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because of their plasticity and phenotypes in the different stages of the 
tumor microenvironment.

Some studies have indicated racial differences in inflammation.9–11 
Vidal et al.10 showed that the Asian population is more likely to experience 
acute prostate inflammation compared with Caucasians, which presents 
a higher risk of prostate cancer for Asians. The underlying mechanisms 
of race differences in the inflammatory response are complicated. It 
is generally accepted that acute prostate inflammation is considered 
as a protective factor, whereas chronic inflammation is significantly 
associated with the development of prostate cancer.

As mentioned above, inflammation is a major characteristic 
of human malignancies. Tumor-associated immune cells are main 
components in the tumor microenvironment. The infiltrating immune 
cells in the prostate tumor microenvironment include T regulatory 
cells (Tregs), tumor-associated macrophages (TAMs), neutrophils, and 
myeloid-derived suppressor cells (MDSCs). Many studies have shown 
that tumor-associated immune cells play a major role in the progression 
of prostate cancer.12,13 Studies concerning the development of tumor-
associated immune cells have focused on drugs and the application of 
immune vaccines to provide a new direction for the management of 
prostate cancer.

TUMOR-INFILTRATING LYMPHOCYTES AND PROSTATE 
CANCER
Tumor-infiltrating lymphocytes (TILs) contribute to the progression of 
prostate cancer through a variety of mechanisms. Traditionally, effector 
T cells are divided into Th1 and Th2 subgroups. However, in recent 
decades, emerging evidence has indicated that Tregs subsets of CD4+ 
cells play a major role in regulating tumor progression by mediating 
immunosuppression.14,15

Tregs, which were first reported by Sakaguchi et al.15 as a subset 
of T cells with a CD4+ CD25- high phenotype, play an important role 

INTRODUCTION
Prostate cancer is becoming one of the most common malignancies 
in the male reproductive system in China. The number of estimated 
new cases of prostate cancer in men over 60 years of age in China 
was about 56 600 in 2015.1 With the improvement of living standards 
and diagnostic techniques, the incidence rate of prostate cancer has 
increased each year.1,2 Prostatectomy or radiotherapy, combined 
with endocrine therapy, is the first choice for the management of 
intermediate- and high-risk prostate cancer. Early stage prostate 
cancer patients receive an indolent course of treatment during the 
first 10–15 years, and tumor progression and aggressive metastasis 
may develop in the long term.3 However, for intermediate- and 
high-risk prostate cancer patients, most will finally develop 
into castration-resistant prostate cancer (CRPC) after androgen 
deprivation therapy (ADT) for about one and a half years. Moreover, 
about a third of CRPC patients will develop bone metastasis within 
2 years, resulting in cancer-specific death.4,5 Therefore, it is an 
urgent and important issue to identify potential mechanisms for the 
initiation and progression of prostate cancer.

INFLAMMATION AND PROSTATE CANCER
Chronic inflammation is now considered as a major factor in the 
development of various malignancies.6 Accumulating studies have 
shown that prostatic inflammation is involved in the initiation of 
proliferative inflammatory atrophy (PIA), a kind of precursor lesion 
related to the development of prostate cancer.7,8 Bacterial infection, 
autoimmune responses, and other proinflammatory factors can 
lead to intraprostatic inflammation with consequential modification 
of the prostatic microenvironment. The immune cells involved in 
the inflammatory microenvironment can affect the initiation and 
progression of prostate cancer via the secretion of cytokines and growth 
factors. However, the roles of these inflammatory cells are still unclear 
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in regulating immune tolerance of the tumor microenvironment. 
Recent studies have found that FOXP3+ is also an important phenotype 
of Tregs.16,17 Zhao et al.17 found that the number of Tregs obviously 
increases in the bone metastatic microenvironment of prostate 
cancer. The infiltration of CD4+ CD25- high Tregs into bone marrow 
contributes to the initiation of bone metastasis in prostate cancer 
patients, by providing an immunosuppressive microenvironment. 
Akins et al.18 found that FOXP3+ Tregs in the prostate epithelium 
increase obviously after ADT, while cytotoxic T cells are restricted to 
the prostatic stroma. In addition, ADT combined with Treg clearance 
therapy reduced the prostate tumor burden and inhibited tumor 
recurrence in mice. Mo et al.19 indicated that Treg depletion enhanced 
the antitumor immunity of a tumor cell vaccine against prostate 
cancer in a subcutaneous prostate cancer mouse model. Davidsson 
et al.20 found that infiltration of CD4+ FOXP3+ Tregs into prostate 
tissue was positively correlated with Gleason scores and pathological 
tumor stages of prostate cancer. Therefore, Tregs may be involved in 
the development of prostate carcinoma from atrophic hyperplasia. 
Flammiger et al.21 found that an increased number of FOXP3+ cells in 
prostate carcinomas was obviously correlated with an elevated tumor 
stage and proliferation index, suggesting that the infiltration of Tregs 
into the tumor microenvironment contributes to the development 
of prostate carcinoma. Nardone et al.22 performed a retrospective 
study and found that the number of FOXP3+ Tregs in prostate cancer 
tissues was negatively correlated with overall and progression-free 
survival times of prostate cancer patients. Studies regarding the role 
of tumor-infiltrating lymphocytes in prostate cancer are summarized 
in Table 1.

Thus far, the phenotypes of Tregs that infiltrate into the prostate 
tumor microenvironment and their mechanisms involved in the 
regulation of prostate tumor initiation and in the development 
are still unclear.23 It is generally believed that Tregs mainly exist 
in secondary lymphoid organs and can be recruited into the 
tumor microenvironment via the induction of tumor-associated 
chemokines. In addition, Tregs mediate immunosuppressive effects 
by interacting with tumor cells and secreting related factors. For 
example, Tregs inhibit the function of antigen-presenting cells by 
interacting with CD80/CD86 on antigen-presenting cells via their 
surface cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) 
receptor, which inhibits the anticancer functions of cytotoxic and 
effector T cells. Moreover, Tregs directly inhibit the function of 
effector T cells by secreting granulase B perforating protein.23,24 
Currently, Treg-related immune checkpoint inhibitors are being 

developed or are in clinical trials for anticancer therapy. For 
example, CTLA-4 is commonly expressed by Tregs, and anti-CTLA-4 
monoclonal antibody drugs such as ipilimumab in combination 
with ADT, sipuleucel-T, or programmed cell death protein 1 (PD-1) 
inhibitors are being evaluated in clinical trials for prostate cancer 
patients.25,26

TUMOR-ASSOCIATED MACROPHAGES AND PROSTATE 
CANCER
Tumor-associated macrophages (TAMs) are macrophages that infiltrate 
into tumor tissues. Traditionally, macrophages were only considered 
to play an anticancer role in the tumor microenvironment. However, 
many recent studies have shown that macrophages in the tumor 
microenvironment can also be educated by tumor cells or hijacked 
by dead cells to exert a tumor-promoting effect.27,28 Some studies have 
reported that TAMs can be divided into classical activation (M1 type) 
macrophages and alternative activation (M2 type) macrophages, 
according to their different activation pathways.29,30 It is generally 
believed that M1-type macrophages promote inflammation, whereas 
M2-type macrophages promote tissue repair by inducing angiogenesis 
and synthesis of matrix proteins.27 It is widely accepted that there are 
many more M2-type macrophages than M1-type macrophages in 
the tumor microenvironment. Emerging evidence has indicated that 
increased infiltration of macrophages into the tumor microenvironment 
predicts a worse prognosis of breast, prostate, colorectal, and ovarian 
cancers.30–32

In recent years, the role of TAMs in the initiation, development, 
and metastasis of prostate cancer has become a research hotspot. 
Lanciotti et al.33 found that high-density TAMs in prostate cancer 
tissue predict poor biochemical recurrence in prostate cancer patients 
after radical prostatectomy, and M2-type macrophages are associated 
with extrafascial invasion of prostate cancer. Distant metastasis is a 
common and complicated issue in advanced prostate cancer patients. 
Some studies have reported that the total number of TAMs, especially 
the number of infiltrated M2-type macrophages, increases in metastatic 
prostate cancer, suggesting that TAM infiltration is a risk factor for 
distant metastasis of prostate cancer.34,35 Neuroendocrine differentiation 
(NED) of prostate cancer cells in the prostate tumor microenvironment 
is a major feature of castration-resistant prostate cancer. NED is usually 
positively associated with invasive prostate cancer and negatively 
associated with clinical outcomes of prostate cancer.35,36 Lee et al.37 
found that neuroendocrine cells in human prostate cancer tissues are 
usually associated with BMP-6 protein expression and TAM infiltration. 

Table 1: Summary of studies about the role of tumor infiltrating lymphocytes in prostate cancer

First author (year) Study sources Identification of TILs Management Outcome

Akins et al. 
201018

Pten knockout mice FoxP3+ Anti‑CD25 antibody Tregs depletion combined with in situ vaccination and ADT can 
reduce castration‑resistant tumor burden

Zhao et al. 
201217

SCID mice with PC‑3 
intratibial injection

CD4+CD25high, 
CD4+Foxp3+

Intravenously transfused 
with activated Tregs

Bone marrow Treg cells may
facilitate cancer bone metastasis and contribute to bone deposition

Flammiger et al. 
201321

Patients’ samples FoxP3+ Immunohistochemistry 
analysis

Increased infiltrating of Tregs significantly involved with reduced 
PSA recurrence‑free survival and advanced tumor stage

Nardone et al. 
201622

Patients’ samples FoxP3+PD‑1 Immunohistochemistry 
analysis

Lower expression of PD‑1/FoxP3+ correlated with prolonged PFS 
and OS

Mo et al. 201719 Subcutaneous mice model 
of RM‑1 prostate cancer

ICOS Anti‑ICOS antibody ICOS blocking could deplete the infiltrated Tregs and enhance 
antitumor immunity of tumor cell vaccine in prostate cancer

Davidsson et al. 
201820

Patients’ samples CD4+FOXP3+, 
CD8+FOXP3+

Immunohistochemistry 
analysis

Four‑fold increased risk of prostate cancer in men with epithelial 
CD4+ Tregs infiltration

TILs: tumor‑infiltrating lymphocytes; FOXP3: forkhead box P3; CD: cluster of differentiation; PTEN: phosphatase and tensin homolog; ICOS: inducible T cell costimulatory; SCID: severe 
combined immunodeficiency; PC‑3: prostate cancer cell‑3; ADT: androgen depletion therapy; Tregs: regulatory T cells; PSA: prostate‑specific androgen; PFS: progression‑free survival; 
OS: overall survival; PD‑1: programmed cell death protein‑1
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In addition, the removal of IL-6 or macrophages in mouse models 
inhibited BMP-6-induced NED. Wang et al.36 found that targeted 
blockade of interleukin-6 receptor (IL-6R) and high mobility protein-1 
(HMGB-1) blocked the positive feedback pathway between TAMs 
and NED in prostate cancer, which resulted in improvement of the 
enzalutamide therapeutic effect in prostate cancer patients. Therefore, 
macrophage infiltration into the prostate tumor environment, 
especially M2-type TAMs, promotes the development and metastasis 
of prostate cancer and participates in the regulation of NED and ADT 
resistance in prostate cancer.

The underlying mechanisms of TAMs in the regulation of tumor 
initiation and progression of prostate cancer are complex. It is generally 
believed that TAMs influence the proliferation and migration of cancer 
cells via direct interactions with tumor cells or indirectly by secretion 
of cytokines, providing structural space, and participating in every 
stage of tumor progression. Chen et al.38 found that the secretion of 
nephroblastoma overexpressed (NOV/CCN3) from prostate cancer 
cells induces TAMs to express CD204, and then activates the NF-kB 
signaling pathway, mediates the secretion of VEGF by M2 type TAMs, 
and promotes tumor angiogenesis. In addition, Soki et al.39 showed that 
TAMs promote tumor progression via interactions with apoptotic cells 
through the MFG-E8 pathway in the microenvironment of prostate 
cancer with bone metastasis. Further exploration of the potential 
mechanisms and immune checkpoints of TAMs in the prostate tumor 
microenvironment may provide new concepts for the treatment of 
prostate cancer.

TUMOR-ASSOCIATED NEUTROPHILS AND PROSTATE 
CANCER
Tumor-associated neutrophils (TANs) specifically refer to neutrophils 
that infiltrate into the tumor microenvironment. The roles of TANs 
in various tumors are still controversial.40 Fridlender et al.41 found 
that TANs function like a “double-edged sword,” which can acquire 
a tumor-promoting phenotype via induction by TGF-β. However, 
after blockage of TGF-β, TANs exert an antitumor effect, suggesting 
that TANs can be classified into N1 and N2 phenotypes similar to 
TAMs. Hanahan and Weinberg.42 found that TANs promote tumor-
related inflammation, thereby contributing to tumor cell proliferation, 
invasion, and tumor angiogenesis. Casbon et al.43 showed that TANs 
mediate immunosuppression by inhibiting the tumor-killing function 
of cytotoxic T cells. However, some studies have reported that elevated 
TAN infiltration is positively correlated with the prognosis of tumors. 
For example, Governa et al.44 found that TANs enhance the reactivity 
of CD8+ T cells and activate T cell receptors, contributing to the 
death of tumor cells and prolonging the survival time of colorectal 
cancer patients. Hence, the role of TAN infiltration into the tumor 
microenvironment is complicated and undefined.

The mechanisms involved in the role TANs in tumors still need to be 
elucidated. TANs promote the development of cancer via TAN-induced 
immunosuppression as well as changes in the tumor microenvironment 
caused by TAN infiltration. Furthermore, TANs function as tumor 
killers through the promotion of T cell-mediated tumor clearance or 
by secreting cytotoxic factors. The double-edged sword effects of TANs 
may be involved in the high heterogeneity or plasticity of neutrophils 

Figure 1: Graphical model for the role of tumor associated immune cells in the initiation and progression of prostate cancer.
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themselves. Moreover, the specific microenvironment in different 
tumor stages contributes to the multiple roles of TANs.30,45

TUMOR-ASSOCIATED MYELOID-DERIVED SUPPRESSOR 
CELLS AND PROSTATE CANCER
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells 
including immature granulocytes, macrophages, and dendritic cells. 
In humans, the phenotypes of MDSCs are mainly CD13, CD33, and 
CD34. Tumor-associated MDSCs are group of MDSCs in the tumor 
microenvironment. Recent studies have shown that MDSCs in the 
tumor microenvironment promote the proliferation and metastasis of 
tumor cells by mediating immunosuppressive effects.46,47 There is also 
clinical evidence that treatment with MDSCs prolongs the survival time 
of cancer patients. Moreover, MDSC-targeted therapy combined with 
other immunotherapeutic drugs are under investigation.48,49

Some studies have reported the role of MDSCs in the initiation 
and development of prostate cancer. Jachetti et al.50 found that 
multinuclear MDSCs induced immunosuppression and promoted the 
development of prostate cancer via interactions with mast cells through 
the CD40-CD40L pathway, and elevated expression of mast cell- and 
MDSC-related genes was obviously associated with poor prognoses 
of patients with prostate cancer. Chi et al.51 found that increased 
MDSCs in the circulating blood of prostate cancer patients were 
obviously associated with a poor prognosis. In recent years, preclinical 
trials and related clinical trials have been performed to evaluate the 
therapeutic efficacy of MDSC inhibitors in prostate cancer patients. 
Yin et al.52 indicated that phosphatidylserine-targeted therapy inhibits 
the differentiation and growth of MDSCs, promotes the transformation 
of TAMs into the M1 type, and then inhibits the growth of prostate 
cancer cells. The phosphatidylserine-targeted drug bavituximab is being 
evaluated in clinical trials. In addition, some other MDSC-targeted 
drugs are being evaluated in clinical trials for prostate cancer, such as 
verteporfin and axitinib.13,53

The mechanisms underlying the roles of MDSCs are still unclear. 
Ostrand-Rosenberg et al.53 reported that MDSCs in the tumor 
microenvironment upregulate the expression of IL-10, downregulate 
the expression of IL-6, IL-12, and MHC II in macrophages, and 
induce the differentiation of M2 type macrophages, which promotes 
the proliferation and metastasis of malignancies. Moreover, MDSCs 
prohibit the antitumor function of mature dendritic cells via 
impairment of their antigen presentation and migration, which 
facilitates the development of immune evasion and promotes the 
proliferation of tumor cells. The infiltration of tumor-associated 
MDSCs and their protumor roles were found to be associated with 
the PI3K/PTEN/AKT pathway in mouse models of prostate cancer.13 
However, whether MDSCs are involved with PTEN loss and PI3K 
activation in prostate cancer patients remains to be elucidated.

SUMMARY
Immune cells in the prostate tumor microenvironment play a role as 
a double-edged sword. At various disease stages, tumor-associated 
immune cells with specific phenotypes may mediate the immune evasion 
or tolerance of prostate tumor cells, by direct interactions with tumor 
cells or indirectly by secreting cytokines to promote the initiation and 
progression of prostate cancer. We have summarized the relationships 
between tumor-associated immune cells and prostate cancer cells in 
Figure 1. The development of immune vaccines and immune checkpoint 
inhibitors may provide a new direction for the treatment of prostate 
cancer, especially metastatic castration-resistant prostate cancer.
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