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Abstract

Kiss1 neurons are essential regulators of the hypothalamic–pituitary–gonadal (HPG) axis by 
regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests 
that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic 
GnRH pulse generator driving fertility, also participate in the regulation of metabolism 
through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin 
(POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in 
close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent 
developments, mainly derived from animal models, on the role of Kiss1 neurons in the 
regulation of energy balance, including food intake, energy expenditure and the influence 
of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways 
underlying this effect, and the existing controversies related to the anorexigenic action of 
kisspeptin in the different experimental models, are also discussed.

Introduction

Reproduction is a fundamental function that ensures the 
perpetuation of the species. As such, reproductive activity 
is under the regulation of a complex central and peripheral 
network that forms the hypothalamic–pituitary–gonadal 
(HPG) axis. Within the HPG axis, reproductive function 
is regulated by gonadotropin-releasing hormone (GnRH) 
neurons located in the hypothalamus, which control 
the production and release of gonadotropins from the 
pituitary to regulate gonadal function. Major progress 
has been made in the understanding of the central 
mechanisms regulating reproductive activity with the 
finding that GnRH synthesis and release require the 
stimulatory action of kisspeptin (Kp, formerly known 
as metastin), a hypothalamic peptide encoded by the 
Kiss1 gene and produced by Kiss1 neurons. Kisspeptin 
signaling is of paramount importance, as humans and 
mice bearing mutations in Kiss1 or its receptor (Kiss1r, 
formerly termed GPR54) display hypogonadotropic 
hypogonadism, pubertal failure and are infertile (1, 2).  

In rodents, Kiss1 neurons are primarily located in the arcuate 
nucleus (Kiss1ARC) and the anteroventral periventricular/
periventricular nucleus (Kiss1AVPV/PeN) and are deferentially 
regulated by sex steroids leading to complementary roles 
in maintaining reproductive success. Kiss1AVPV/PeN neurons, 
which are vestigial in males, have been shown to play a 
major role in driving the preovulatory LH surge in females 
in response to the positive feedback of estradiol (E2) under 
the control of the suprachiasmatic nucleus (SCN) (3, 4, 
5, 6). In contrast, in response to the negative feedback of 
sex steroids, Kiss1ARC neurons regulate the tonic release of 
GnRH/LH, thus relaying information about the hormonal 
and neuroendocrine milieu (including metabolic cues) 
(7). In this context, the Kiss1ARC neuronal population 
co-expresses the neuropeptides neurokinin B (NKB) and 
dynorphin A (Dyn A), thereafter named KNDy neurons, 
which hold the hypothalamic GnRH pulse generator, 
essential for reproductive function (8). Moreover, Kiss1ARC 
neurons are predominantly glutamatergic (9, 10) and 
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have the potential to release the fast-acting transmitter 
glutamate onto (1) neighboring neurons in the ARC 
to potentially regulate metabolism (discussed in later 
sections), and (2) Kiss1AVPV/PeN neurons to regulate fertility 
(10, 11). An additional population of Kiss1 neurons has 
been recently identified in the posterodorsal part of 
the medial amygdala (Kiss1MePD (12)), and a number of 
chemogenetic (13) and optogenetic (14) studies by our lab 
and others suggest an important role of Kiss1MePD signaling 
in the regulation of the GnRH pulse generator, besides a 
potential role in driving emotional and sexual behavior, 
pubertal timing and ovulation – at least in mice (15, 16).

Reproductive function is energy costly and requires 
a threshold of energy reserves, as situations of negative 
energy balance (e.g. anorexia nervosa) or excessive 
energy deposits (e.g. obesity, diabetes) may impair the 
reproductive axis. During the last decade, major progress 
has been made in the understanding of a wide variety of 
reproductive disorders that are a direct result of metabolic 
abnormalities. Women suffering from undernutrition 
display hypothalamic amenorrhea, characterized by low 
gonadotropin secretion and infertility (17), while obese 
women display high risk of miscarriage, pregnancy 
complications, anovulation and infertility resulting 
from the increased negative feedback on gonadotrophin 
secretion, due to the peripheral conversion of androgens 
to estrogen (18). In this line, women suffering from 
polycystic ovary syndrome (PCOS, leading to hyper 
activation of the gonadotropic axis) are frequently obese 
(17), although the causative relationship between the 
metabolic and the reproductive phenotypes of PCOS 
patients is not completely understood. Overall, it is well 
established that energy imbalance has severe repercussions 
on reproductive fitness. However, the mechanisms 
mediating the interaction between reproductive function 
and energy balance are still largely unexplored. This 
review provides a summary of the action of Kiss1 neurons 
in the bidirectional interaction between reproduction and 
metabolism.

Kiss1 neurons as metabolic gates of fertility

Kiss1 neurons are critical regulatory nodes that integrate 
metabolic cues in order to adjust reproductive function 
to energy stores. A number of studies have characterized 
the inhibitory effect that metabolic stress (e.g. food 
deprivation) exerts on Kiss1 gene expression, leading to 
the decrease in LH levels and, therefore, reproductive 
success, in rodents and primates, which frequently 

manifest with delayed or absent puberty onset and 
infertility (19, 20, 21). Importantly, Kiss1 neurons are 
direct targets of peripheral metabolic hormones (e.g. 
leptin, insulin); however, the relevance of Kiss1 neurons as 
first order metabolic responders is questioned, given that 
the selective deletion of receptors for metabolic cues (e.g. 
leptin and insulin receptors) do not appear to impinge 
reproductive or metabolic functions (22, 23). Nonetheless, 
a remarkable feature of Kiss1ARC neurons is their ability 
to directly communicate with neurons in the ARC that 
regulate hunger and satiety, suggesting the existence of 
a bidirectional metabolic-reproductive loop (discussed 
subsequently). The anorexigenic proopiomelanocortin 
(POMC) and orexigenic agouti-related peptide (AgRP)/
neuropeptide Y (NPY) neurons are fundamental players 
that regulate energy balance (24, 25) and also play a 
critical role in regulating fertility (26, 27). On one hand, 
POMC, a precursor polypeptide, is expressed in the ARC, 
the nucleus tractus solitarius (NTS) of the brainstem and 
the pituitary. POMC is cleaved into different biologically 
active peptides, including the alpha melanocyte-
stimulating hormone (α-MSH), which drives satiety and 
increases energy expenditure through its selective binding 
to the melanocortin receptors, MC3R and MC4R, with 
MC4R being the primary receptor mediating the metabolic 
action of melanocortins (28, 29). On the other hand, the 
orexigenic AgRP and NPY peptides – both produced in 
AgRP neurons – increase food intake and decrease energy 
expenditure (30, 31, 32), thus termed hunger neurons. 
AgRP selectively binds MC4R to prevent the anorexigenic 
effect of α-MSH, while NPY binds preferentially Y1 and Y5 
receptors to induce its orexigenic effect (25).

POMC and AgRP neurons have been extensively 
studied for their role as conveyors of the metabolic state 
to regulate fertility. In female mice and women, MC4R 
deficiency is associated with a number of reproductive 
disorders related to advanced puberty onset, irregular 
ovarian cyclicity and reduced number of developed 
corpora lutea in ovaries (33, 34, 35), while the activation 
of MC4R stimulates their libido (36). In males, MC4R 
does not appear to be involved in gametogenesis or 
gonadal steroidogenesis; however, it is involved in 
erectile function and sexual behavior (37, 38). However, 
despite the documented action of melanocortins on 
reproduction, including sexual behavior, the precise 
site/s of action underlying this effect remain ill-defined. 
In this context, 50% of GnRH neurons, located mostly in 
the medial preoptic area (POA), express MC4R (39) and 
70% of these GnRH cells are excited by α-MSH, acting 
through both MC3R and MC4R (40). However, most of 
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the melanocortin actions on the HPG axis appear to be 
mediated through Kiss1 neurons based on the fact that: 
(1) Kiss1 neurons receive direct projections from α-MSH 
fibers, (2) Kiss1 mRNA expression decreases in the ARC 
of pubertal female mice subjected to chronic inhibition 
of MC3R/MC4R, and (3) the stimulatory action of 
melanocortins on the HPG axis is blunted in kisspeptin 
signaling deficient mice (41). These results are in line with 
the presence of MC4R in a subset of Kiss1 neurons (9), 
suggesting a likely direct regulation of Kiss1 neurons by 
melanocortins.

Direct regulation of Kiss1 neurons by AgRP neurons 
have also been described through, at least, direct 
inhibitory GABAergic post-synaptic inputs (42). The 
relevance of this regulatory pathway is further evidenced 
by compelling studies in leptin deficient mouse models, 
which display an infertile phenotype largely derived 
from the increase in the activity of AgRP neurons and the 
subsequent reversal of the infertile phenotype after the 
ablation of these neurons (i.e. AgRP neurons) (42). While 
direct connections from AgRP to Kiss1 neurons have been 
demonstrated, no evidence of direct interaction between 
AgRP and GnRH neurons has been found, suggesting that 
under negative energy balance, the inhibitory action on 
the HPG axis exerted by AgRP neurons occurs at the level 
of Kiss1 neurons (and/or on upstream neuroendocrine 
networks), further emphasizing the critical role of Kiss1 
neurons in mediating the transmission of metabolic 
cues onto the reproductive axis. Altogether, these data 
suggest that the metabolic regulation of fertility by POMC 
and AgRP neurons occurs mostly through their action 
on Kiss1ARC neurons, which act as gatekeepers in the 
metabolic regulation of reproductive activity.

Kiss1 neurons as active metabolic players

Since their characterization in 2003, the neuroendocrine 
community has focused mostly on the neuroanatomical 
characterization and functional role of kisspeptin 
in reproduction, while the metabolic facets of this 
neuropeptide remained underexamined. Recent studies 
have aimed at closing this gap to elucidate the potential 
metabolic role of Kiss1 neurons. Thus, it has been 
demonstrated that the absence of kisspeptin signaling 
(Kiss1rKO mice) results in increased body weight in 
a sex-dependent manner and that this effect is partly 
independent of the presence of circulating sex steroids. 
Adult Kiss1rKO females, but not males, displayed decreased 
food intake but higher body weight as a consequence of 

reduced energy expenditure and locomotor activity, as 
well as impaired glucose homeostasis (43) and elevated 
plasma leptin levels (44). Importantly, these metabolic 
impairments were restored in females, but not males, in 
a mouse model of selective reinsertion of Kiss1r only in 
GnRH neurons, which prevented any changes in BW of 
any sex during adulthood but retained the BW changes 
observed in prepubertal and young adult Kiss1rKO mice. 
This indicates that a large component of the phenotype 
observed in adult Kiss1rKO mice is sex-steroid dependent. 
However, these mice still displayed increased insulin 
resistance at any age compared to controls suggesting the 
existence of kisspeptin-dependent mechanism in glucose 
homeostasis (45).

Of note, while studies in rodents support a role of 
Kiss1 neurons in metabolism, to date, there is no evidence 
of metabolic impairments in patients with kisspeptin 
deficiency (1, 2, 46); however, a detailed metabolic 
characterization of these patients has not been performed.

Overall, an active role of Kiss1 neurons in the control 
of energy balance has been recently demonstrated in a 
number of rodent studies. This effect is partly indirect 
through the regulation of the circulating levels of sex 
steroids and partly direct through the action of kisspeptin 
and additional co-transmitters. However, whether this 
direct action is mediated by the control of food intake 
(anorexigenic action), increase in energy expenditure, 
or both, remains a matter of debate. Nonetheless, this 
action of kisspeptin (and/or co-transmitters) as satiety 
signals while stimulating the reproductive axis is in line 
with the classic action of satiety signals, for example, 
melanocortins and NUCB2/Nesfatin-1 (47, 48), which 
get activated in situations of energetic surplus to signal 
the organism that enough resources for reproduction are 
present and it is therefore safe to shift the focus from 
food-seeking behaviors to reproduction.

Kiss1 neurons in the regulation of food intake

The anorexigenic effects of kisspeptin were first described 
in mice, as the central pharmacological administration of 
kisspeptin during the light cycle significantly suppressed 
food intake (49). However, this effect was only present in 
overnight fasted mice, which exhibited decreased meal 
frequency and total meal time during refeeding. The 
same kisspeptin dose was ineffective to alter food intake 
when tested in ad libitum fed animals (49). These data 
revealed, for the first time, a potentially anorexigenic 
role of kisspeptin in mice under negative energy balance. 
Similar data have also been described in the wild jerboa, 
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where exogenous kisspeptin injections significantly 
inhibited food intake during refeeding in females after 48 
h of food deprivation, but not in ad libitum fed animals 
(50). Importantly, this effect was present in female 
jerboa but not in males under any of these conditions 
(50), revealing that not only the anorexigenic effect of 
kisspeptin is dependent on the energetic state, in line 
with the mouse data (49), but also that this effect is 
sexually dimorphic. These studies go in parallel with a 
recent work in 24 h fasted rats, where kisspeptin was able 
to suppress food intake (51), while this effect was not 
observed in ad libitum fed or 12 h fasted animals (19, 52). 
Along this line, kisspeptin does not appear to exhibit an 
anorexigenic action in humans, as kisspeptin infusion in 
overnight fasted men did not alter appetite (53). Whether 
the fasted period in men was not long enough for the 
anorexigenic effect of kisspeptin to be evident or men 
are not responsive to the metabolic action of kisspeptin 
after acute delivery is unknown. However, given the 
sexual dimorphism in the metabolic effect of kisspeptin 
described, studies in women will be required in order to 
evaluate whether this response in also sexually dimorphic 
in humans.

In contrast to these studies described, a recent study 
in mice suggests that i.p. injections of kisspeptin in ad 
libitum fed animals suppresses food intake within the first 
4 h following a single administration of kisspeptin and for 
up to 24 h (54). However, not only these results contradict 
a number of previous studies in different species suggesting 
that the anorexigenic action of kisspeptin, in order for 
it to be revealed, requires a negative energetic state but, 
strikingly, the long action (up to 24 h) of a small peptidic 
compound (only ten amino-acids in kisspeptin-10) after 
peripheral administration is unprecedented, given that 
the stimulatory effect on LH is lost within 60 min of i.p. 
administration of high doses of kisspeptin (55). Whether 
Kiss1 neurons are able to elicit a cascade of events 
through other neurons to exert this role or there are 
technical aspects that affected this study requires further 
investigation.

While evidence on the metabolic actions of kisspeptin 
is mounting, the contribution of kisspeptin’s partners, 
that is, co-transmitters released from Kiss1 neurons such 
as glutamate or NKB, may enhance the overall metabolic 
role of Kiss1 neurons. In this context, and in line with 
the absence of an anorexigenic action of kisspeptin 
in normal fed conditions in several experimental 
models, a recent study of chemogenetic activation 
of Kiss1ARC neurons in fed mice failed to suppress 
feeding during the dark cycle over a period of 4 h (56).  

This study suggests that none of the potential 
kisspeptin co-transmitters play a role in regulating 
food intake, at least not acutely in fed conditions. 
However, chronic silencing of synaptic transmission 
from Kiss1ARC neurons in female mice results in 
significant weight gain derived, in part, from feeding 
impairments (57). While the overall food consumed 
was similar to controls, the circadian feeding behavior 
was severely impaired, losing the nocturnal pattern of 
feeding observed in control mice (57). This change in 
the circadian rhythm of feeding correlated with similar 
changes in physical activity and energy expenditure. 
These results suggested a critical role for Kiss1ARC 
neurons in the regulation of circadian rhythms, at 
least for feeding and physical activity. However, the 
SCN in the Kiss1ARC silenced mice appears to be intact 
and Kiss1ARC neurons do not project directly to the 
SCN (57), suggesting that Kiss1ARC neurons may serve 
as conduits for upstream signals from the SCN and/or 
that Kiss1ARC neurons control downstream targets of 
the SCN to modulate circadian rhythms. The latter is 
supported by the presence of projections from Kiss1ARC 
neurons to SCN targets involved in the regulation of 
circadian rhythms (i.e. subparaventricular zone (SPZ) 
and the dorsal medial hypothalamus (DMH)) (57, 58).  
These findings support a role for Kiss1 neurons in the 
regulation of the daily timing of food intake in a circadian-
dependent manner, probably contributing to the overall 
reduced feeding in mice during light hours. This effect 
is supported by the suppression of food intake after 
kisspeptin administration during light hours (49, 50)  
and absent during dark hours (49, 56). Therefore, in 
the face of these studies, caution should be exercised 
when interpreting data of kisspeptin studies on feeding 
behavior if time of day and basal energetic status are 
not properly controlled.

Kiss1 neurons display bidirectional interactions with 
AgRP and POMC neurons
Kiss1ARC neurons project to a wide variety of brain 
nuclei including central metabolic centers known to 
regulate food intake, body weight and thermogenesis: 
the median preoptic nucleus (MePO), bed nucleus of 
the stria terminalis (BnST), paraventricular nucleus 
of the hypothalamus (PVN), DMH and the lateral 
hypothalamus (LH) (58). A significant number of these 
Kiss1ARC projections also target the ARC, where hunger 
(AgRP) and satiety (POMC) neurons are located. In 
this context, initial studies supported the idea that 
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Kiss1ARC neurons directly contact neighboring POMC 
and AgRP neurons. First, kisspeptin can modulate 
the activity of POMC neurons based on the fact that 
(1) POMC neurons express Kiss1r (59), (2) kisspeptin 
is able to excite POMC neurons through sodium/
calcium exchanger activation (60), and (3) kisspeptin 
increases the expression of Pomc in the ARC (50, 61). 
Second, in addition to kisspeptin input, POMC and 
AgRP neurons receive direct glutamatergic inputs from 
Kiss1ARC neurons that differentially regulate them in a 
sex-steroid-dependent manner through the activation 
of distinct metabotropic glutamate receptors (10). 
These data support a direct action of Kiss1 neurons in 
the regulation of essential central metabolic centers. 
However, the satiety inducing effect of the activation of 
POMC neuron activation is remarkably slow and usually 
requires 24 to 48 h to inhibit food intake (through the 
action of α-MSH on MC4R) (56, 62). In the studies 
documenting the anorexigenic action of kisspeptin, the 
effect was observed within 1 h following administration 
(49, 50, 51), suggesting that the anorexigenic effect is 
not mediated through the activation of POMC neurons. 
Given the fact that Kiss1ARC neurons are not within the 
glutamatergic pool of ARC neurons that targets the 
PVN to rapidly induce satiety (56), we can infer that 
kisspeptin must be acting through other ‘fast acting’ 
satiety inducing neurons as an indirect mechanism 
to suppress food intake. Nonetheless, the potential 
anorexigenic effect of kisspeptin acting through POMC 
neurons at a larger time scale cannot be excluded.

An important factor in the metabolic role of Kiss1 
neurons relates to how much of the metabolic phenotype 
described to date in the different animal models is 
mediated by kisspeptin vs kisspeptin co-transmitters, 
for example, glutamate or NKB. In this context, it is 
worth noting that the degree of obesity observed in the 
Kiss1ARC-silenced female mice (57) is significantly greater, 
and develops faster, than that reported in Kiss1rKO mice 
(43, 44, 45, 63), supporting a role for additional factors 
from Kiss1ARC neurons in the control of metabolism. 
Importantly, glutamate has been described to mediate 
the effect (excitation) that Kiss1ARC neurons exert on 
POMC neurons, and to selectively inhibit AgRP neurons 
(10, 64), which strongly supports a glutamatergic 
component in the phenotype of the Kiss1ARC silenced 
mouse model (57). Moreover, the glutamatergic 
action of Kiss1 neurons onto neighboring POMC and 
AgRP neurons is gonadal hormone dependent, as it is 
enhanced by E2 in females (64, 65), in line with the 
sex-dependent effect of kisspeptin on food intake in 

jerboa (50) and BW in Kiss1rKO mice (43), restricted to  
females (Fig. 1).

Overall, controversial data exist related to the action 
of kisspeptin on food intake. While the anorexigenic 
action of Kiss1 neurons in general, and kisspeptin 
in particular, cannot be ruled out under specific 
physiological conditions and over long periods of time, 
mounting evidence points to the regulation of energy 
expenditure, either directly or through the control of 

Figure 1
Schematic representation of the suggested hypothalamic neuronal 
network regulating food intake comprising Kiss1ARC neurons interactions 
with POMC and AgRP neurons. Neurons located in the PVN, critical for 
food intake regulation, receive direct projections from the ARC Kiss1, 
POMC and AgRP neurons. Within the ARC, Kiss1 neurons directly contact 
neighboring AgRP neurons to inhibit their activity through the activation 
of glutamate receptors on these neurons. POMC neurons, which express 
Kiss1r, are directly stimulated by Kiss1ARC neurons through glutamate and 
kisspeptin. In turn, both POMC neurons (through glutamate and αMSH) 
and AgRP neurons (through GABA and AgRP) send direct projections to 
Kiss1ARC neurons, respectively, to activate and inhibit their activity; AgRP 
neurons also send inhibitory GABAergic projections to Kiss1AVPV neurons 
in the preoptic area. Under the influence of circadian rhythms, Kiss1ARC 
neurons also contribute to food intake regulation through yet unknown 
neuroendocrine circuits. The anorexigenic effect of Kiss1 neurons might 
be mediated either by: (1) direct projections to PVN neurons, (2) direct 
stimulation to POMC neurons which, in turn, (3) inhibit food intake at the 
level of the PVN, and/or (4) through indirect actions on other (unknown) 
fast acting satiety neurons. PVN, paraventricular nucleus of the 
hypothalamus; 3V, third ventricle; POA, preoptic area; Glut, glutamate; 
MC4R, melanocortin-receptor 4. The pointed arrows represent 
activations, while the flat arrows represent inhibitions.
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the rhythm of feeding behavior and locomotion as the 
main contributor to the overall metabolic phenotype of 
kisspeptin deficient models.

Kiss1 neurons in the regulation of 
energy expenditure

While the demonstration of an action of kisspeptin on 
food intake has not been consistent across the different 
experimental models, a critical feature shared by those 
models that include kisspeptin signaling deficiency 
(Kiss1rKO mice) or Kiss1ARC silencing (43, 57, 63) has 
consistently been an impairment (decrease) at the energy 
expenditure level. In both cases, mice were less physically 
active, which may contribute to the loss of lean mass and 
increase in body fat. While this is a plausible mechanism, 
a direct role of Kiss1ARC neurons in the regulation of energy 
expenditure through the action on central nuclei involved 
in this metabolic process, for example, MePO, PVN, DMH 
and NTS ((66), for review), which receive projections from 
Kiss1ARC neurons (58), cannot be excluded.

The contention that kisspeptin can control energy 
expenditure is further supported by the identification 
of Kiss1r in brown adipose tissue (BAT) – critical for the 
regulation of energy expenditure through the induction of 
thermogenesis – and the decrease in the activation of the 
BAT observed in obese Kiss1rKO females (67). However, the 
complexity of the metabolic role of kisspeptin is further 
evidenced by the fact that the removal of kisspeptin 
signaling from the BAT increases metabolic rate and body 
temperature, thus decreasing body weight, which suggests 
that the obesity seen in Kiss1rKO and Kiss1ARC silenced 
female mice is not due to the direct action of kisspeptin 
signaling on BAT, but rather the consequence of impaired 
kisspeptin signaling in other tissues involved in the 
regulation of energy balance. Furthermore, the source of 
kisspeptin that activates Kiss1r in the BAT in unknown, 
and since the majority of the neuronal innervation of 
the BAT converges into the intermediolateral nucleus of 
the spinal cord (IML) before reaching the BAT, the direct 
projection of Kiss1ARC neurons to this tissue is unlikely 
and suggests that kisspeptin acting on the BAT does not 
have a central origin (Fig. 2).

Glucose homeostasis regulation through 
kisspeptin pathways

Glucose homeostasis is maintained by the balance of 
insulin and glucagon secretion to control blood glucose 
levels. As previously mentioned, a number of studies 

documented that mice lacking kisspeptin signaling 
present impaired glucose tolerance that is not exclusively 
derived from their increased body weight. Both standard 
chow fed and high fat diet (HFD) fed Kiss1rKO female 
mice displayed significant glucose intolerance after a 
glucose tolerance test (GTT) (43, 45). This effect was (1) age 
dependent as adult, but not young 6-week-old, Kiss1rKO 
females displayed glucose intolerance (63), and (2) sexually 
dimorphic, as Kiss1rKO males displayed normal basal 
glucose levels and normal glucose tolerance both under 
standard chow and HFD (43, 45). Moreover, this effect in 
females is exacerbated in the absence of sex steroids, that 
is, in OVX Kiss1rKO females (43). Gonadal steroids (or 
lack thereof in Kiss1rKO mice) play a critical role in the 
glucose intolerance observed in the absence of kisspeptin, 
based on the improvement of this condition after selective 
restoration of Kiss1r in GnRH neurons, which normalizes 

Figure 2
Hypothetical working model of the suggested hypothalamic neuronal 
network regulating energy expenditure comprising direct and indirect 
actions of Kiss1 neurons. Under the influence of circadian rhythms, 
Kiss1ARC neurons may participate in the regulation of energy expenditure 
through: (1) the direct action on the BAT, which expresses Kiss1r; (2) the 
direct action on unknown nuclei directly involved in the control of energy 
expenditure; or (3) through indirect actions on POMC neurons in the ARC, 
which (4) project onto MC4R expressing neurons in unknown nuclei to (5) 
regulate thermogenesis via BAT activation. BAT: brown adipose tissue. 
The solid lines represent Kiss1 neurons direct actions; dashed lines 
represent Kiss1 neurons indirect actions through intermediate neurons.
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the circulating levels of sex steroids. However, this model 
did not rescue glucose levels completely, supporting a role 
of kisspeptin in additional tissues, likely at the level of 
the liver and/or pancreatic cells (68). Indeed, increasing 
evidence supports a role of kisspeptin signaling in 
pancreatic function based on (1) the presence of Kiss1 and 
Kiss1r in pancreatic β and α cells (68), and (2) the in vitro 
exposure of monkey (21) and human (53) pancreatic islets 
to kisspeptin stimulates glucose-induced insulin secretion. 
Nonetheless, contradictory findings have been found in 
mice that suggest that Kiss1r signaling in β-cells suppresses 
glucose-induced insulin secretion (69). In addition to 
the pancreatic and hepatic action of kisspeptin, we 
cannot rule out that the decrease in lean mass observed 
in kisspeptin signaling deficient mice contributes to 
the different glucose tolerance compared with their WT 
counterparts. In addition to peripheral actions, a central 
effect of kisspeptin in glucose homeostasis is also possible, 
given that Kiss1 neurons co-express insulin receptors  
(22, 23, 70); however, the specific deletion of insulin 
receptor (alone or jointly with leptin receptor, which 
share common intracellular pathways) does not affect 
glucose homeostasis (23). Nevertheless, whether Kiss1 
neurons modulate the activity of other insulin sensitive 
neurons cannot be excluded.

Conclusions and perspectives

Reproduction is energy demanding, therefore, the 
neuroendocrine mechanisms regulating reproductive 
function and energy balance are reciprocally linked. 
During the last decade, major advance has been made in the 
understanding of the central mechanisms synchronizing 
these two functions and the progress in the generation 
of genetic mouse models and viral techniques has greatly 
advanced our knowledge of the neuroendocrine circuitries 
underlying this effect. However, the complexity of these 
networks and the controversial findings in the field 
prevented the complete understanding of the neuronal 
pathways synchronizing reproductive activity with energy 
reserves. The role of Kiss1 neurons in the regulation of 
the HPG axis has been well depicted and the role of Kiss1 
neurons as metabolic gatekeepers for reproductive success 
thoroughly characterized. In this review, we summarized 
the current evidence supporting a bidirectional role 
of Kiss1 neurons in the control of reproduction and 
metabolism. On one hand, Kiss1ARC neurons are direct 
targets of central and peripheral metabolic cues, which 
form an essential regulatory element of the HPG axis 

from early stages of development. On the other hand, 
they actively control metabolic function through, at least, 
direct connections with AgRP and POMC neurons in 
the ARC, although additional (yet unidentified) actions 
onto neuronal networks that regulate energy balance are 
likely, given the widespread location of Kiss1 projections 
throughout the brain.

Interestingly, a recently identified role of Kiss1ARC 
neurons in the transmission of circadian rhythms has also 
been suggested to impinge energy balance due to the loss 
of the circadian (nocturnal) pattern of feeding behavior. 
A number of studies in rodent models have documented 
the importance of time restricted feeding, where the same 
number of calories can lead to normal BW if consumed 
over a short period of time or to obesity if consumed 
spread throughout the day. The remaining question in 
this action relates to whether Kiss1 neurons receive direct 
regulation from the SCN, control downstream targets of 
the SCN or have their own circadian pattern that regulate 
feeding (and locomotion).

As described in this review, the nature of the 
predominant mechanism underlying the metabolic role 
of Kiss1 neurons is also a matter of debate. While some 
studies point to an effect on food intake, negative data 
have also been described in several species, including the 
human, which leads to the speculation that this effect is 
highly dependent on age, sex and hormonal milieu. This 
may suggest that the control of energy expenditure, which 
is consistently decreased in the absence of kisspeptin 
signaling and Kiss1 neuron silencing, is the predominant 
pathway in the metabolic influence of Kiss1 neurons. 
Whether this is an indirect consequence of decreased 
locomotion activity in the absence of functional Kiss1 
neurons, or a direct action on specific brain areas 
regulating the activation of the BAT, will require further 
investigation.

Finally, one of the most important unresolved 
questions in the metabolic action of Kiss1 neurons 
relates to the contribution of kisspeptin per se vs its 
co-transmitters in this action. The fact that the expression 
of Kiss1r in the brain is limited and highly specific to some 
neuronal groups (i.e. GnRH neurons) and the greater 
metabolic phenotype after Kiss1ARC silencing compared 
with Kiss1rKO mice strongly suggests that additional 
factors are at play in the metabolic role of Kiss1 neurons.

Overall, compelling evidence is mounting supporting 
a metabolic role of kisspeptin (and Kiss1 neurons). Besides 
increasing our understanding of the central mechanisms 
that govern energy balance, characterizing this effect 
in detail will be of critical importance in order to assess 
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possible metabolic risks in patients undergoing kisspeptin 
treatments, as in vitro fertilization techniques and novel 
approaches to increase sexual drive are successfully using 
kisspeptin as the main elicitor of the activation of the 
HPG axis in humans. To date, no metabolic alterations 
have been described in clinical and preclinical kisspeptin-
based treatments; however, as the field progresses, there 
is a high probability that the description of metabolic 
implications will occur.
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