This is partly due to the 
discordance between the published performance of the 
algorithms and what clinicians experience when imple-
menting them in real-world settings: a frustratingly high 
rate of false detections. Two aspects related to the tradi-
tion established in this field may have contributed to the 
overoptimistic estimation of the algorithms: using expert 
opinion on IEDs instead of an external gold standard, 
and focusing on individual candidate IEDs instead of the 
whole recording.3 A false detection in an EEG recording 
erroneously classifies it as including IED. However, when 
specificity is calculated from the short, 2 s segments, the 
specificity appears to be high in the misclassified record-
ing (599 segments without detection divided by the total 
of 600 segments gives a specificity of 99%). To circumvent 
these shortcomings, we used an external diagnostic gold 
standard, derived from the video-EEG recordings of the 
patients' habitual clinical episodes, and we evaluated the 
performance at the recording level. Because IEDs are used 
as biomarkers for epilepsy, we asked the clinically rele-
vant question: does this EEG recording include IEDs? IED 
morphology varies in different age-groups.35 Our data set 
included a wide age range (2–77 years).
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F I G U R E  1   Examples with the 
automated detections, grouped into 
clusters by the three software packages 
(A: Encevis; B: SpikeNet; C: Persyst)
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As in the real world, the number of EEG epochs without 
IEDs in our data set exceeded by far the number with IEDs 
(340 s with IEDs of 72 000 s EEG recording). Furthermore, 
to stress test the specificity of the algorithms, all 30 dis-
tractor EEG recordings contained nonepileptiform sharp 
transients from patients with nonepileptic paroxysmal 
events. A high specificity is essential in clinical EEG read-
ing, because over-reading (over-interpretation of sharp 
transients) is the most common cause of misdiagnosing 
epilepsy.27–29 It is estimated that one third of patients seen 
at epilepsy centers for drug-resistant seizures do not have 
epilepsy36–39 causing many detrimental consequences for 
the patients, such as restricting career choices, driving, 
unnecessary anti-seizure medications, and not treating 
the correct diagnosis.40,41 Our findings show that despite 
the high sensitivity, the currently available AI algorithms 
and predefined cutoff values do not reach a sufficient 
specificity for clinical applications. However, human 
experts can rapidly evaluate the automated detections, 
clustered into IED types, adding a high specificity to this 
hybrid approach when using the IFCN criteria. Clustering 
is important especially for longer recordings: the user does 
not need to review all individual examples within a cluster 
to classify the cluster, which saves a considerable amount 
of time in the case of long-term recordings.5

Although the head-to-head comparison of the three 
algorithms showed some difference in the performance 
of the fully automated detection (some had better sensi-
tivity, others better specificity), there was no clear win-
ner, and the results rather reflect the current state-of-art 
of AI-based IED detection—in general. Concerning the 
hybrid approach, all three software packages had similar 
accuracy, noninferior to the conventional EEG reading by 
experts. The specificity of the hybrid approach was higher 
than the traditional, expert-assessment, probably due to 
the systematic application of the IFCN criteria. The sen-
sitivity of the hybrid approach was similar to that of the 
expert assessment for two algorithms. The current version 

of the SpikeNet software does not use and display the in-
ferior temporal electrodes of the standard IFCN array19 
and does not include voltage maps, which in part explain 
the lower sensitivity of the hybrid method using this algo-
rithm. These aspects could easily be added in an updated 
version. In addition, the background rejection and clus-
tering methods used for SpikeNet were developed specifi-
cally for this work, and could be further optimized.

Approximately one of six patients with focal epilepsy 
do not have IEDs during long-term video-EEG monitor-
ing.42 The presence of IEDs was an inclusion criterion 
for the patients with epilepsy in this study. Therefore, the 
sensitivity values are higher than what is expected in the 
general population. According to the inclusion criteria, all 
patients with nonepileptiform sharp transients had none-
pileptic paroxysmal events, and none of them had epilep-
tic seizures during the long-term monitoring. Therefore, 
specificity was not affected by patients with epilepsy hav-
ing nonepileptiform sharp transients, but no IEDs during 
the long-term monitoring.43

One major limitation of this study is that the inclusion 
criterion (patients who undergone long-term video-EEG 
monitoring) might be too restrictive and the included 
patients may not be representative of the wide variety of 
IED morphologies encountered in practice. Because we 
included consecutive patients admitted to the epilepsy 
monitoring unit, focal epilepsy (especially temporal lobe 
epilepsy) is overrepresented in this study. Indeed, we gave 
higher priority to the reliability of the external diagnostic 
gold standard than the possible selection bias. The identi-
fication of generalized IEDs is less challenging than focal 
IEDs. A second limitation is the relatively small size of 
our data set (N = 60 patients). There is a need for large, 
multicenter databases with EEG recordings from patients 
with epilepsy and distractor conditions (nonepileptic par-
oxysmal events), with diagnoses validated by long-term 
video-EEG studies or by long-term follow-up, to further 
elucidate this.7

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Conventional 
visual 
assessment

93.33% (77.93–99.18) 73.33% (55.11–87.72) 83.33% (71.48–91.70)

Fully automated

Encevis 96.67% (82.78–99.92) 16.67% (5.64–34.72) 56.67% (43.24–69.41)

SpikeNet 66.67% (47.19–82.71) 63.33% (43.86–80.07) 65.00% (51.60–76.87)

Persyst 100.00% (88.43–100.00) 3.33% (0.08 –17.22) 51.67% (38.39–64.77)

Hybrid approach

Encevis 93.33% (77.93–99.18) 93.33% (77.93–99.18) 93.33% (77.93–99.18)

SpikeNet 56.67% (37.43–74.54) 96.67% (82.78–99.92) 76.67% (63.96–86.62)

Persyst 76.67% (57.72–90.07) 96.67% (82.78–99.92) 86.67% (75.41–94.06)

T A B L E  1   Diagnostic accuracy 
measures of the fully automated analysis 
and the hybrid approach, compared with 
the conventional EEG reading
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In conclusion: the hybrid approach where human 
raters use the operational IFCN definition to con-
firm IEDs automatically detected and clustered by 
AI-based algorithm accurately distinguishes routine 
EEG recordings having IEDs from those that do not. 

The hybrid method decreases the workload and is 
suitable for clinical implementation. More research 
and development is needed before fully automated 
IED detection can perform as well as the hybrid 
approach.

F I G U R E  2   Comparisons of the fully 
automated and hybrid methods, using 
the three algorithms (A: sensitivity, B: 
specificity, C: accuracy). Statistically 
significant differences are marked by 
asterisks

(B)

(C)

(A)
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