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The majority of basic and clinical studies have shown a protumor function of tumor-associated macrophages (TAMs), which
represent a large proportion of matrix cells. TAMs promote tumorigenesis, and their number is related to the malignancy degree
and poor prognosis of many kinds of tumors. Macrophage plasticity makes it possible to change the tumor microenvironment
and remodel antitumor immunity during cancer immunotherapy. Increasing numbers of studies have revealed the effects of
TAMs on the tumor microenvironment, for example, via promotion of tumor growth and tumorigenesis and through an increase
in the number of cancer stem cells or via facilitation of angiogenesis, lymphangiogenesis, and metastasis. Investigators also
proposed tumor-immunological treatments targeting TAMs by inhibiting TAMrecruitment and differentiation, by regulating TAM
polarization, and by blocking factors and pathways associated with the protumor function of TAMs. This comprehensive review
presents recent research on TAMs in relation to prediction of poor outcomes, remodeling of the tumor immunemicroenvironment,
and immunological targeted therapies.

1. Introduction

Macrophages are differentiated cells of the mononuclear
phagocytic lineage.They are heterogeneous cells with distinct
functions and respond differently to various microenvi-
ronmental signals and thus have distinct functions. Ma-
crophages—derived from hematopoietic stem cells in bone
marrow or from progenitor cells in the embryonal yolk
sac—differentiate into two distinct types of macrophages
(M𝜙), classically activated or M1 M𝜙 (“killing” phenotype)
and alternatively activated or M2 M𝜙 (“healing” phenotype).
Tumor-associated macrophages (TAMs) may represent up to
50% of the tumor mass, and most TAMs have the M2 pheno-
type due to the signals in the tumor microenvironment, such

as IL-4 and TGF-𝛽 [1, 2]. As generally accepted at present,
TAMs play a key role in tumorigenic processes ranging from
tumor initiation to acceleration of tumor progression and
metastasis.

2. TAMs Lead to a Poor Clinical Prognosis and
Promote Progression of Various Tumors

2.1. TAMs Can Be Considered a Biomarker of Poor Progno-
sis. TAMs provide a suitable microenvironment for tumor
invasion and progression and contribute to the metastasis of
tumor cells [3]. Researchers have shown that the existence
of TAMs positively correlates with a poor clinical prognosis
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of various tumors, such as lung cancer, gastric cancer, gyne-
cological tumors, and lymphomas (Table 1). Although there
are a few exceptions to this association, such as colorectal
carcinoma [4], these data still indicate that TAMs play
an essential role in tumorigenesis; accordingly, targeting of
TAMs may be a promising method of cancer treatment.

2.2. TAMs Reduce the Curative Effect of Chemotherapy.
Chemotherapy is a conventional treatment modality for
cancer patients. Although chemotherapies have strong effects
on some kinds of tumors, such as small cell lung cancer
[5] and lymphomas [6], the overall response rate is less
than satisfactory for many tumors [7]. Furthermore, drug
resistance, tumor recurrence, and metastasis make tumor
treatment more difficult.

TAMswere found to help reduce the effects of chemother-
apy. Infiltration by CD68+ and CD163+ TAMs is associated
with a poor response to chemotherapy in patients with
esophageal cancer [8, 9]. TAMs are also recruited to the
pancreatic tumor site and stimulate adenocarcinoma cells to
express high levels of cytidine deaminase, which catabolizes
the bioactive form of gemcitabine and reduces the sensitivity
of cancer cells to chemotherapy [10]. Yang et al. [11] also found
that TAMs can induce chemotherapeutic drug resistance
of a breast tumor through the IL-10/STAT3/Bcl-2 signaling
pathway, and another study showed that TAMs correlate with
the resistance to tamoxifen, an endocrine therapy drug for
postmenopausal breast cancer patients [12].

Epidermal growth factor receptor tyrosine kinase inhib-
itors (EGFR-TKIs) are novel treatments of lung cancer with
EGFR mutation and have higher specificity and fewer side
effects than traditional treatments; M2-polarized TAMs also
correlate with the decreased responsiveness to EGFR-TKI
treatment in patients with advanced lung adenocarcinoma
[13].

2.3. TAMs Cause an Unfavorable Outcome of Radiotherapy.
Radiotherapy (RT) is a localized therapy that is highly
effective at killing primary tumor cells located within the field
of the radiation beam. Despite sophisticated techniques for
radiation delivery aswell as the combination of radiationwith
chemotherapy, tumors can recur [14].

TAMs are abundantly recruited to tumors after irradi-
ation and may modulate cancer cells’ responses to therapy
[15]. It has been suggested that macrophages may be involved
in modulating the late effects of radiotherapy [16]. Various
studies indicate a correlation between high TAM numbers
and poor tumor responses to irradiation in mouse models
[17]. Furthermore, Shiao et al. [18] reported that regrowth
of mammary tumors after radiotherapy correlates with the
influx of Th2-polarized macrophages. After tumor irradia-
tion, DNA damage, cell death, and increased tumor hypoxia
may promote production of VEGF, SDF-1, and CSF-1, result-
ing in the recruitment, infiltration, and retention of mono-
cytes/macrophages within the tumor [14]. The recruited
heterogeneous populations of TAMs release proangiogenic
cytokines and metalloproteinases to promote blood vessel
formation within the tumor [19]. Teresa Pinto et al. [20]
also found that irradiated macrophages promote cancer cell

invasiveness and cancer cell-induced angiogenesis. Besides,
the abscopal effect may be a crucial factor in evaluation of
the prognosis associated with radiotherapy, and TAMs can
release secondary bystander signals and play a key role in
the secondary bystander effect of photon irradiation [21].
Targeting TAMs or TAM-associated signaling to enhance the
potency of radiotherapy has been similarly demonstrated in
several other studies [14, 22–24]. Inhibition of TAM recruit-
ment after radiotherapy by neutralizing CSF-1 or blocking
CSF-1R kinase activitymay significantly slow tumor regrowth
[15].

3. TAMs Remodel the Tumor
Microenvironment

3.1. TAMs Ensure an Immunosuppressive Tumor Microenvi-
ronment. The tumor immune microenvironment is mainly
formed by such immune cells as macrophages, T lympho-
cytes, natural killer cells (NK cells), dendritic cells, neu-
trophils, and myeloid-derived suppressor cells (MDSCs) [47,
48]. As a kind of immunosuppressive cell subgroup, TAMs
express chemokines and cytokines and contribute to the
immunosuppressive tumor microenvironment (ITM) [49].
Chemokines (such as CCL5, CCL22, and CCL20) secreted
by TAMs recruit regulatory T (Treg) cells, whereas cytokines
(such as IL-10 and TGF-𝛽) induce Treg cells. Besides, TAMs
may inhibit the antitumor effect of tumor-infiltrating T cells
and NK cells [50, 51] and promote ITM synergistically with
MDSCs, tumor-associated dendritic cells, and neutrophils
[47, 52–54]. TAMs may suppress T-cell function by secreting
specific enzymes such as nitric-oxide synthase (NOS) and
arginase (ARGI) [55, 56]. In addition, TAMs express ligands
for receptors called PD-1 and CTLA-4 (such ligands as PD-
L1 and B7-H1), which after activation suppress cytotoxic
functions of T cells, NKT cells, and NK cells [57].

3.2. TAMs Promote Tumorigenesis. Cancer can be considered
a nonresolving inflammatory disease. Up to 20% of all
cancers arise in association with chronic inflammation, and
almost all solid tumors contain inflammatory infiltrates [58].
TAMs, as the major immune cells in a tumor, have a broad
impact on tumor initiation. Macrophages can play contrast-
ing roles in cancer depending on their phenotype. M1-type
macrophages have the potential to contribute to the earliest
stages of neoplasia, whereas M2-type macrophages usually
get involved after a tumor progresses and grows [59]. DNA
damage is the major mechanism of tumorigenesis induced
by inflammation. The free radicals produced by TAMs can
lead to DNA damage, causing mutations that predispose the
affected individual to cancer. An example of thismacrophage-
mediated induction of tumorigenesis is that Crohn’s disease
dramatically increases the risk of colorectal cancer [60–63].
Besides, chronic infection with viruses such as hepatitis B
virus in the liver orwith bacteria likeHelicobacter pylori in the
stomach or continuous exposure to irritants such as asbestos
in lungs is casually associated with cancer initiation.

3.3. TAMs Facilitate Metastasis. Metastasis is responsible for
more than 90% of cancer mortality yet remains the least
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understood stage of tumor progression. TAMs have been
shown to be key players in metastasis and mainly participate
in several steps including epithelial-to-mesenchymal transi-
tion (EMT), local invasion and intravasation into the vascu-
lature, transit through the circulatory system, extravasation
and seeding in the premetastatic niche, and finally survival
and growth at the metastatic site [64, 65]. TAMs can promote
progression and metastasis through the release of a variety
of chemokines, inflammatory factors, and growth factors. It
is reported that CD68+HLA-DR+ TAMs in hepatocellular
carcinoma (HCC) can promote migration of HCC cells via
the NF-𝜅B/FAK pathway [66]. Specifically, TAM-derived IL-
6 and IL-8 enhance invasive activity of LoVo cells induced by
PRL-3 in a KCNN4 channel-dependent manner [67].

In breast tumors, TAMs are recruited to pulmonary
metastases by CCL2 and enhance extravasation, seeding, and
persistent growth of tumor cells in part via expression of
VEGF [68]. CCL2 synthesized by a tumor and stroma also
triggers a prometastatic chemokine cascade (involving CCL3
signaling via CCR1) that is required for efficient metastasis
[69]. Besides, TAMs binding to VCAM-1 expressed on breast
cancer cells can promote tumor cell survival in lungs [70].
The bidirectional cross-talk between cancer cells and TAMs
constitutes a microanatomic landmark, which is defined
as the tumor microenvironment of metastasis (TMEM),
whereas TMEM density is positively associated with the risk
of distant organ metastases [71].

EMT is a process via which epithelial tumor cells lose
epithelial features and gain mesenchymal phenotypes [72].
EMT is considered the key step via which tumor cells gain
the greater capacity for invasiveness and metastasis. TAMs
can strongly express many kinds of cytokines that can induce
EMT, such as TGF-𝛽 and IL-6 [73]. TNF-𝛼 secreted by TAMs
has been shown to activate NF-𝜅B-mediated transcription
of Snail1 and Zeb, which leads to diminished E-cadherin
expression on tumor cells [74]. One report suggests that M2
macrophagesmay induce EMT by regulating TLR4/IL-10 sig-
naling in pancreatic cancer cells [75]. TAMs may also secrete
EGF-like ligands/factors that activate the EGFR pathway in
cancer cells, thus promoting EMT, and this macrophage-
induced EMT is significantly inhibited by treatment of A549
cancer cells with JWH-015 [76].

CCL18 released from TAMs can induce EndMT in
endothelial cells to produce a different differentiated pheno-
type, which may lead to a loss of cell-cell junctions as well
as enhanced invasiveness and migratory capacity [77]. These
data confirm a strong cross-talk between macrophages and
tumor progression, mainly through stimulation of EMT.

3.4. TAMs Promote Angiogenesis and Lymphangiogenesis.
The growth and spread of neoplasms depend on angio-
genesis and lymphangiogenesis in the tumor microenviron-
ment. With neoplastic progression, increasing numbers of
blood and lymphatic vessels provide supply channels for
tumor tissues. On the other hand, it is reported that these
mounting vessels provide a route for the lymph-nodal and
distant metastases of tumor cells [78–81]. The infiltration
by TAMs is associated with extensive angiogenesis, which
contributes to a poor prognosis in primary cancers. Multiple

factors are involved in angiogenesis: hypoxia, hyperosmo-
sis, and proangiogenic factors such as vascular endothelial
growth factor (VEGF), transforming growth factor beta
(TGF-𝛽), cyclooxygenase 2 (COX-2), platelet-derived growth
factor (PDGF), epidermal growth factor (EGF), angiopoi-
etins (Ang), and chemokines [82–86]. CCL18 released from
TAMs can promote angiogenesis and tumor progression
in breast cancer [70]. TAMs can also synthesize Wnt7b,
which targets vascular endothelial cells by stimulating their
production of VEGF resulting in the angiogenic switch [87].
One of the major angiogenesis-inducing factors, pro-matrix
metalloproteinase-9 (proMMP-9), is supplied to the tumor
microenvironment by TAMs [88]. It has been demonstrated
that matrix metalloproteinase 9 (MMP-9) plays a crucial
role in tumor angiogenesis and metastasis by turning on the
angiogenic switch in avascular tumors and by mediating the
development and maintenance of distinct neovascular net-
works sustaining tumor cell intravasation [89, 90]. Hypoxia
causes a tumor microenvironment overexpressing hypoxia-
inducible factor 1𝛼 (HIF-1𝛼), the primary transcription factor
involved in homeostasis of oxygen concentration. HIF-1𝛼 can
activate transcription of genes encoding angiogenic growth
factors and stimulating endothelial cells (ECs), thus leading
to angiogenesis [75]. TAMs’ localization to hypoxic tumor
areas is controlled by the Sema3A/neuropilin-1 signaling axis,
leading to plexinA1/plexinA4-dependent VEGFR1 activation
and promotion of tumor growth and metastasis [91]. In
addition, TAMs can increase the expression of HIF-1𝛼 and
promote endothelial-tube formation in colon cancer [92].
Besides, Laoui et al. found that hypoxia specifically lowers
hypoxia-sensitive gene expression and angiogenic activity in
the MHC-IIlo TAM subset instead of altering differentiation
of the TAM population [93].

Coordination of the lymphatic microvascular network
with the blood microvasculature is involved in normal phys-
iological functions, such as local tissue fluid balance, tissue
perfusion, and immune surveillance [94–96], and gives more
weight to lymphangiogenesis during tumor growth and
cancer metastasis [72]. A number of studies have revealed
lymphaticmicrovessel density (LMVD) to be an independent
prognostic factor for solid tumors [97–100]. Additionally,
TAMs are reportedly involved in lymphangiogenesis in ma-
lignant tumors [101]. Zhang et al. found that TAMs in
lung adenocarcinoma are associated with poor prognoses
resulting from accelerated lymphangiogenesis and lymph
node metastasis [102].

Tumor cells induce formation of lymphatic vessels via
the lymphatic system metastasis through VEGF-C, VEGF-
D, and other cytokines [103]. The expression of VEGF-C
and VEGF-D by TAMs suggests that TAMs are intimately
involved in the generation of tumor lymphatic vessels [104].
M2-polarized TAM infiltration of RLNs is significantly asso-
ciated with nodal lymphangiogenesis, and node-infiltrating
M2-polarized TAMs may facilitate nodal lymphangiogenesis
via production of VEGF-C [105].

3.5. TAMs and Cancer Stem Cells (CSCs). CSCs or cancer-
initiating cells are defined as a small subpopulation of cancer
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cells with the capacity for self-renewal and pluripotency.
CSCs are necessary for initiation of new tumor growth at
distant sites. Currently, many studies support the notion that
CSCs, which havemany features of stem cells, are responsible
for the poor prognosis of patients by promoting tumor
recurrence and metastasis [106, 107].

TAMs can regulate the plasticity of CSC phenotypes
and functions. Recently, some of TAMs-CSCs interrelations
were confirmed experimentally. TAMs were found to re-
lease milk-fat globule EGF-VIII, which activates the CSC-
specific pathways—STAT3, Hedgehog, and Sonic—and
strongly amplifies drug resistance and tumorigenicity of
CSCs [108]. MFG-E8 and IL-6 from TAMs can also syner-
gistically mediate tumorigenicity and drug resistance in
subsets of CSCs including those in primary human tumors
[109]. In experiments with murine mammary CSCs, Yang
et al. reported that drug resistance of CSCs is associated
with new EGFR/STAT3/Sox-2 paracrine signaling pathway
activity that is realized via a complex interplay between CSCs
and TAMs [110]. It is reported that TAMs have effects on
gastric CSCs in omental milky spots and on lymph node
micrometastasis, which is mainly mediated by activation
of MCP-1, COX-2, PGE-2, IL-10, IFN-𝛾, and VEGF and
by downregulation of IL-4, TGF-𝛽, MMP-2, and MMP-9
[111]. It has been suggested TAMs may promote CSC-like
properties via TGF-𝛽1-induced EMT and may advance
the research on the prognosis of HCC [112]. Furthermore,
microglia and brain TAMs serve as mediators of glioma
stem-like cell (GSLC) properties, producing high levels of
TGF-𝛽, which makes GSLCs more invasive [113]. Direct
cell-cell interactions of TAMs with CSCs viaThy1 and Eph4A
receptors have been reported to induce activation of NF-𝜅B,
which in turn sustains the CSCs state [114].

The functional and phenotypic heterogeneity of CSCs
themselves in turn affects the pathophysiological activities
of TAMs. It seems that active CSCs should be able to
promote the M1-to-M2 conversion, induce formation of new
vasculature via VEGF release, and build CSC-protective
niches via tissue-repair pathways [2]. OCSCs may promote
theM2 polarization of macrophages through the PPAR𝛾/NF-
𝜅B pathway [115]. Chemoresistant CSCs may promote M2
macrophage differentiation through interferon-regulatory
factor-5- (IRF5-) and macrophage-colony stimulating factor-
(M-CSF-) dependent mechanisms [116]. Chen et al. reported
that embryonic stem cells can promote macrophage sur-
vival and M2-like activation, which are critically impor-
tant for teratoma angiogenesis and development [117]
(Figure 1).

TAMs can be considered a biomarker of poor prognosis
and reduce the curative effect of chemotherapy and radio-
therapy. In terms of mechanisms, TAMs may promote a
tumor immunosuppressive microenvironment, tumorigene-
sis, angiogenesis, and lymphangiogenesis and can facilitate
metastasis.

4. Treatments Targeting TAMs

Immunotherapy acts in a fundamentally different way in
comparison with classical therapies. Rather than destroying

tumor cells directly, immunotherapy promotes tumor cell
killing via the immune response of the host. This result can
be achieved directly via the main effectors of the immune
system, such as macrophages. Evidence reviewed by Mills
et al. indicates that modulation of macrophage responses is
a breakthrough that will facilitate successful immunother-
apy [118]. In a sorafenib-resistant tumor model, photoim-
munotherapy targeting TAMs was found to inhibit the tumor
growth and metastasis [119]. Therefore, TAMs have become
promising therapeutic targets for cancer treatment. In recent
years, many researchers focused on cancer immunotherapy
related to TAMs (Table 2).

4.1. Killing of TAMs or Inhibition of TAMRecruitment andDif-
ferentiation. Strategies to deplete TAMs have been successful
in experimental settings and are now considered a promising
therapeutic approach in the clinic [120].The current approach
to targeting of TAMs that has shown efficacy is inhibition
of CSF-1/CSF-1R signaling because this axis is required for
macrophage survival [121, 122]. For instance, targeting of
CSF-1/CSF-1R alters macrophage polarization and blocks
glioma progression [123]. RG7155, a monoclonal antibody
that inhibits CSF-1 receptor (CSF-1R), can provide significant
clinical benefits and offer a therapeutic option other than
surgical treatment to patients with a diffuse-type giant cell
tumor (Dt-GCT) [124].

An RNA aptamer that blocks the murine or human IL-4
receptor-𝛼 (IL4R𝛼 or CD124) can preferentially target TAMs
and unexpectedly promote their elimination, an effect that
is associated with an increased number of tumor-infiltrating
T cells and a reduction in tumor growth [125]. Allavena et
al. have recently demonstrated that trabectedin, a licensed
and commercially available anticancer agent, is selectively
toxic to TAMs because of activation of caspase 8-dependent
apoptosis [126, 127]. Membrane-permeating drugs can also
induce apoptosis inmacrophages; this effectmay be exploited
for the depletion of TAMs [128]. Inhibiting recruitment of
macrophages to neoplastic lesions is one of the therapies
targeting TAMs. The antitumor agent dequalinium-14 in
addition to its antitumor effect can reducemacrophagemotil-
ity, inhibit macrophage infiltration of irradiated tumors, and
reduce the extent of metastasis in locally irradiated mice [14].
Besides, TAMs derive frommonocytes and have the capacity
for differentiation; therefore, a combination therapy blocking
differentiation may be required for effective targeting of
these cells [129]. Interferon 𝛾 may induce recruitment of
monocytes/macrophages into the tumor microenvironment
but inhibits their differentiation into TAMs in vivo; this effect
may reduce the concentration of VEGF and angiogenesis in a
tumor [130].

4.2. Regulation of TAM Polarization. TAMs are typically
designated as “alternatively activated” noninflammatory M2-
type macrophages, in contrast to the “classically activated”
inflammatory M1 type. TAMs coexist with tumors and func-
tion as an accomplice in the promotion of tumor progression,
especially after being programmed and polarized into a
proangiogenic/immunosuppressive (M2-like) phenotype by
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Figure 1: TAMs promote tumor progression.

the tumor microenvironment [1, 75]. Unlike Th1 and Th2
cells, M1 and M2 macrophages are not stably differentiated
subsets and can switch the phenotype [131]. In this case,
TAMs represent an ideal therapeutic target for blocking
tumor progression after being reprogrammed and repolar-
ized to express a proimmunity (M1-like) phenotype [132].
Dimethyl sulfoxide can suppress mouse 4T1 breast cancer
growth by modulating TAM differentiation [133]. It was
found that PA-MSHA can reeducate CD163+ TAMs into M1
macrophages through the TLR4-mediated pathway in MPE
[27]. M-CSFR signaling was found to govern the phenotype
of M2-like MHC-IIlo TAMs, and its blockade results in
preferential differentiation of monocytes into M1-like MHC-
IIhi TAMs [134]. Interferon 𝛾 and celecoxib can inhibit lung
tumor growth by modulating the M2/M1 macrophage ratio
in the tumor microenvironment [135].

4.3. Blocking of Factors and Pathways Associated with the Pro-
tumor Function of TAMs. The ability of TAMs to accelerate
vessel growth is mediated by increased secretion of several
proangiogenic factors. Therapeutic success in blocking these
protumor activities in preclinical models and early clinical
trials highlighted macrophages as effective targets of combi-
nation cancer therapy [136]. It is reported that somatostatin
derivate (smsDX) can attenuate the TAM-stimulated prolifer-
ation, migration, and invasiveness of prostate cancer via NF-
𝜅B regulation [137]. Luteolin can also inhibit recruitment of
monocytes and migration of Lewis lung carcinoma cells by
suppressing chemokine (C-C motif) ligand 2 expression in
TAMs [138]. Besides, it has been shown that a cannabinoid
receptor 2 agonist inhibits macrophage-induced EMT in
non-small cell lung cancer via downregulation of the EGFR
pathway [69].
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5. Conclusions

TAMs comprise an important part of the tumor microenvi-
ronment, and their mobilization into the tumor microenvi-
ronment plays a key role in malignant progression. Studies
have shown that TAMs lead to a poor clinical prognosis
and promote progression of various tumors; these cells also
correlate with an unfavorable outcome following therapy.
After accumulation in tumor tissues, TAMs can remodel
the tumor microenvironment to promote matrix remodel-
ing and promote tumor growth and increase angiogene-
sis CSC-associated tumor progression. With rapid progress
in the understanding of TAM functions, new therapeutic
approaches against tumors have been developed, such as
inhibition of TAM recruitment or suppression of TAM
survival, regulation of TAM polarization, reprogramming of
TAMs into the antitumor M1 phenotype, and blocking of
factors and pathways associated with the protumor function
of TAMs.Thus, the increasing knowledge about the biological
effects of TAMs and the tumor microenvironment may lead
to novel cancer therapies.
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[104] Z. Špirić, Ž. Eri, andM. Erić, “Significance of vascular endothe-
lial growth factor (VEGF)-C and VEGF-D in the progression of
cutaneous melanoma,” International Journal of Surgical Pathol-
ogy, vol. 23, no. 8, pp. 629–637, 2015.

[105] H.Kurahara, S. Takao, K.Maemura et al., “M2-Polarized tumor-
associated macrophage infiltration of regional lymph nodes
is associated with nodal lymphangiogenesis and occult nodal
involvement in pn0 pancreatic cancer,” Pancreas, vol. 42, no. 1,
pp. 155–159, 2013.

[106] Y.-F. Sun, Y. Xu, X.-R. Yang et al., “Circulating stem cell-like
epithelial cell adhesion molecule-positive tumor cells indicate
poor prognosis of hepatocellular carcinoma after curative resec-
tion,” Hepatology, vol. 57, no. 4, pp. 1458–1468, 2013.

[107] Z. Zhen, J. Ren, and M. O’Neil, “Impact of stem cell marker
expression on recurrence of TACE-treated hepatocellular car-
cinoma post liver transplantation,” Bmc Cancer, vol. 12, no. 1,
pp. 2604–2615, 2012.

[108] M. Jinushi, S. Chiba, H. Yoshiyama et al., “Tumor-associated
macrophages regulate tumorigenicity and anticancer drug
responses of cancer stem/initiating cells,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 108, no. 30, pp. 12425–12430, 2011.

[109] S. Schwitalla, A. A. Fingerle, P. Cammareri et al., “Intestinal
tumorigenesis initiated by dedifferentiation and acquisition of
stem-cell-like properties,” Cell, vol. 152, no. 1-2, pp. 25–38, 2013.

[110] J. Yang, D. Liao, C. Chen et al., “Tumor-associatedmacrophages
regulate murine breast cancer stem cells through a novel
paracrine egfr/stat3/sox-2 signaling pathway,” StemCells, vol. 31,
no. 2, pp. 248–258, 2013.

[111] C. Zhang, X. Hu, X. Y. Liu et al., “Effect of tumor-associated
macrophages on gastric cancer stem cell in omental milky
spots and lymph node micrometastasis,” International Journal
of Clinical & Experimental Pathology, vol. 8, no. 11, 2015.

[112] Q.-M. Fan, Y.-Y. Jing, G.-F. Yu et al., “Tumor-associated
macrophages promote cancer stem cell-like properties via
transforming growth factor-beta1-induced epithelial-mesen-
chymal transition in hepatocellular carcinoma,” Cancer Letters,
vol. 352, no. 2, pp. 160–168, 2014.

[113] X.-Z. Ye, S.-L. Xu, Y.-H. Xin et al., “Tumor-associated microgl-
ia/macrophages enhance the invasion of glioma stem-like cells
via TGF-𝛽1 signaling pathway,” Journal of Immunology, vol. 189,
no. 1, pp. 444–453, 2012.

[114] H. Lu, K. R. Clauser, W. L. Tam et al., “A breast cancer stem cell
niche supported by juxtacrine signalling from monocytes and
macrophages,” Nature Cell Biology, vol. 16, no. 11, pp. 1105–1117,
2014.



12 Journal of Immunology Research

[115] X. Deng, P. Zhang, T. Liang, S. Deng, X. Chen, and L. Zhu,
“Ovarian cancer stem cells induce the M2 polarization of
macrophages through the PPAR𝛾 and NF-𝜅B pathways,” Inter-
national Journal of Molecular Medicine, vol. 36, no. 2, pp. 449–
454, 2015.

[116] M. Jinushi, “Role of cancer stem cell-associated inflammation in
creating pro-inflammatory tumorigenic microenvironments,”
OncoImmunology, vol. 3, no. 5, Article ID e28862, 2014.

[117] T. Chen, X. Wang, L. Guo et al., “Embryonic stem cells
promoting macrophage survival and function are crucial for
teratoma development,” Frontiers in Immunology, vol. 5, article
275, 2014.

[118] C. D. Mills, L. L. Lenz, and R. A. Harris, “A break-
through:macrophage-directed cancer immunotherapy,”Cancer
Research, vol. 76, no. 3, pp. 513–516, 2016.

[119] C. Zhang, L. Gao, Y. Cai et al., “Inhibition of tumor growth and
metastasis by photoimmunotherapy targeting tumor-associated
macrophage in a sorafenib-resistant tumor model,” Innovation
& Social Process, vol. 84, no. 9, pp. 127–136, 2016.

[120] S. Vinogradov, G.Warren, andX.Wei, “Macrophages associated
with tumors as potential targets and therapeutic intermediates,”
Nanomedicine, vol. 9, no. 5, pp. 695–707, 2014.

[121] D. Laoui, E. Van Overmeire, P. De Baetselier, J. A. Van Ginder-
achter, and G. Raes, “Functional relationship between tumor-
associated macrophages and macrophage colony-stimulating
factor as contributors to cancer progression,” Frontiers in
Immunology, vol. 5, no. 5, article 489, 2014.

[122] V. Chitu and E. R. Stanley, “Colony-stimulating factor-1 in
immunity and inflammation,” Current Opinion in Immunology,
vol. 18, no. 1, pp. 39–48, 2006.

[123] S. M. Pyonteck, L. Akkari, A. J. Schuhmacher et al., “CSF-1R
inhibition alters macrophage polarization and blocks glioma
progression,” Nature Medicine, vol. 19, no. 10, pp. 1264–1272,
2013.

[124] C. H. Ries, M. A. Cannarile, S. Hoves et al., “Targeting tumor-
associated macrophages with anti-CSF-1R antibody reveals a
strategy for cancer therapy,” Cancer Cell, vol. 25, no. 6, pp. 846–
859, 2014.

[125] F. Roth, A. C. De La Fuente, J. L. Vella, A. Zoso, L. Inverardi,
and P. Serafini, “Aptamer-mediated blockade of IL4R𝛼 triggers
apoptosis of MDSCs and limits tumor progression,” Cancer
Research, vol. 72, no. 6, pp. 1373–1383, 2012.

[126] P. Allavena, G. Germano, C. Belgiovine, M. D’Incalci, and A.
Mantovani, “A drug from the sea that strikes tumor-associated
macrophages,” OncoImmunology, vol. 2, no. 6, article e24614,
2013.

[127] G. Germano, R. Frapolli, C. Belgiovine et al., “Role of
macrophage targeting in the antitumor activity of trabectedin,”
Cancer Cell, vol. 23, no. 2, pp. 249–262, 2013.

[128] L. Leanza, M. Zoratti, E. Gulbins, and I. Szabò, “Induction
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