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Abstract
The composition of zooplankton in the water column has received limited attention in the

main body of the Red Sea and this study investigates the change in the community both

spatially and temporally across 11 stations in the central Red Sea. Using molecular meth-

ods to target the v9 region of the 18S rRNA gene a total of approximately 11.5 million reads

were sequenced resulting in 2528 operational taxonomic units (OTUs) at 97% similarity.

The phylum Arthropoda dominated in terms of reads accounting for on average 86.2% and

65.3% for neuston nets and vertical multinets respectively. A reduction in the number of

OTUs was noticed with depth for both total metazoa and Maxillopoda whilst there was also

a significant change in the composition of the Maxillopoda community. The genus Cory-
caeus had a higher proportion of reads in the epipelagic zone with Pleuromamma becoming

increasingly dominant with depth. No significant difference was observed in the community

between night and day sampling however there was a significant difference in the zooplank-

ton community between two sampling periods separated by 10 days.

Introduction
Zooplankton play a substantial role in marine food webs and biogeochemical pathways [1].
Alterations in the planktonic community composition have been shown to have impacts higher
up the trophic chain [2]. However whole community studies of zooplankton are limited and
this is especially true of the Red Sea, a semi confined sea that combines high temperature, salin-
ity and oligotrophic conditions [3]. The majority of studies undertaken on zooplankton in the
Red Sea have concentrated on its northern extent and especially the Gulf of Aqaba [4, 5, 6].
These have included reports on zooplankton distributions throughout the water column [6, 7]
as well as those at the surface [8]. However, studies in the central and southern reaches of the
Red Sea are lacking. Böttger Schnack [9, 10] studied micro and mesozooplankton focusing on
non-calanoid copepods whereas Schneider et al [11] described the abundance and size struc-
ture of the community. Whilst Pearman et al [12] studied zooplankton communities associated
with coral reefs. The complex taxonomy of tropical communities and limited number of
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studies has meant that the overall diversity of the zooplankton assemblage has been poorly
described.

Molecular techniques have enabled biodiversity studies to be undertaken at a greater depth
and scale. Environmental DNA sampling relies on the extraction of bulk DNA and amplicon
sequencing of a common molecular maker, such as the small subunit ribosomal RNA gene
(SSU rRNA) or mitochondrial cytochrome oxidase I (COI). Molecular techniques were first
utilized to study microbial populations (e.g. [13, 14]), but have more recently been applied to
marine metazoan communities (for example [12, 15, 16, 17]. It is a technique, which allows
analysis of organisms across a broad taxonomic range based on sequence similarities to refer-
ence databases. Molecular techniques have the possibility to simplify the analysis of marine
zooplankton communities by allowing the whole community to be assessed simultaneously
without the need for specific experts in morphological taxonomy of each taxa. As well as this
the identification of larval and juvenile stages, which are complicated to differentiate morpho-
logically would be able to be identified using genetic methods.

In this study, using high throughput sequencing methods we investigate the diversity of zoo-
plankton communities in the central Red Sea region. To target the whole of the zooplankton
community we used general eukaryotic primers targeting the v9 hypervariable region of the
18S rRNA gene [18]. Clustering of Operational Taxonomic Units (OTUs) was undertaken at
97% similarity so that OTU richness was most closely aligned to species richness [16, 19]. To
date there have been few studies that have investigated the whole zooplankton community in
the main body of the Red Sea and therefore this study provides a basic understanding of the
community structure and improves our knowledge of the marine ecosystem in the Red Sea.

Methods

Sampling
Samples were collected during March—April 2013 in the central Red Sea region (S1 Table;
Fig 1) during the KAUST Red Sea Research Cruise 2013 aboard the RV Aegaeo. Permits for
sampling in Saudi Arabian waters were obtained from the Saudi Arabian coastguard. No spe-
cific permissions were required, as the study did not involve endangered or protected species.
A total of 11 stations were sampled in the region with the stations being repeated 10 days after
the first sampling. Zooplankton samples were collected using two methods. Firstly depth pro-
files were obtained using a multinet system (Hydro-Bios, Kiel) fitted with a mesh size of 64 μm
and a CTD profiler attached. Vertical hauls were carried out between 500 m and the surface
with a towing speed of 1 m s-1. The depths at which nets were triggered are detailed in S1
Table. Secondly, surface zooplankton samples were obtained using a neuston net with a 64 μm
mesh size towed at approximately 3 knots for 10 min. Subsequent to sampling the samples
were stored at 4°C in absolute ethanol.

DNA extraction and sequencing
DNA was extracted based on the methods described in [21]. Ethanol was removed from the
samples prior to the addition of ATL lysis buffer (Qiagen). The whole sample was transferred
to a pestle and mortar and crushed until the biomass was liquidized. To complete the lysis of
the sample the resulting cell suspension was incubated overnight at 55°C with 20 μl proteinase
K (20 mg/mL). For samples with larger biomass the addition of proteinase K was scaled up.
Phenol:chloroform:iso amyl alcohol (IAA) was added in equal volume to the sample, mixed
and centrifuged for 5 min. The aqueous layer was removed and a second round of phenol:chlo-
roform:IAA extraction was undertaken followed by a round of chloroform:IAA. The aqueous
layer was removed and DNA precipitated using 2.5 volumes ethanol and 0.1 volumes sodium
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acetate at – 20°C. DNA was washed in 70% ethanol and resuspended in autoclaved MilliQ
water.

Amplification of eukaryotic DNA was achieved using the general eukaryotic primers
designed by [18]. The forward primer 1389F was combined with the reverse primer 1510R. All
primers had an Iontorrent tag (instead of a Roche 454 tag as used by [18]) and a 10 bp barcode.
PCRs were undertaken in duplicate in 50 μl reaction volumes containing 2.5U Taq polymerase
(Invitrogen), 1XTaq reaction Buffer, 200μM dNTPs (Invitrogen), 1.5mMMgSO4, 0.05 mg
Bovine Serum Albumin (BSA) and 0.2μM of each primer. PCR conditions were adapted from
[18]. An initial denaturation step of 3 min at 94°C was followed by 30 cycles of 94°C for 30 sec,
57°C for 45 sec and 72°C for 45 sec. This is followed by a final extension at 72°C for 10 min. A
no template negative control was also run. Duplicate PCR reactions were combined and the
PCR band visualized on a 1% agarose gel before being excised and purified with Qiagen’s gel
extraction kit. Purified samples were pooled, having been equalized to 50ng (measured using a
dsDNA high sensitivity kit for a Qubit 2.0 Fluorometer (Life Technologies)), according to bar-
code. A maximum of 15 unique barcodes were pooled together and multiplexed samples were
analyzed for purity using an Agilent 2100 bioanalyzer machine. Emulsion PCR for IonTorrent
sequencing was undertaken, using an Ion PGM Template OT2 400 Kit on a Ion One Touch
system 2.0 following manufacturers protocols, with 15 pM of template amplicons. After enrich-
ment in a Ion one touch ES system the templates were loaded on a 318 V2 chip and sequenced
at the King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia,

Fig 1. Sampling stations. Positions of sampling stations showing a) Positions relative to the Red Sea and b) the position of individual stations.
Figure plotted in R using the packagemaps [20].

doi:10.1371/journal.pone.0133487.g001

Zooplankton Red Sea

PLOSONE | DOI:10.1371/journal.pone.0133487 July 17, 2015 3 / 14



core facility on an IonTorrent PGMmachine using an Ion PGM Sequencing 400 Kit. Raw
sequence reads were deposited in the NCBI Sequence Read Archive under the experiment
accession number: SRP056532.

Sequence analysis and bioinformatics
Raw sequences were automatically demultiplexed, based on barcode, on the IonTorrent PGM
machine and each sample was filtered individually using the QIIME (version 1.8) software
package [22]. Parameters for quality filtering were minlength = 100, maxlength = 200, qual-
ity = 25, windowsize = 25, max homopolymers = 6 and max forward primer mismatch = 1,
barcode = 0. Filtered sequences were concatenated and clustering into OTUs occurred through
a two-step process. Firstly, using the trie function of the QIIME version of the CD-HIT [23]
algorithm, sequences were preclusted and the longest representative sequence of each preclus-
ter was selected. Secondly de novo clustering of these representative sequences using the
USEARCH (version 5.2.236) [24] algorithm at 97% identity was undertaken where clusters had
to include at least 2 sequences. Representative sequences (longest) were selected for the
USEARCH OTUs and checked for chimeras against a reference database (SILVA 119 [25]
using UCHIME [26]). Taxonomic assignments were made in QIIME against the SILVA 119
database using the naïve Bayesian classifier rdp [27]. To assess the composition across different
stations reads were rarefied multiple times (n = 100) at an even depth (20,000 reads) and the
average taken. Diversity statistics were undertaken using QIIME and the R (v 3.0.2 (R develop-
ment core team)) packages vegan [28] and phyloseq [29]. Weighted and unweighted UniFrac
[30] distance matrices were constructed in phyloseq based on the QIIME OTU table and phylo-
genetic tree. Non-metric multidimensional scaling (NMDS) plots were constructed with phylo-
seq and statistical analysis of the distance matrices was calculated using PERMANOVA
(adonis in vegan).

Results
A total of 11,693,628 reads were obtained across all the samples and clustering resulted in a
total of 2528 metazoan OTUs at 97% similarity, subsequent to the removal of 110 OTUs which
were designated as chimeras as well as those which were not taxonomically classified as meta-
zoa. In order for samples to be compared the metazoan reads were rarefied multiple times
(n = 100) at an even depth (20,000 reads). After rarefaction a total of 2079 OTUs were
observed. The majority of these OTUs were grouped in the phylum Arthropoda (1285 OTUs;
62% of total OTUs), and particularly the class Maxillopoda (886 OTUs; 43% of total OTUs).
Other phyla accounting for more than 100 OTUs include the Cnidaria (131 OTUs; 6.3% of
total OTUs), Urochordata (118 OTUs; 5.7% of total OTUs) and Mollusca (104 OTUs; 5.0% of
total OTUs). Comparing alpha diversity down the depth profile it was found that there was a
significant decrease in the numbers of both metazoan (F = 9.485; p = 0.004) and Maxillopoda
(F = 15.9; p< 0.001) OTUs with depth (Fig 2).

At all stations, samples taken using the neuston net were dominated by the phyla Arthro-
poda (86.2%) (Fig 3A and 3B). Smaller proportions of reads were attributed to Chaetognatha
(average 4.9%), Cnidaria (average 2.2%), Urochordata (average 1.7%) and Mollusca (average
1.6%). Mollusca and Cnidaria were more prevalent in the second sampling period (Fig 3B). On
a finer taxonomic scale, the neuston nets were dominated by the class Maxillopoda (phyla
Arthropoda) (average 76.9%), with smaller contributions to the samples fromMalacostraca
(phyla Arthropoda) (average 8.2%). During the second sampling period the Maxillopoda genus
Corycaeus was more prevalent than in the first, accounting for an average of 10.23% and 3.24%
of the community respectively.
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On average throughout the water column Arthropoda were the dominant component of the
plankton averaging 65.3%, however Cnidaria also accounted for a substantial proportion (aver-
age 15.1%) whilst Urochordata also accounted for a sizeable proportion of reads in several sta-
tions (Fig 4). Table 1 shows the taxonomic designations (at genus level where possible) of the
most dominant OTU for the metazoan phyla down the water column. Maxillopoda were the
dominant class of Arthropoda throughout the depth profile, however the genera present dif-
fered through the water column. A higher proportion of reads were attributed to the genus
Pleuromamma at deeper depths than at shallower ones whilst the genus Corycaeus was more
prominent in the top 100m (Fig 5).

To assess statistical differences in the zooplankton community samples, those, which
had a full depth profile (3 night stations and 3 day stations), were analyzed. Adonis analysis
was undertaken to investigate the effects of depth and time of day. Both weighted and
unweighted UniFrac results showed that there was a significant difference with depth
(weighted: F = 3.17, p< 0.001; unweighted F = 2.588, p< 0.001) with Fig 6A + 6B showing
a NMDS of all sampling points. There was no significant effect of time of day (weighted:
F = 2.018, p = 0.057; unweighted F = 1.514, p = 0.058). A similar finding was found when
just considering the dominant group Maxillopoda with depth being found to be significant
(weighted: F = 12.353, p< 0.001; unweighted F = 3.084, p< 0.001) whilst time of day was not
significant (weighted: F = 0.782, p = 0.428; unweighted F = 1.197, p = 0.262).

Fig 2. Association of OTU counts with depth.Number of OTUs for both Metazoa and Maxillopoda against depth. The average depth at which each
multinet was open was used.

doi:10.1371/journal.pone.0133487.g002
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In the neuston nets there was also found to be no significant difference in the metazoan
community depending on the time of day of sampling (after 9 samples were randomly chosen
for both night and day) (weighted: F = 0.789, p = 0.579; unweighted: F = 0.886, p = 0.612).
However a statistical difference was observed between the two sampling periods (weighted:
F = 2.738, p = 0.014; unweighted: F = 2.289, p = 0.004) between the first 10 stations (Station 11
only had results from the repeat sampling period) (Fig 7A + 7B). No significant trends
(p> 0.05) were observed between distance and similarity of the zooplankton community for
either UniFrac distance measure or sampling period.

Discussion
The present study uses high throughput sequencing technology to provide basic information
on the vertical profile of zooplankton in the central Red Sea. Morphological investigations
often focus on the abundance of each species in the zooplankton community. However using
next generation sequencing techniques the correlation between reads and abundance cannot
be presumed. Previous genetic studies of the zooplankton community targeting the 18S rRNA
gene showed that for bivalve and decapod larvae metagenetic reads correlated more with mor-
phological biomass than abundance [16], whilst [15] found a correlation between copepod
LSU reads and dry weight. Although this correlation could be affected by biases such as primer
mismatches or gene copy numbers [32, 33] it can give an approximate representation of
changes in the biomass of the zooplankton community. The dominant phyla in the current

Fig 3. Zooplankton composition for a) neuston and b) neuston repeat.Composition of zooplankton at the phyla level for a) the neuston surface samples
and b) the neuston surface repeated samples. Arthro = Arthropoda; Chaeto = Chaetognatha. Other accounts for those phyla, which accounted for less than
3% of a sample or OTUs that were not assigned to the phyla level. For station designations refer to S1 Table. Figure plotted in R using the packagemaps
[20].

doi:10.1371/journal.pone.0133487.g003

Zooplankton Red Sea

PLOSONE | DOI:10.1371/journal.pone.0133487 July 17, 2015 6 / 14



study were Arthropoda in both the neuston and vertical profiles with Cnidaria also accounting
for a substantial proportion of reads (Figs 3 and 4). Urochordata also accounted for a large pro-
portion of reads in the vertical nets with Chaetognatha and Mollusca observed in the neuston
nets. Similar groups were found to be the most abundant in previous studies in the Red Sea
(e.g. [4, 5, 34, 35]) and in other water bodies including the subtropical Pacific [36] and UK
coastal waters [16]. Copepods were the dominant component of the Arthropoda in both the
neuston and vertical net samples. This has been previously shown in a molecular study of zoo-
plankton associated with coral reefs in the Red Sea [12], morphological studies undertaken in
the Gulf of Aden and Red Sea (e.g. [6, 11, 35, 37]) and in other marine basins (e.g. Mediterra-
nean: [38]; subtropical Pacific: [36]; Caribbean: [39]). The dominant genus identified in the
epipelagic zone was the Poecilostomatoid copepod Corycaeus, which has also been found to be
present in other Red Sea studies [37] although other genera such as Clausocalanus and Cteno-
calanus [7, 40] are often more abundant. Lindeque [16] has previously reported that Clauso-/
Ctenocalanus accounted for a higher proportion of morphologically identified samples com-
pared with molecular techniques. The differences were attributed to high abundance relative
to biomass of juveniles of these species and similar explanations could account for the low
proportion of these genera in the current study with an increase in copepodit stages of Clauso-
calanus spp. having been shown in March/April in the Gulf of Aqaba [41]. The calanoid Pleur-
omamma was dominant in the mesopelagic zone, which is in agreement with previous studies
[7, 40] (Fig 5).

Fig 4. Metazoa composition in multinet samples. Combined composition of metazoa at each station in the
multinet samples. Arthro = Arthropoda; Urocho = Urochordata. Other accounts for those phyla, which
accounted for less than 3% of a sample or OTUs, which were not classified at the phyla level. For station
designations refer to S1 Table. Figure plotted in R using the packagemaps [20].

doi:10.1371/journal.pone.0133487.g004
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In the current study, in agreement with previous studies [6] we found that there was no sig-
nificant difference in both the metazoan and maxillopoda community between samples taken
at night and those taken during the day. However the dominant Maxillopoda genus Pleuro-
mamma was observed to have higher abundances of reads in the deeper samples, as has been
observed previously in the Red Sea [40]. In agreement with the fact this genus undertakes diel
vertical migrations [40, 42, 43] higher abundances were observed in the epipelagic zone of
those stations where sampling occurred during the night. However, large proportions of reads
were still observed in the mesopelagic zone suggesting either a proportion of the population
was non-migratory as has been observed in various species of this genus [43] or different life
cycle distribution patterns [44].

A significant decrease in the number of metazoan and Maxillopoda OTUs was noticed with
depth (Fig 2), which is in agreement with previous investigations in subtropical regions [6, 40,
45, 46] but shows a different distribution from that observed for zooplankton in the Amundsen
and Makarov Basins where the maximum was observed between 500–750m [47].

Whilst studies have shown changes in the abundance of zooplankton in the Red Sea on a
seasonal scale [4, 5, 7, 37] we are able to show the dynamic nature of the planktonic community
with statistically significant changes in the neuston community between sampling of the same
stations 10 days apart. The difference in the community appeared to be due to the change in

Fig 5. Depth profile of Maxillopoda taxa.Depth profile of the composition of the Maxillopoda genera in the multinet samples. Pies are plotted at the average
depth for which the net was open except where stations are close in longitude were one station is plotted at the 1st quartile whilst the other is plotted at the 3rd
quartile to avoid overlap. Background is temperature (°C). Others includes those genera with < 1% reads in at least one sample and those OTUs classified as
Maxillopoda but which could not be assigned to genus level. Figure plotted with R package oce [31].

doi:10.1371/journal.pone.0133487.g005
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rare taxa with the unweighted UniFrac, which favors rare taxa being more significant than the
weighted UniFrac. However, the genus Corycaeus accounted for 10.23% of the reads in the
repeat sampling and only 3.24% in the first period of sampling. This suggests that studies incor-
porating short time periods between sampling efforts will be required to fully understand the
changes in the plankton community in the Red Sea.

One advantage of molecular techniques over those based on morphology is that larval and
juvenile specimens can be hard to identify morphologically [16] whilst there is no differentia-
tion in life stage when using molecular techniques. El Sherbiny et al [5] found that adult cope-
pods only constituted 22.3% of the total copepods meaning identification of a substantial
proportion of the zooplankton community would be problematic. The focus on adult copepods
is a fundamental issue in morphological studies and could mean that there are misrepresenta-
tions of zooplankton diversity with [16] suggesting that next generation sequencing technolo-
gies may reveal double the copepod diversity.

Whilst sequencing technologies have their advantages there are currently limitations for
their use in ecological studies. For example, in the current study, on average 40% of the reads
from the multinet samples classified as Maxillopoda could not be classified at a lower taxo-
nomic level. Genera such as Oncaea, which have previously been shown to be a key component
of the Red Sea zooplankton community [5], are absent from reference databases meaning that
reads would fall into the unknown category. Lindeque et al [16] found that off the UK coast

Fig 6. NMDS plot for a) weighted and b) unweighted UniFrac for multinet samples. NMDS plot based on a) weighted and b) unweighted UniFrac
distance matrices showing clustering by depth. Samples were categorized based on the average depth, which the net was opened.

doi:10.1371/journal.pone.0133487.g006
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only half the possible local species of Oithona were present in the database and this limits the
ability to classify species at low taxonomic levels and missing sequences of representative spe-
cies from the Red Sea may partly account for the lower proportion of this genera observed in
the current study despite high abundances previously reported [35]. This problem is likely to
be exacerbated in regions, such as the Red Sea where the diversity of zooplankton has received
considerably less attention.

In summary, this study has increased the amount of knowledge available on the diversity of
zooplankton in the central Red Sea. Whilst there are still limitations in the use of molecular tech-
niques to study the diversity of metazoans this study has shown that the techniques are able to
discriminate changes in the structure of the zooplankton community not only in time but also
down a depth profile at different taxonomic levels. In the future with the collaboration of molec-
ular ecologists and morphological taxonomists the gaps in reference databases can be closed
leading to an improvement in the speed and scale at which ecological studies can be undertaken.

Supporting Information
S1 Table. Ancillary data for neuston and multinet samples including temperature, conduc-
tivity, salinity, depth, latitude, longitude, day/night and date of sampling.
(CSV)

Fig 7. NMDS plot for a) weighted and b) unweighted UniFrac for neuston samples. NMDS plot based on a) weighted and b) unweighted UniFrac
distance matrices showing clustering of the sampling period. A is the sampling period between 25th March 2013 and 27th March 2013 whilst B is the sampling
period between 3rd April 2013 and 5th April 2013.

doi:10.1371/journal.pone.0133487.g007
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