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The remarkable robustness of many social systems has been asso-
ciated with a peculiar triangular structure in the underlying social
networks. Triples of people that have three positive relations (e.g.,
friendship) between each other are strongly overrepresented.
Triples with two negative relations (e.g., enmity) and one positive
relation are also overrepresented, and triples with one or three
negative relations are drastically suppressed. For almost a century,
the mechanism behind these very specific (“balanced”) triad statis-
tics remained elusive. Here, we propose a simple realistic adaptive
network model, where agents tend to minimize social tension
that arises from dyadic interactions. Both opinions of agents and
their signed links (positive or negative relations) are updated in
the dynamics. The key aspect of the model resides in the fact
that agents only need information about their local neighbors
in the network and do not require (often unrealistic) higher-
order network information for their relation and opinion updates.
We demonstrate the quality of the model on detailed temporal
relation data of a society of thousands of players of a massive
multiplayer online game where we can observe triangle formation
directly. It not only successfully predicts the distribution of triangle
types but also explains empirical group size distributions, which
are essential for social cohesion. We discuss the details of the
phase diagrams behind the model and their parameter depen-
dence, and we comment on to what extent the results might apply
universally in societies.

social balance | signed networks | social stability

Recognizing the fundamental role of triadic interactions in
shaping social structures, Heider (1) introduced the notion

of balanced and unbalanced triads. A triad (triangle) of indi-
viduals is balanced if it includes zero or two negative links;
otherwise, it is unbalanced. Heider (1) hypothesized that social
networks have a tendency to reduce the number of unbalanced
triangles over time such that balanced triads would dominate
in a stationary situation. This theory of “social balance” has
been confirmed empirically in many different contexts, such as
schools (2), monasteries (3), social media (4), or computer games
(5). Social balance theory and its generalizations (6–8) have
been studied extensively for more than a half century for their
importance in understanding polarization of societies (9), global
organization of social networks (10), evolution of the network of
international relations (11), opinion formation (12, 13), epidemic
spreading (14, 15), government formation (16), and decision-
making processes (17).

Following Heider’s intuition (18–41), current approaches
toward social balance often account for the effect of triangles
on social network formation in one way or another. For example,
the models in refs. 22 and 23 consider a reduction of the number
of unbalanced triads either in the neighborhood of a node or
in the whole network. The latter process sometimes leads to
imbalance due to the existence of so-called jammed states (42).
In order to reach social balance, individuals can also update
their links according to their relations to common neighbors
(18–21) or adjust link weights via opinion updates (24, 25) or

via a minimization of social stress based on triadic interactions
(37–44). These works not only ignore the difficulty of individuals
to know the social interactions beyond their direct neighbors
in reality, so far, they also have not considered the detailed
statistical properties of the over- or underrepresentation of the
different types of triads, such as those reported in refs. 4 and 5,
with the exception of refs. 43 and 44.

It is generally believed that the similarity of individuals plays
a crucial role in the formation of social ties in social networks,
something that has been called homophily (45–48). This means
that to form a positive or negative tie with another person, peo-
ple compare only pairwise overlaps in their individual opinions
(dyadic interaction). It has also been argued that social link
formation takes into account a tendency in people to balance
their local interaction networks in the sense that they introduce
friends to each other, that they do give up friendships if two
mutual friends have negative attitudes toward each other, and
that they tend to avoid situations where everyone feels nega-
tively about the others. This is the essence of social balance
theory (1). Obviously, link formation following social balance is
cognitively much more challenging than homophily-based link
formation since in the former, one has to keep in mind the many
mutual relations between all your neighbors in a social network.
While social balance–driven link formation certainly occurs in
the context of close friendships, it is less realistic to assume that
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Social stability is often associated with triangular interactions
between people. Various possible social triangles appear in
peculiar ratios. The triangles “The friend of my friend is my
friend” and “The enemy of my friend is my enemy” are
strongly overrepresented, which plays an important role for
social balance. A standard explanation for these characteristic
triangle fractions is that people consider triadic information
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consider triangles. A society where individuals minimize their
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triangular structures. We demonstrate this with data from a
society of computer game players, where triangle formation
can be directly observed.
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Fig. 1. Schematic view of opinion and link updates in a society. Every indi-
vidual has an opinion vector whose components represent (binary) opinions
on G = 5 different subjects. Red (blue) links denote positive (negative)
relationships. The question marks denote unknown relationships between
i’s neighbors. As an agent i flips one of its opinions (red circle), s1

i , from 1
to −1, i can either decrease or increase its individual stress, H(i), depending
on the value of the parameter α (Eq. 1). For instance, H(i) would increase
if α = 1 but would decrease for α = 0. For high “rationality” values of
individuals w.r.t. social stress, as quantified by β, the latter is more likely
to be accepted, resulting in a reduction of the number of unbalanced triads
in i’s neighborhood.

this mechanism is at work in social link formation in general. In
Fig. 1, we schematically show the situation in a portion of a social
network. It is generally hard for node i to know all the relations
between his neighbors j, k, and l.

Here, assuming that it is generally unrealistic for individuals to
know their social networks at the triadic level, we aim to under-
stand the emergence and the concrete statistics of balanced triads
on the basis of dyadic or one-to-one interactions. Therefore, we
use a classic homophily rule (45, 46) to define a “stress level” be-
tween any pair of individuals based on the similarity (or overlap)
of their individual opinions. Here, the opinions of an individual i
are represented by a vector with G components, si , that we show
in Fig. 1. Homophily implies that i and j tend to become friends
if the overlap (e.g., scalar product of their opinion vectors) is
positive, and they become enemies if the overlap is negative. Such
a specification of homophily is often referred to as an attraction–
repulsion or assimilation–differentiation rule (49, 50). Assuming
that, generally, social relations rearrange such as to minimize
individual social stress on average, we will show that balanced
triads naturally emerge from purely dyadic homophilic interac-
tions without any explicit selection mechanisms for specific triads.
We formulate the opinion link dynamics leading to social balance
within a transparent physics-inspired framework. In particular,
we observe a dynamic transition between two different types of
balanced steady states that correspond to different compositions
of balanced triads.

Explaining the empirical statistics of triangles in social systems
is a challenge. Early works considered groups of a few monks in
a monastery (3) or a few students in classrooms (51). The stud-
ies suffered from limited data and small network sizes. Large-
scale studies were first performed in online platforms (4) and
in the society of players of the massive multiplayer online game
(MMOG) Pardus. Players in Pardus engage in a form of economic
life, such as trade and mining, and in social activities, such as
communication on a number of channels, forming friendships
and enmities (details are in refs. 5, 52, and 53). In the social
networks of this game, balanced triads were once more confirmed
to be overrepresented compared with what is expected by chance.
Similar patterns of triad statistics were also observed in Epinion,
Slashdot, and Wikipedia (4). More details on the Pardus society
are in Materials and Methods. This dataset gives us the unique
possibility to validate the model and compare the predictions

with actual triangle statistics and formation of positively con-
nected groups that are foundational to social cohesion.

Results
We implement a simple model that updates signed links (positive
for friendship, negative for enmity) and opinions of individuals
according to a stress-minimization scheme. We consider a social
network with N nodes that represent individuals. Links represent
their social relationships. Every individual i is linked to ki others
and holds binary opinions on G > 1 issues, si ∈ {−1, 1}G (i.e.,
si is a G-dimensional vector, its entries being binary opinions).
If two individuals i and j are connected by a link Jij , its sign is
determined by the similarity between the respective opinions:
Jij = sign(si · sj ), similar to what was done in ref. 24. Jij =−1
denotes enmity, and Jij = 1 is friendship. Note that with this
definition, for G = 1, we have JijJjkJki = (sisj )(sj sk )(sk si) = 1,
∀ (i , j , k). This means that, trivially, all triads are balanced for
G = 1, regardless of the individuals’ opinions. Therefore, we do
not consider the case of G = 1 in our model. Moreover, since for
an even number of G, there can be a “tie” (an equal number of
similar and dissimilar attributes between i and j), we only consider
odd G values. Every individual, i, has a local social stress function
defined as

H (i) =− α

G

∑
j :Jij=1

si · sj +
1− α

G

∑
j :Jij=−1

si · sj , [1]

where the first sum includes all friends of i and the second in-
cludes all enemies. The parameter α ∈ [0, 1] controls the relative
weight of these terms. For a positive link, its relative weight
is α/G , and for a negative link, it is (α− 1)/G . The intuition
behind this is that one tries to harmonize relations within the
friend group and be on unfriendly terms in the other group.
Note that a global Hamiltonian E =

∑
i H

(i) for α= 0.5 and
G = 1 was studied in refs. 10 and 35. The dynamics that we
implement in the following, however, only complies with our
choice of G > 1. For G = 1, there is no genuine disorder in the
model as any negative coupling Jij = sign

(
sisj

)
=−1 can be

removed by a gauge transformation (54) of the form si → s̃i =
τisi , sj → s̃j = τj sj , with τi , τj ∈ {−1, 1} and τiτj =−1 so that
J̃ij := sign

(
s̃i s̃j

)
= sign

(
τiτj sisj

)
= 1 (for a positive coupling,

instead we need to choose a pair of τi and τj such that τiτj = 1,
and hence, J̃ij is also equal to 1). In terms of the new variables,
s̃i , the local stress becomes H (i) =−α

∑
j s̃i s̃j (i.e., it reduces to

the energy of the Ising model) (55). Assuming that agents tend to
minimize their individual stress over time, the dynamics includes
three steps.

1) Initialization. Every node is assigned an opinion vector, si ,
whose components are randomly chosen to be 1 or −1 with
equal probability. The network topology is fixed (who knows
whom). In the simplest version, we chose a fixed ring topol-
ogy, where every node i is connected with exactly ki =K
nearest neighbors. For any pair of neighbors, i and j, we set
Jij = sign(si · sj ).

2) Update.
(i) Pick a node i randomly, and compute H (i) in the current

state. Its value is H.
(ii) Flip one of i’s opinion attributes at random. The new

opinion of i is s̃i . Compute the new stress H̃, and
ΔH (i) ≡ H̃ −H.

(iii) Update si → s̃i and Jij → J̃ij = sign(s̃i · sj ) with prob-
ability min

{
e−βΔH (i)

, 1
}

, where β is a constant ex-
plained below; otherwise, leave it unchanged.

3) Continue with the next opinion and link updates by returning
to step 2.
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The relevant parameters of the model are, therefore, the
relative weights for the friend and enemy groupsα, the rationality
of individuals with respect to (w.r.t.) social stress (inverse tem-
perature) β, the network topology, and the degree sequence of
the nodes {ki}. More details and a discussion of model variants
are in SI Appendix, section A. Note that contrary to the G = 1
case (SI Appendix, section L), with randomized opinions in the
initial configuration, we always approximately get the same num-
ber of balanced and unbalanced triangles for sufficiently large
values of G.

Emergence of Social Balance from Dyadic Interactions. Let n+ and
n− be the numbers of balanced and unbalanced triads, respec-
tively. Following Heider’s triad-based definition of balance, we
quantify the level of social balance by an order parameter given
by the relative difference of balanced and unbalanced trian-
gles, f = (n+ − n−)/(n+ + n−). The balanced state (n− = 0)
corresponds to f = 1, and the unbalanced corresponds to f � 0
since n+ � n−. In contrast to refs. 7, 56, and 57, we do not
use motives larger than triangles since they seem to have less
sociological justification (58). Apart from f, we further consider
other measures that exist in any kind of graph topology (including
graphs without triangles). In particular, we calculate the global
social stress, E =

∑
i H

(i), and the average similarity score, C;
Eq. 3 in Materials and Methods shows its definition. While E
can be used to characterize the overall stress landscape of the
society, C acts as a local measure of how much, on average, an
individual agent agrees with its friends. Finally, one might be
interested in quantifying the level of “weak” balance (8), where
(−−−) triads are also considered as balanced. As seen below,
this kind of triad is present with a marginal number in both bal-
anced and unbalanced regions in the phase diagram, making the
reported phase transition compatible with the concept of weak
balance.

For a wide range of parameters, we find the emergence of
social balance in the steady state (SI Appendix, section K has a
detailed time series of all the measures). In Fig. 2, there exists
a balanced phase (f ∼ 1; yellow) in the phase diagrams for
societies with G = 9 (Fig. 2A) and G = 27 (Fig. 2B) opinions on
a regular network with a ring topology. For any fixed value of
α, a transition from an unbalanced to a balanced phase occurs
where f � 0.1→∼ 1, as inverse temperature, β, increases. We
find that the critical βc , at which the transition happens, depends
on the number of opinions, G, and the average degree, K, in
a power law fashion, βc ∝GγK−γ′

. Note that γ(α) increases
as α increases from 0 to 0.5 and then, drops as α goes from
0.5 to 1. We observe that βc is finite, and βc decreases with
increasing K. Details on the critical behavior and the robustness
of the transition with respect to changing system size, N, are in
SI Appendix, sections B and C. The balanced–unbalanced phase
transition also exists on different network topologies, such as
small world (59) (SI Appendix, section A) or a realistic social
network with the same topology as that of the Pardus network
(see Fig. 5A). In all cases, we observe a phase diagram similar
to Fig. 2A but with a smaller critical value βc than that of ring
networks with the same average degree and G = 9 fixed. This
suggests that societies with a more heterogeneous topology are
more likely to become balanced at relatively high temperature
than societies with a regular pattern of connectivities. We show
that, as β increases, both measures, E and C, undergo similar
balanced–unbalanced transitions as f. Based on this similar be-
havior of f and E, one could hypothesize about a possible equiv-
alence between the energy landscape of pairwise interactions, E,
and that of triadwise interactions (42), H :=

∑
(i,j ,k) JijJjkJki =

f (n+ + n−). In SI Appendix, section M, we at least prove that
E = H (N + 1)− H (N ), where H (N + 1) and H (N ) are the
triple Hamiltonians for systems of sizeN + 1 and N, respectively,
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Fig. 2. Phase diagram in the social balance order parameter, f, as a function
of α and β for individuals with G = 9 (A) and G = 27 (B) different opinions
they consider for link updates. Social balance (yellow) emerges for a wide
range of parameters. Triangle numbers are shown for (+ + +) in C, (+ − −)

in D, (+ + −) in E, and (− − −) in F. The two types of social balance appear
in different regions (C and D) in parameter space. Unbalanced triangles
(+ + –) only appear for small β values, and (– – –) is marginal in numbers.
We present the phase diagrams of the normalized global energy, E, in G
and the average correlation between opinions of an agent with that of its
friends, C, in H. G = 27 in C–H. Results are averaged over 100 runs on regular
ring networks with K = 8 and N = 1000.

in the special G = 1, α= 0.5 case and for fully connected net-
works.

Triangle Statistics. The balanced phase (in a steady state) contains
different proportions of triads of the types (+ + +) and (+−−).
In particular, the state with a majority of (+ + +) triads can
be distinguished from the one consisting of mostly (+−−) by
comparing nΔ3 with nΔ1 . nΔ� denotes the number of triads with
� positive links. In Fig. 2 C–F, we show the respective number of
triads as a function of α and β and find a dynamical transition
between two types of balanced states: one with nΔ3 � n+ (the
yellow region in Fig. 2C) and another with nΔ1 � 0.9n+ (the
yellow region in Fig. 2D). This transition does not affect the
numbers of unbalanced triads in Fig. 2 E and F. From the α
dependence of the level of balance and the relative fractions
of different triads in Fig. 3 A and B, respectively, we find that
such transition necessarily happens after a critical value αc is
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Fig. 3. (A) Order parameter, f, for β = 0, 2, 5, 8. (B) Fraction of triads of
different types for fixed β = 8. (C) Fraction of positive links, ρ+, in the steady
states for various β = 0, 2, 5, 8 (in the main panel) and fraction of (+ + +)

triads as function of ρ+ for different β (Inset). Inset with log–log scale
shows that to a good degree, nΔ3/M can be approximated by ρ3

+, where
M = n+ + n− is the total number of triangles. (D) Analytical solution for the
steady-state values of ρ+ (in the main panel) and f (Inset) from Eq. 2 within
the uncorrelated link approximation as functions of α and β, respectively. All
results from simulations in A–C are averaged over 100 runs, K = 8, G = 27,
and N = 1000.

crossed. There, we observe that the fraction of (+ + +) triads
(+−−) continuously increases (decreases) as α increases.
Closer inspection suggests that this transition can be associated
with the change in the fraction of positive links, ρ+, with
increasing α. In fact, ρ+ is always a monotonically increasing
function of α as seen in Fig. 3C. The curves of ρ+ for various β
all intersect at α= 0.5, where ρ+ = 0.5. Since links in the model
are generally correlated, the number of triads with all positive
links, nΔ3 , is not equal to ρ3+

(
n+ + n−

)
, which would only be

valid for random networks with uncorrelated links. However, in
Fig. 3 C, Inset, we see that nΔ3/

(
n+ + n−

)
is well approximated

by ρ3+, meaning that it increases with increasing ρ+ in a similar
fashion as for uncorrelated networks. Based on this observation,
we present an analytical approach, where we assume that links
are uncorrelated. In SI Appendix, section D, we show that this
approximation leads to the following equations for the stationary
values of ρ+ and f in the limit of G →∞:

ρ∗
1− ρ∗

= exp
{
−2βK

G

(
1− α− ρ∗

)}
, f∗ = (2ρ∗ − 1)3 .

[2]
Fig. 3D shows that while the analytical solutions for ρ+ are not

identical with the numerical values, they reproduce the qualita-
tive α dependence of ρ+ observed in Fig. 3C reasonably well.
The analytical approach also yields a qualitative understanding of
the unbalanced–balanced phase transition in terms of the order
parameter f as shown in Fig. 3 D, Inset, where f starts to increase
from zero above a critical value βc . More details on the analytical
computation are in SI Appendix, section D.

In SI Appendix, section E, we show the z scores for triangle
frequencies as a function of α and β on the ring topology
(Table 1). The zi score for triads with i positive links is defined
as the difference between the observed triangle numbers
and that expected from a null model with reshuffling edge
signs, normalized by the SD of the latter. A score of 10
means that this difference is 10 times larger than the SD

Table 1. The z scores of the triangle statistics of real social net-
works of the Pardus society (first line) in comparison with various
model predictions

Social networks (+ + +) (+– –) (+ + –) (– – –)

Pardus 71 47 –112 –5
Model on ring [5 48] [13 71] [–69 –8] [–54 8]
Model on Pardus [11 87] [–9 242] [–244 –30] [–69 2]
Optimal (α∗, β∗) Pardus 52 46 –99 –8

We show minimal and maximal z scores observed in simulations over a
wide (α, β) parameter region in brackets for the presented model on a ring
network with K = 8, N = 1000 (second line), and the Pardus society topology
(third line). The fourth line presents the z scores for model simulations on the
Pardus network at the optimal parameters (α∗, β∗) = (0.8, 0.4). We fixed
G = 9 in all of these computations.

(SI Appendix, section E). Table 1 contains the ranges of the zi
scores ([min max] for the covered parameter range of α and β)
for the ring topology. z1 and z3 are strongly positive, ranging from
values of 5 to 71; z0 and z2 are negative between –69 and 8. The
zi scores also reflect the different phases (SI Appendix, Fig. S5).

Cluster Size Distribution of Positively Linked Groups. We next focus
on the size distribution of positive clusters (of friends), where
nodes are connected by positive links only. This distribution pro-
vides important information about the fragmentation/cohesion
of societies (40). A broad distribution of cluster sizes indicates a
fragmented structure; for a cohesive society, one would expect
a few large clusters of macroscopic size that might percolate
the system. Remarkably, we find that the balanced–unbalanced
phase transition has a substantial effect on the positive cluster
size distribution. Fig. 4A shows the size distributions in the
balanced phase (β = 3; orange) on a regular ring topology with
K = 8. We find a clear exponential decay of cluster sizes with the
decay rate λ=−0.0116. Due to fluctuations in the unbalanced
phase, where the system remains active even after very long
simulation times, links still undergo many changes, resulting in
the appearance of large (and constantly restructuring) clusters.
Distributions broaden in the unbalanced phase (β = 1) (Fig. 4A,
blue) but remain exponential.

Model Predictions on Real Topologies and Empirical Validation. We
now use the model to predict triangle statistics on real social
topologies and compare them with the actual situation. To this
end, we consider the society of the Pardus game, for which we
have temporal signed graphs available that contain all friendship
and enmity links between the players (5). From these data, we
extract the (unsigned) contact network between a subset of 4,232
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Fig. 4. (A) Distribution of cluster sizes of positively linked individuals on a
regular ring network with K = 8; β = 3 (β = 1) corresponds to the balanced
(unbalanced) phase. N = 10, 000, G = 9, and α = 0.5. We find exponential
distributions of the form P(s) ∝ e−λs with λ = −0.0116 for β = 3 and
λ = −0.0027 for β = 1. (B) Empirical size distribution of clusters detected
by the generalized Louvain (60) in the Pardus society (orange) and the
corresponding model prediction from simulations on a network with the
same topology as the Pardus society (blue). Results are averaged over 100
simulations for G = 9, α = 0.7, and β = 0.25. The Pardus data are collected
from the last 100 network snapshots (details are in Materials and Methods).
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active players (Materials and Methods) and use its actual topology
as an input network for our model. We compute the balance,
f ; the fraction of positive links, ρ+; the number of triangles of
different types; and the zi scores. Results are shown in Fig. 5
for a range of α and β and a fixed value, G = 9. This value was
chosen for practical reasons (reasonable simulation times)—but
it is also useful for testing the model’s prediction. Our result
remains robust with respect to other values of G. It is important
to remark that we do not infer the opinions of the game players
from the dataset but randomly assign them a value of 1 or −1 in
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Fig. 5. Model predictions for (A) the order parameter, f, and (B) the fraction
of positive links, ρ+, as functions over a wide parameter region (α, β) on
networks whose topology is identical to those in the Pardus society. The
structure of these phase diagrams is similar to what was obtained for the
ring topology. (C–F) Fractions of different triad types. A transition between
two types of balanced states occurs—very similar to the ring topology. (G–
J) The z scores of these triads. Results are averaged over 100 independent
simulations of the model for G = 9. For every simulation, we generate an
ensemble of 100 null models with the Pardus topology and random link
signs, where ρ+ is fixed to that observed in this simulation. Results are
first averaged over this ensemble of null models and then, over the set
of simulation runs. The marker X denotes the parameter values (α∗, β∗) =
(0.8, 0.4) that yield the closest z score distance to the real network.

the simulations. We find a similar situation as in Fig. 2 A and B
(i.e., a shifted phase diagram of f in Fig. 5 A and B), suggesting an
effect of a heterogeneous topology on the balanced–unbalanced
transition. A dynamical transition in the proportions of (+ + +)
and (+−−) triangles also occurs in Fig. 5 C–F, similarly to what
was obtained in Fig. 2 C–F. The ranges of zi scores over the
covered parameter region are found in Table 1 (third line), and
the full computation is shown in Fig. 5 G–J.

We compute the z scores by using a null model that is gener-
ated from reshuffling the links’ signs on this simulated network
(details are in SI Appendix, section E). As for the ring topology,
balanced triads have high positive z scores, indicating strong
overrepresentation. We also find a wider range of z scores than
for the ring topology. Using a procedure of finding the minimal
Euclidean distance between the empirical values of the z scores
in the actual Pardus society and that obtained in the simulated
networks, we find the optimal parameters (α∗,β∗) = (0.8, 0.4) as
the best estimation (SI Appendix, section E). The corresponding
values of the zi scores at this point are marked with an “X” in
Fig. 5 G–J and are mentioned in Table 1 (fourth line). Note the
similarity to the actual zi scores of the Pardus society (first line).

Next, we compute the clusters in each of the last 100 network
snapshots of the actual Pardus network with the generalized
Louvain algorithm (60) (SI Appendix, section F). The empirical
cluster size distribution of Pardus is compared with that which
emerges from the model when running on the Pardus society
topology. Note a difference between positive clusters and those
detected by the generalized Louvain algorithm. The former con-
sists of only positive links, while the latter generally contains a
small number of negative links. We show the result in Fig. 4B,
where without explicit knowledge about the opinions of Pardus
game players, for simplicity, we chose G = 9 and arrive at the
values of α= 0.7, β = 0.25 as the point at which the simulation
yields f closest to the empirical value f = 0.69.

Discussion
Social balance theory is widely believed to be one of the most im-
portant mechanisms that lead to structural stability of societies.
Here, we offer an alternative explanation of the emergence of
balanced triads based on dyadic relations between individuals
who establish their relations through a standard homophily-
based mechanism. Individuals tend to minimize their own social
stress levels by updating opinions and social links on the same
timescale. Within a Hamiltonian framework, we find a phase
transition from an unbalanced to a balanced regime when de-
creasing social temperature, T = β−1. The latter captures the
preference for opinion and link updates that lower social stress.

The transition is remarkably robust under changes in the net-
work size and topology. On the ring topology, it exhibits a simple
scaling dependence on the average degree, K, and the number of
independent opinions, G. This shows that generically balanced
situations are expected if individuals attempt to lower their stress
in dyadic homophily-based interactions. The robustness of the
model makes it immediately applicable to real situations.

Inside the balanced phase, a second transition occurs between
two types of steady states, as the parameter, α, controlling the
relative weights of positive and negative interactions varies. This
explains the dominance of different types of balanced triangles
in the balanced phase as a consequence of the importance of
friendship to individual stress. A so-called “paradise” society,
where only positive links exist, is unreachable unless friendship
outweighs enmity in the stress calculation.

Remarkably, we find small parameter regions where the trian-
gle statistics for four triangle types are simultaneously consistent
with what is observed in real societies. The probability to obtain
such results by pure chance is practically zero. Further, we show
that the empirical values of the triangle z scores fall within a range
that is predicted by the model. The model also allows us to predict
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clusters of predominantly positively linked individuals. While for
the regular ring topology, we find exponential distributions, we
find more involved functional forms for realistic network topolo-
gies. Again, the empirical distribution of cluster sizes follows
these predictions to a large extent.

There exist important relations to previous models on social
balance emerging from the interplay between homophily and the
dynamics of multidimensional opinions (in particular, to refs.
24 and 26). Here, it is important to stress the main idea of the
work; we believe that it is generally very hard for individuals
to factor in the triadic relations between their social contacts
in the process of social tie formation. Even though we believe
(even from everyday experience) that triadic information plays a
role for very close relationships, it is unrealistic to base general
link formation in societies on triadic information due to the
amount of information processing that would be necessary. Our
simple model thus focuses on dyadic relations only (tendency
to be friends with those similar and enemies with those dis-
similar) rather than on balancing social triads (as, e.g., in ref.
24). Note that the presented model also uses the same Hebbian
learning rule (61) that defines the link weights through a cor-
respondence between the states of its nodes, as in ref. 26. In
contrast to their use of a parameter that controls the relative
rate of this learning process in the opinion updates, we do not
assume such a timescale separation. Coevolution on comparable
timescales of social interactions and opinions leads to faster
convergence of social balance and to a much reduced probability
of getting trapped in partially balanced states, as was observed
in ref. 26.

The model is certainly minimalistic in various aspects. It does
not consider asymmetries in social relations nor correlations be-
tween different dimensions of opinions. It uses only binary rela-
tionships derived from binary opinions. An obvious extension to
the model would be to consider opinions that are randomly drawn
from continuous distributions, Pi(s

(l)), with l = 1, 2, · · · ,G and
to derive weighted (and signed) links by modifying the homophily
rule to Jij =

∑G
l=1

´
ds(l)Pi(s

(l))Pj (s
(l)), as proposed in ref. 62.

The model treats contributions to social relations from opinions
on different issues equally, while in reality, topics that might
influence the relations between two people are generally not of
equal importance. It might happen that people who are similar on
many topics still encounter massive tension when they differ on
one extremely important topic. This can be captured by defining
Jij =

∑G
l=1 wl

´
ds(l)Pi(s

(l))Pj (s
(l)), where wl is the relative

weight of the lth opinion dimension. Moreover, the interaction
Jij can also depend on the distance between i and j in some
(hidden) metric space in which they are embedded. Since such
a node embedding can result in a high density of triangles in
unsigned graphs (63), it would be interesting to understand how
a properly defined underlying geometry can affect the presented
results for triad formation in signed graphs. Also, the model has
not yet taken into account a set of constraints on the update of
one opinion due to the existence of a belief system that could be
represented as a network of relations among opinions (64–66).
Another simplification is that we restrict ourselves to a fixed base
network topology, neglecting the temporal evolution of social

network structures (67) [in particular, those that involve triadic
closure (68, 69)].

An interesting direction to consider in future work is to gener-
alize the presented framework of dyadic homophilic interactions
that explains balanced triad formation to processes of cohesive
group formation. In this respect, the good agreement between
the empirical distribution of cluster size in Pardus and that ob-
tained from the model is much encouraging. It seems feasible to
extend the model to a situation of opinion formation processes
in groups, where individuals or institutions have a set of opinions
or values. It is conceivable that decision—or voting—behavior is
influenced by the overlap of these opinion vectors, similar to what
we have shown here. In an exploratory exercise, we computed the
triad statistics of a network derived from the voting behavior of
the United Nations General Assembly that includes the voting
patterns of United Nations members in 74 sections from 1946
to 2019 (70). We find z scores close to the range of the model
outputs. Details are in SI Appendix, section G.

Materials and Methods
Details of Networks from the Pardus Dataset. The data of the Pardus game
contain lists of friendships and enmities of the game players over a period
of 1,235 d. Based on these lists, we can construct the temporal network
at consecutive time windows as well as study the evolution of triangle
numbers and z scores. At the last time point, the network consists of 4,232
nodes, 25,699 negative directed links, and 39,095 positive directed links.
We first make these directed links undirected as follows; an undirected
unweighted link between two nodes is established whenever there exists
at least one directional link between those nodes in the original lists. We
then assign 1 (−1) to the links created in the previous step according to the
signs of the corresponding (directed) links, and in doing that, we remove
all those links whose signs are different from their reversely directed links.
The average degree of the obtained network is K � 24.7. More details of
network characteristics are in refs. 5 and 52.

Additional Order Parameters. We use two additional measures to quantify
the transition between balanced and unbalanced phases that would also
work for network topologies that do not have triangles, such as trees,
bipartite graphs, or square lattices. The pairwise correlation between two
connected nodes can always be defined. Since at low temperatures, individ-
uals prefer to reduce their stress by becoming more similar to their friends
over time, one would expect that for any agent i, the (normalized) similarity
between i and a friend of it j, si · sj/G, actually increases from a slightly
positive value toward one as the system transits from the unbalanced to the
balanced phase. We define an average similarity score of an individual with
his friends as follows:

C =
1

NG

∑
i∈N∗

∑
j:Jij=1

si · sj

N+
i

, [3]

where N∗ denotes the set of nodes of which each has at least one friend,
N∗ := {i ∈ V|∃ j ∈ V with Jij = 1}, and where N+

i is the set of friends of i,
N+

i := {j ∈ V|Jij = 1}.

Data Availability. Previously published data were used for this work (70).
All other data are included in the manuscript and/or SI Appendix.
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