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Previously, we have shown that serine-16 phosphorylation in native full-length porcine

amelogenin (P173) and the Leucine-Rich Amelogenin Peptide (LRAP(+P)), an alternative

amelogenin splice product, affects protein assembly and mineralization in vitro.

Notably, P173 and LRAP(+P) stabilize amorphous calcium phosphate (ACP) and

inhibit hydroxyapatite (HA) formation, while non-phosphorylated counterparts (rP172,

LRAP(−P)) guide the growth of ordered bundles of HA crystals. Based on these findings,

we hypothesize that the phosphorylation of full-length amelogenin and LRAP induces

conformational changes that critically affect its capacity to interact with forming calcium

phosphate mineral phases. To test this hypothesis, we have utilized Fourier transform

infrared spectroscopy (FTIR) to determine the secondary structure of LRAP(−P) and

LRAP(+P) in the absence/presence of calcium and selected mineral phases relevant

to amelogenesis; i.e., hydroxyapatite (HA: an enamel crystal prototype) and (ACP: an

enamel crystal precursor phase). Aqueous solutions of LRAP(−P) or LRAP(+P) were

prepared with or without 7.5 mM of CaCl2 at pH 7.4. FTIR spectra of each solution

were obtained using attenuated total reflectance, and amide-I peaks were analyzed

to provide secondary structure information. Secondary structures of LRAP(+P) and

LRAP(−P) were similarly assessed following incubation with suspensions of HA and

pyrophosphate-stabilized ACP. Amide I spectra of LRAP(−P) and LRAP(+P) were found

to be distinct from each other in all cases. Spectra analyses showed that LRAP(−P) is

comprised mostly of random coil and β-sheet, while LRAP(+P) exhibits more β-sheet

and α-helix with little random coil. With added Ca, the random coil content increased in

LRAP(−P), while LRAP(+P) exhibited a decrease in α-helix components. Incubation of

LRAP(−P) with HA or ACP resulted in comparable increases in β-sheet structure. Notably,

however, LRAP(+P) secondary structure was more affected by ACP, primarily showing

an increase in β-sheet structure, compared to that observed with added HA. These
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collective findings indicate that phosphorylation induces unique secondary structural

changes that may enhance the functional capacity of native phosphorylated amelogenins

like LRAP to stabilize an ACP precursor phase during early stages of enamel mineral

formation.

Keywords: amelogenesis, amelogenin, leucine-rich amelogenin peptide, secondary structure, FTIR, tooth enamel

INTRODUCTION

Tooth enamel, the most highly mineralized tissue in the human
body (>95 wt% mineral content), is comprised of intricate
interwoven patterns of extremely long and narrow crystals of
carbonated hydroxyapatite, which contribute to its exceptional
functional capabilities. This extremely well-organized structure
is established through highly-regulated extracellular processes
during the secretory stage of amelogenesis (Nanci, 2013). During
this stage where initial enamel mineralization takes place,
amelogenin, the predominant protein component of the enamel
matrix (>90%), is believed to play a major role in regulating the
nucleation, growth, morphology, and organization of forming
enamel crystals (Margolis et al., 2014). Full-length amelogenin
(with 173 amino acids in porcine enamel) is comprised of a
tyrosine-rich N-terminal domain that includes its only post-
translational modification (phosphorylation) site at serine-16
(Ser-16), a large hydrophobic central domain, and a highly
conserved hydrophilic C-terminal domain. Amelogenin has
been shown to assemble into nano particles (nanospheres) or
higher order chain-like structures under specific (including
physiological) conditions (for reviews, see Fincham et al.,
1999; Margolis et al., 2006). Previous studies also suggest
this higher-order structure helps regulate calcium phosphate
mineralization in vitro through cooperative interactions with
forming mineral (Beniash et al., 2005), leading to the formation
of crystalline arrays of mineral particles, similar to those found
in developing enamel (Beniash et al., 2005; Kwak et al., 2009;
Deshpande et al., 2010; Yang et al., 2010; Wiedemann-Bidlack
et al., 2011). Importantly, recombinant non-phosphorylated
amelogenins have been shown to transiently stabilize amorphous
calcium phosphate (ACP) precursor phases in vitro, prior to
their spontaneous transformation to crystalline hydroxyapatite
(HA) (Kwak et al., 2009, 2011, 2014, 2016; Yang et al., 2010;
Wiedemann-Bidlack et al., 2011). A similar transformation of
ACP to crystalline mineral has also been observed in developing
enamel (Diekwisch, 1998; Beniash et al., 2009). Most notably,
the single-site phosphorylation of amelogenin (porcine) has
been shown to have a marked effect on calcium phosphate
mineralization in vitro; that is, both full-length and truncated
phosphorylated amelogenins have an enhanced capacity to
stabilize ACP and prevent HA formation (Kwak et al., 2009,
2011, 2014; Wiedemann-Bidlack et al., 2011) in a concentration-
dependent fashion (Kwak et al., 2009, 2014; Fang et al., 2013).

The leucine rich amelogenin peptide (LRAP) is an alternative-
splicing product of the amelogenin gene expressed throughout
enamel development (Yuan et al., 1996). For example, the 56
amino acid porcine LRAP is comprised of the first 33 N-terminal
amino acids (including the phosphorylation site) and the last
23 C-terminal amino-acids (including the hydrophilic domain)

of the full-length porcine amelogenin. Numerous attempts have
been made to elucidate the physiological function of LRAP in
enamel formation. It has been proposed to have roles as a
cell signaling molecule (Veis et al., 2000; Boabaid et al., 2004;
Warotayanont et al., 2008, 2009; Wen et al., 2011) or to be
involved in the regulation of the kinetics of calcium phosphate
mineralization and the morphology of formed crystals (Le Norcy
et al., 2011a; Xia et al., 2016). However, a consensus regarding
the roles of LRAP in amelogenesis has not been reached and
still many questions remain unanswered. Nevertheless, previous
studies have shown that LRAP shares many common properties
with the full-length amelogenin with respect to its capacity to
regulate mineral formation in vitro. Like full-length amelogenin,
LRAP forms nanospheres (Habelitz et al., 2006; Tarasevich et al.,
2010; Le Norcy et al., 2011a), and appears to interact with
hydroxyapatite (Shaw et al., 2004, 2008). Furthermore, it has been
shown that non-phosphorylated recombinant human LRAP and
recombinant full-length human amelogenin (rH174) have the
same capacity to bind calcium (i.e., four to six calcium ions per
molecule), although the calcium affinity constant for the LRAP
was greater than that for the full-length amelogenin (Le et al.,
2006). We have also demonstrated that non-phosphorylated
porcine LRAP (LRAP(−P)) can similarly guide the formation of
aligned bundles of HA crystals, as does the recombinant non-
phosphorylated amelogenin (Le Norcy et al., 2011a), while, like
native phosphorylated versions of amelogenin, phosphorylated
porcine LRAP (LRAP(+P)) similarly stabilizes ACP and prevents
HA formation in vitro. Based on similarities of amino acid
sequences and behaviors, LRAP has also allowed us to investigate
the potential role of specific amino-acid domains of amelogenin
and phosphorylation in protein self-assembly. Our previous
study using dynamic light scattering (DLS) and transmission
electron microscopy (TEM) illustrates that there are potentially
important differences in the self-assembly and conformational
behavior between phosphorylated LRAP(+P) and its non-
phosphorylated counterpart, LRAP(−P) (Le Norcy et al., 2011a).
Also, previous studies from our laboratory using small angle
X-ray scattering (SAXS) techniques showed dramatic structural
differences between LRAP(+P) and LRAP(−P) that are further
affected by the presence of calcium ions (Le Norcy et al., 2011b).
We are specifically interested in the role the single phosphate
group in amelogenin plays in enamel mineral formation and
have hypothesized that phosphorylation of amelogenin induces
conformational changes that critically affect its capacity to
interact with forming calcium phosphate mineral phases. To
test this hypothesis, we have utilized Fourier transform infrared
spectroscopy (FTIR) in the present study to ascertain the effect of
phosphorylation on the secondary structures of LRAP(−P) and
LRAP(+P) in the presence and absence of calcium in solution
and upon interacting with relevant mineral phases (i.e., HA
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and ACP). FTIR spectroscopy is extremely sensitive to global
conformational changes in proteins (Surewicz et al., 1993; Wang
et al., 2010) and uniquely suited to study structural changes
in proteins upon self-assembly (Bouchard et al., 2000; Wang
et al., 2010) and adsorption to solid surfaces (Roach et al., 2005;
Elangovan et al., 2007).

MATERIALS AND METHODS

Preparation of LRAP Solutions
Porcine LRAP with or without a phosphate group on Ser-16
[i.e., LRAP(+P) and LRAP(−P), respectively] were synthesized
commercially (RS Synthesis, Louisville, KY, USA) and re-purified
by high-pressure liquid chromatography (HPLC), as previously
described (Nagano et al., 2009). Lyophilized LRAP(+P) and
LRAP(−P) were weighed and dissolved in distilled deionized
water at room temperature to yield stock solutions of 17.5mg/mL
(pH 2.5 ∼ 3) solutions. The stock solutions were left for 12–24 h
at 4◦C to aid complete protein dissolution. Stock solutions were
then stored at −20◦C. Just prior to use, aliquots of the LRAP
stock solutions were centrifuged (12,500 × g, 4◦C, 20 min) and
the supernatants were diluted to 15 mg/mL with either distilled
deionized water or calcium chloride solution to yield 7.5 mM
calcium. The pH of each solution was adjusted to pH 7.4 at room
temperature using potassium hydroxide aqueous solution. Each
experimental solution type [i.e., LRAP(−P) and LRAP(+P), with
and without added calcium] was prepared in the same fashion in
triplicate (n= 3).

Dynamic Light-Scattering (DLS)
Measurements of LRAP Solutions
To acquire information on the aggregation of LRAP, each
solution type was subjected to dynamic light-scattering (DLS)
analysis, as previously described (Wiedemann-Bidlack et al.,
2007). Each DLS measurement (DynaPro MSXTC/12) was
comprised of 5 measurements of 20 acquisitions (5 sec each) at
5-min intervals at 25◦C and the sizes (hydrodynamic radius, RH)
of protein particles were determined. Unpaired t-tests were used
to compare differences in protein particle sizes.

Incubation of LRAP(+P) and LRAP(−P) with
Selected Mineral Phases
Standard HAwas purchased fromNational Institute of Standards
and Technology (2910 Calcium Hydroxyapatite, Gaithersburg,
MD, USA). Stabilized ACP was prepared by mixing CaCl2 and
NaH2PO4 in distilled water to final concentrations of 5 and
3 mM, respectively, at ambient conditions with stirring in the
presence of 150 µM of Na4P2O7. After 60 min, the reaction
suspension was centrifuged at 12,000 × g at 4◦C for 20 min.
The pellets were washed with distilled water twice, lyophilized,
and stored at −20◦C. The composition and structure of the
standards were confirmed using FTIR prior to use. The stability
of the ACP phase in water was also confirmed by FTIR after
incubation in water for 4 h at 37◦C, following the experimental
protocol described in the next paragraph. These latter selected
measurements were carried out at Emmanuel College in Boston,
MA (see Acknowledgments).

HA or ACP (0.3 mg) were incubated in 40 µL of 5, 10, and15
mg/mL LRAP(+P) and LRAP(−P) solutions with rocking for
4 h at 37◦C. After equilibration, the mineral-protein mixtures
were centrifuged at 12,000 × g for 10 min at 4◦C. After
centrifugation, the supernatants were removed, and the pellets
were washed twice (10min each) with 20µL of distilled deionized
water (pH adjusted to 7.4). The washed samples with bound
protein were then re-suspended in 10 µL of the pH-adjusted
distilled deionized water, and the suspensions were used for
FTIR measurements. In this fashion, the effect of the binding of
LRAP(+P) and LRAP(−P) to HA and ACP on protein secondary
structure were assessed, as was done similarly for full-length
amelogenin (Beniash et al., 2012).

FTIR Spectroscopic Measurement of
LRAPs in the Absence and Presence of
Calcium and Following Equilibration with
Mineral Particles
FTIR spectroscopic measurements were conducted at room
temperature, as previously described (Elangovan et al., 2007;
Beniash et al., 2012), using the attenuated total reflection (ATR)
mode. Fifteen microliters of protein solution or washed mineral
suspension were placed within a small rubber O-ring (i.d., 3 mm)
on the ATR crystal. The sample was then covered with a glass
slide that was pressed down with the ATR accessory press against
the O-ring to minimize evaporation. Sample and background
(distilled deionized water) spectra were taken at a resolution of
4 cm−1, and 128 scans were collected per spectrum.

FTIR Spectra Analyses
Analyses were performed using the Origin 9.0 software package
(OriginLab Corporation, Northampton, MA), as previously
described (Elangovan et al., 2007; Beniash et al., 2012). For
LRAP(−P) and LRAP(+P) in the presence and absence of
calcium ions, FTIR spectra were measured three times for each
solution, and the averaged spectra of the triplicate measurements
were used for the further analyses. For suspensions of LRAP(−P)
or LRAP(+P) with the mineral particles (HA or ACP), however,
only data from the experiment with 15 mg/mL LRAP were used,
since the spectra obtained with the 5 and 10 mg/mL solutions
were too noisy for reliable deconvolution analyses (described in
the following paragraph). However, the observed tendency in
differences of spectra from LRAP(+P) and LRAP(−P) at lower
concentrations were the same as those seen in the experiments
carried out with the highest concentration of each LRAP.

The amide I and amide II region (between 1,475 and 1,725
cm−1) of the spectra were smoothed (5-point FFT smoothing),
baseline corrected (straight line subtraction from the start to
end points). Second derivative analyses were then performed to
obtain peak minima that were used to identify the initial center
of the identified individual peaks. Peak-fitting was performed
using a Gaussian model. Identified peak positions were initially
fixed, and several rounds of peak-fitting were performed until
χ2 values between the experimental and calculated spectra were
reduced to a value below 1 × 10−6. The same procedure was
then repeated with the peak center released with the restriction of
movement of± 2 cm−1 until χ2 values between the experimental
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and calculated spectra were reduced to a value below 1 × 10−6.
The percentage of the each deconvoluted peak area within the
peak area of the amide I region (between 1,600 and 1,700 cm−1)
was then calculated for each spectrum. Identified peaks within
the amide I region were then attributed to specific secondary
structural elements, as described in the next paragraph.

FTIR Peak Assignments
FTIR peak identifications were based on the following literature
reports. Peaks observed at 1,620–1,630 cm−1 were identified
as hydrated PPII helix (Johnston and Krimm, 1971; Wellner
et al., 1996; Elangovan et al., 2007). Earlier reports indicate that
the full length amelogenins contain a significant PPII fraction
(Renugopalakrishnan et al., 1986; Goto et al., 1993; Sogah et al.,
1994; Lakshminarayanan et al., 2007, 2009). In an overlapped
region to this, peaks observed between 1,610 and 1,640 cm−1

were attributed to β-sheet (Susi and Byler, 1983; Jackson and
Mantsch, 1995). Random coil conformation was attributed to
peaks between 1,640 and 1,650 cm−1 (Krimm and Bandekar,
1986; Barth and Zscherp, 2002; Elangovan et al., 2007), which
have also been reported in amelogenin (Renugopalakrishnan
et al., 1986; Goto et al., 1993; Matsushima et al., 1998; Elangovan
et al., 2007; Yang et al., 2010). Also, peaks observed between 1,650
and 1,655 cm−1 were attributed to α-helix conformation (Susi
and Byler, 1983; Surewicz et al., 1993; Roach et al., 2005). Finally,
peaks observed between 1,659 and 1,670 cm−1 were assigned to
β-turn (Susi and Byler, 1983; Surewicz et al., 1993; Jackson and
Mantsch, 1995; Vass et al., 2003). A later peak with a maximum
around 1,680 and 1,690 cm−1 can also be attributed to β-turn
or high-frequency split of the anti-parallel β-sheet (Krimm and
Bandekar, 1986; Kubelka and Keiderling, 2001; Elangovan et al.,
2007).

RESULTS

DLS Measurements of LRAP in Solution
Mean protein particle sizes from DLS measurements (S.D.) in
the absence [LRAP(−P): 5.55 (0.18) nm; LRAP(+P): 3.87 (0.61)
nm] and presence [LRAP(−P): 5.07 (0.57) nm; LRAP(+P): 5.51
(0.59) nm] of 7.5 mM calcium at pH 7.4 confirmed that both
non-phosphorylated and phosphorylated LRAP undergo self-
assembly to form small nanoparticles under near-neutral pH
conditions, as we have previously reported (Le Norcy et al.,
2011a). LRAP(+P) exhibits a smaller particle size (p < 0.0005) in
comparison to LRAP(−P). In addition, the LRAP(+P) particle
size increases significantly (p < 0.00005) in the presence of
added calcium, while the particle size of LRAP(−P) changed only
slightly (p < 0.05). These latter results on the effect of calcium
on LRAP particle size are consistent with our earlier findings
(Le Norcy et al., 2011a).

FTIR Analyses of the Secondary Structure
of LRAP(−P) and LRAP(+P) in the
Presence/Absence of Calcium Ions
Figures 1A–D show amide I and amide II regions of the
FTIR spectra (1,475–1,725 cm−1) and individual deconvoluted
peaks obtained after peak analyses for LRAP(−P), LRAP(−P)

with calcium ions, LRAP(+P), and LRAP(+P) with calcium
ions, respectively. Figures 1E,F show the 4 mean spectra
superimposed in the same plot for comparative purposes. Also,
the results of the peak analysis are summarized in Table 1, as
a list of peak positions (represented as wavenumbers of the
individual peak centers) and the area percentage of the individual
peaks identified within the amide I region, obtained from each
deconvoluted peak. As shown in Figure 1A and Table 1, non-
phosphorylated LRAP(−P) is mostly comprised of a 1,643 cm−1

peak (40%) that is attributed to random coil and a peak at 1,620
cm−1 (28%) that is attributed to PPII helix or β-sheet structure.
In the presence of calcium ions with LRAP(−P), this β-sheet/PPII
helix component at 1,620 cm−1 is significantly reduced (to 8.8%),
and the overlapping major peak associated with random coil
structure at 1,642 cm−1 increases in total area (to 74.3%), as
shown in Figure 1B and Table 1. However, the overall change
of the LRAP(−P) spectra upon addition of calcium is relatively
subtle and the overall shape of the amide I peak of LRAP(−P)
remains fairly similar (see Figure 1F) with the highest absorbance
remaining at ∼1,620 cm−1. As shown in Figure 1C and Table 1,
however, phosphorylated LRAP(+P) exhibited evidence for three
different β-sheet structures (total 42%) as multiple peaks (1,617,
1,629, and 1,639 cm−1), although the possibility of PPII helix
components cannot be ruled out (i.e., 1629 cm−1). In contrast to
the non-phosphorylated LRAP(−P) in the absence or presence of
calcium, however, LRAP(+P) lacked random coil structure and
exhibited a significant amount of α-helix (1,653 cm−1, 31.4%)
as a major secondary structure component. In the presence
of calcium ions, the amide I peak of LRAP(+P) exhibited a
decrease in α-helix conformation (from 31.4% to 21.2% at 1,652
cm−1), along with notable increases in β-turn (1,666 cm−1), β-
sheet (1,637 cm−1), and formed β-sheet/PPII helix components
shown (1,620 cm−1) (see Figure 1D and Table 1). As shown in
Figures 1E,F, with the addition of calcium ions, the overall shape
of the LRAP(+P) amide I peak changes dramatically, shifting
its peak absorption frequency from 1,650 cm−1 toward 1,620
cm−1, consistent with more significant changes in LRAP(+P)
secondary structure, in comparison to that seen with the non-
phosphorylated LRAP(−P).

FTIR Spectroscopic Analyses of the
Secondary Structure of LRAP(−P) and
LRAP(+P) in the Presence of HA or ACP
Amide I and amide II areas of FTIR spectra (1,475–1,725
cm−1) of LRAPs, without mineral particles, with HA, and
with ACP are shown in Figure 2A (LRAP(−P)) and Figure 2B

(LRAP(+P)). Corresponding results of peak identification and
analyses within the amide I region are summarized in Table 2, in
the same manner as described above. As shown in Figure 2A, in
comparison to the amide I peak of LRAP(−P) without minerals
(dotted line), both the addition of HA and ACP mineral particles
induced a significant relative increase in β-sheet/PPII helix
structure at around 1,620 cm−1, along with a notable decrease
in random coil structure at 1,643 cm−1 in comparison to that
seen at higher wavenumbers. The amide I peak of LRAP(−P)
incubated with HA also showed the formation of an α-helix
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FIGURE 1 | Amide I and amide II regions of FTIR spectra and individual fittings, showing deconvoluted peaks of LRAPs in the presence or absence of calcium ions.,

Amide I (1,700–1,600 cm−1) and amide II regions (1,575–1,480 cm−1) are labeled “I” and “II”, respectively. (A) LRAP(−P), (B) LRAP(−P) in the presence of calcium

ions, (C) LRAP(+P), (D) LRAP(+P) in the presence of calcium ions. (E) Superimposed plotting of all 4 aforementioned spectra in (A–D). (F) Expanded view of the

upper portions of amide I peaks shown in (E).

component (1,650 cm−1), whereas amide I peak of LRAP(−P)
incubated with ACP did not. In contrast to LRAP(−P), as
shown in Figure 2B, observed changes in the secondary structure
of LRAP(+P) showed a completely different pattern that also
depended on the mineral phase in question, as can be clearly
seen in Figure 2B. As summarized in Table 2, the amide I peak
of LRAP(+P) incubated with HA showed a decrease in the α-
helix component and an increase in random coil structure (1,641
cm−1), resulting in an amide I peak with a maximum absorption
around 1,650 cm−1. On the other hand, the amide I peak of
LRAP(+P) incubated with ACP showed a marked increase in

β-sheet/PPII helix structure component at 1,619 cm−1, along
with a slight decrease (31–26%) in the α-helix component at
1,653 cm−1. These collective changes resulted in the maximum
absorption in the amide I band shifting to ∼1,620 cm−1 as was
shown in the case of LRAP(−P) incubation with either mineral
phase.

DISCUSSION

Prior studies to investigate the secondary structure of amelogenin
(summarized in Table 3) have led to a general consensus that
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TABLE 1 | Positions and relative areas of individual deconvoluted peaks within amide I region of FTIR spectra of LRAP(−P) and LRAP(+P) in the presence or absence of

calcium ions.

LRAP(–P) LRAP(–P) with Ca LRAP(+P) LRAP(+P) with Ca

Center (cm−1) Area% Center (cm−1) Area% Center (cm−1) Area% Center (cm−1) Area%

Anti-parallel β-sheet 1,617 19.3

β-sheet or polyproline II helix 1,620 27.8 1,620 8.8 1,621 25.6

β-sheet or polyproline II helix 1,629 11.5

β-sheet

β-sheet 1,639 11.5 1,637 18.8

Random coil 1,643 39.7 1,642 74.3

α-helix 1,652 0.0 1,654 0.2 1,653 31.4 1,652 21.2

β-turn or 3(10) helix

β-turn or 3(10) helix 1,667 22.2 1,668 7.4 1,669 11.5 1,666 21.0

β-turn or β-sheet

β-turn or β-sheet 1,681 6.9 1,683 9.0 1,680 10.8 1,682 13.4

β-turn or β-sheet 1,692 3.4 1,696 0.4 1,693 4.1 1,695 0.0

amelogenin is an intrinsically disordered molecule, having a
secondary structure that is mostly composed of random coil.
Some reports also suggest that the N-terminus of amelogenin
contains β-sheets, β-strand, β-turns, and α-helix components
and that poly-proline type II (PPII) helical structure is found in
the mid-region of amelogenin, while random coil conformation
comprise the main part of the C-terminal domain. The secondary
structure of LRAP has also been extensively studied (see Table 4
for summary and additional discussion). Some of these findings
are discussed below. However, the general consensus is that
LRAP is also an unstructured protein like full-length amelogenin,
being comprised mostly of random coil, β-turn, and small
amounts of helix structures, although LRAP is somewhat less
structured in comparison to that proposed for the N- and C-
terminal domains of full-length amelogenin (Delak et al., 2009;
Zhang et al., 2011).

The focus of the present study was to investigate the influence
of Ser-16 phosphorylation on the LRAP secondary structure
using FTIR, because of the marked influence amelogenin
phosphorylation has on mineralization in vitro (e.g., Kwak et al.,
2009; Le Norcy et al., 2011a;Wiedemann-Bidlack et al., 2011) and
the potential importance of this finding in the enamel formation
process (Margolis et al., 2014). The results of comparative FTIR
analyses of LRAP(+P) and LRAP(−P) in solution at pH 7.4
indicate that single-site phosphorylation of LRAP induces clear
changes in the secondary structure of the LRAP molecule. The
most marked difference is that LRAP(−P) has random coil as
the main structure element, whereas LRAP(+P) exhibits more
rigid α-helix and β-sheet structures. Our findings also indicate
that the presence of calcium ions induces more drastic changes
in the secondary structure of LRAP(+P), in comparison to
that of LRAP(−P). These general findings mirror our previous
TEM and SAXS findings that showed that added calcium had
a greater influence on the quaternary and tertiary structures
of LRAP(+P), respectively, in comparison to LRAP(−P) (Le
Norcy et al., 2011a,b). Furthermore, comparing the changes in
the secondary structure of LRAP induced by incubation with

ACP or HA, LRAP(+P) showed a completely different pattern
of the secondary structures induced by its incubation with ACP
from that seen with HA, while LRAP(−P) showed relatively small
differences in secondary structure changes following incubation
with either HA or ACP.

As shown in Table 1, analyses of the amide I peak reveal
that the main structural components of LRAP(−P) are random
coil (39.7%) and β-sheets/PPII helix (27.8%). These results are
similar to those previously obtained for rP172, which possess
the same N- and C-terminal domains of LRAP(−P), along with
a large (116 amino acid long) hydrophobic central domain
(Lakshminarayanan et al., 2007; Beniash et al., 2012). In sharp
contrast to these findings, the main components of LRAP(+P)
were found to be α-helix (31.4%) and β-sheets/PPII helix (42.3%),
with no evidence of a random coil component. On this basis
alone, LRAP(+P) appears to adopt a more ordered secondary
structure conformation in solution, in comparison with that
found for the non-phosphorylated LRAP(−P).

Differences in amide I spectra (Figure 1F) and FTIR peak
analyses (Table 1) also indicate that LRAP(−P) and LRAP(+P)
are affected differently by the presence of calcium, as a result of
Ser-16 phosphorylation. In the presence of calcium, the random
coil component of LRAP(−P) increases substantially (by ∼90%)
to 74.3%, while more structured elements of β-sheets/PPII helix
and β-turn/3(10) helix decrease (by 20%) to yield an overall less
rigid structure. This shift in the LRAP(−P) secondary structure
in the presence of calcium to a less structured conformation
indicates that there are interactions between calcium ions and
the non-phosphorylated LRAP(−P). Our previous studies using
SAXS, DLS, and TEM showed that addition of calcium to
solutions of LRAP(−P) did not change LRAP’s tendency to
aggregate and form nanospheres in terms of their particle
size (Le Norcy et al., 2011a), and had little effect on its
globular protein structure observed using SAXS (Le Norcy et al.,
2011b). Hence, the observed shift from β-sheet to a less rigid
random coil conformation by addition of calcium ions does
not appear to affect the tertiary structure of LRAP(−P) or
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FIGURE 2 | Amide I and amide II regions of FTIR spectra and individual

fittings, showing deconvoluted peaks of LRAPs in the presence or absence of

mineral particles. Amide I (1,700–1,600 cm−1) and amide II regions

(1,575–1,480 cm−1) are labeled “I” and “II”, respectively. (A) Superimposed

plots from three different experiments, LRAP(−P) (dotted line), LRAP(−P) in the

presence of HA (dark blue), and LRAP(−P) in the presence of ACP (light blue).

(B) Superimposed plot of three different experiments, LRAP(+P) (dotted line),

LRAP(+P) in the presence of HA (dark red), and (LRAP(+P) in the presence of

ACP (light pink).

its aggregation and tendency to form nanospheres. This result
is in reasonable agreement with a previous study (Le et al.,
2006) using circular dichroism (CD), in which it is concluded
that non-phosphorylated recombinant human LRAP (58 amino
acid residues) had mostly a random coil structure (see Table 4,
footnote a).

Interestingly, LRAP(+P) in the presence of calcium ions
induces more prominent conformational changes in comparison
to the results for LRAP(−P) solutions, as is indicated by the
relative magnitude of changes in the overall amide I peak shape
(see Figure 1F). As shown in Table 1, LRAP(+P) once again
yields a less rigid structure in the presence of calcium, indicated
by a reduction in α-helix (from 31.4 to 21.2%) that is offset
by an increase in β-turn/3(10) helix (from 11.5 to 21.0%),
with essentially no change in the level of β-sheets/PPII helix
components (42.3–44.4%). Our FTIR peak analyses also showed
that LRAP(+P) in the presence of calcium ions, as in the absence
of calcium, exhibits a lack of random coil conformation, unlike
that seen with LRAP(−P). Although a slight decrease in the
amount of α-helix component was observed, this finding may
appear to be inconsistent with earlier CD findings suggesting that T
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addition of calcium ion did not affect the amount of α-helix or
β-sheet components of LRAP(+P) (Tarasevich et al., 2015) due
to the fact that the latter study was carried out under different
experimental conditions (see Table 4, footnote b). Once again,
our present findings that the secondary structure of LRAP(+P)
is affected substantially more by the addition of calcium ions in
comparison to LRAP(−P) parallels our previous results using
TEM and SAXS, which show that the assembly/aggregation (Le
Norcy et al., 2011a) and the folding (Le Norcy et al., 2011b)
of LRAP(+P), respectfully, are similarly more affected by the
addition of calcium ions in comparison to LRAP(−P).

Our collective findings, which demonstrate that the presence
of a single phosphate group at Ser-16 significantly affects the
secondary structure of LRAP in solution and upon subsequent
interactions with calcium ions, support the basis of our
hypothesis that phosphorylation of this highly-conserved amino
acid in an equally conserved context for phosphorylation by
Golgi casein kinase induces conformational changes that could
critically affect amelogenin’s capacity to interact with forming
calcium phosphate mineral phases. To explore this idea further,
we examined the effect of the interaction of LRAP with HA and
ACP. When the non-phosphorylated LRAP(−P) was incubated
with either HA or ACP, the proportion of β-sheet structures
increased from ∼28 to 43% and 54%, respectively (Table 2),
along with a marked reduction in the random coil components
(from ∼40 to 0% and 15%, respectively). As a result of
these similar conformational shifts to more rigid structures,
following incubation with both mineral phases, amide I peaks for
LRAP(−P) in the presence of HA and ACP were also found to be
similar (Figure 2A), with the same relatively sharp peak maxima
at ∼1,620 cm−1. The shape of the spectra, however, were found
to differ slightly at ∼1,650 cm−1, most likely due to different
amounts of the α-helix component (1,650 cm−1) of LRAP(−P)
observed following incubation with HA (∼19%) in comparison
to that observed with ACP (0%) (Table 2).

In contrast to that observed with LRAP(−P), the
phosphorylated LRAP(+P) incubated with mineral particles
showed more substantial differences in amide I peak shapes
that further depended on the nature of the calcium phosphate
phase present, i.e., HA or ACP (Table 2). When LRAP(+P)
was incubated with HA, its secondary structure was found to
yield a less rigid conformation, as indicated by a loss of α-helix
components (from 31% in the absence of HA) and a reduction
(from 42 to 20%) in β-sheet structure components, along with
an appearance of unstructured random coil (from 0 to 23%),
and an increase in 3(10) helix/β-turn components (from 0 to
29%). The observed change in LRAP(+P) structure upon HA
incubation is consistent with previous reports (Masica et al.,
2011; Tarasevich et al., 2013; see Table 4, footnote c). However,
in contrast to that seen in the presence of HA, when LRAP(+P)
was incubated with ACP, the overall structure became more rigid
with a much greater level of β-sheet (from 42 to 61%), while
α-helix components remained at a relatively high level (26%),
along with an absence of random coil, similar to that found in
the absence of added mineral.

It is interesting that LRAP(+P) showed a quite different
pattern of interaction with ACP from that seen with HA, while

LRAP(−P) showed relatively small differences in secondary
structure changes induced by incubation with either HA or
ACP. These findings are again consistent with our previous
results (Le Norcy et al., 2011a), in which LRAP(−P) and
LRAP(+P) were found to exhibit a marked difference in their
ability to stabilize forming ACP under conditions that support
spontaneous calcium phosphate precipitation. In this previous
report, LRAP(−P) did not stabilize ACP but rather guided the
formation of aligned bundles of HA crystals, suggesting a weaker
interaction between LRAP(−P) and ACP, whereas LRAP(+P)
was found to stabilize ACP and prevent its transformation to HA,
suggesting a much stronger interaction between LRAP(+P) and
ACP.Hence, the observed difference in the reactivity toward ACP
between LRAP(−P) and LRAP(+P) appears to be reflected in
observed differences in the secondary structure of LRAP caused
by the single phosphorylation site.

Based upon our findings on the effect of phosphorylation
on the secondary structure of LRAP(−P) and LRAP(+P)
in the absence and presence of calcium in solution and
upon binding with selected mineral phases, we conclude,
as hypothesized, that Ser-16 phosphorylation induces unique
secondary structural changes that may enhance the functional
capacity of native phosphorylated amelogenin to effectively
stabilize the enamel mineral precursor phase, ACP. The
biological relevance of our findings is reflected in a recent
study (Beniash et al., 2009) that convincingly demonstrates
that the initial forming enamel mineral phase in the early
secretory stage of amelogenesis to be ACP that subsequently
transforms to HA-like enamel mineral crystals. Our present
findings provide insight into how phosphorylation can affect
the capacity of native (phosphorylated) amelogenins to stabilize
this biologically important ACP enamel mineral precursor
phase.
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