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Universal size ratios of Gaussian 
polymers with complex 
architecture: radius of gyration vs 
hydrodynamic radius
Khristine Haydukivska1,4, Viktoria Blavatska1,4 & Jarosław Paturej2,3,4*

We study the impact of arm architecture of polymers with a single branch point on their structure 
in solvents. Many physical properties of polymer liquids strongly dependent on the size and shape 
measures of individual macromolecules, which in turn are determined by their topology. Here, we 
use combination of analytical theory, based on path integration method, and molecular dynamics 
simulations to study structural properties of complex Gaussian polymers containing f c linear branches 
and f r closed loops grafted to the central core. We determine size measures such as the gyration 
radius Rg and the hydrodynamic radii RH , and obtain the estimates for the size ratio Rg/RH with 
its dependence on the functionality f = f

c
+ f

r of grafted polymers. In particular, we obtain the 
quantitative estimate of the degree of compactification of these polymers with increasing number 
of closed loops f r as compared to linear or star-shape molecules of the same total molecular weight. 
Numerical simulations corroborate theoretical prediction that Rg/RH decreases towards unity with 
increasing f. These findings provide qualitative description of polymers with complex architecture in θ 
solvents.

Polymer macromolecules of complex branched structure attract considerable attention both from academical1,2 
and applied3,4 perspective, being encountered as building blocks of materials like synthetic and biological gels5, 
thermoplastics6, melts and elastomers7,8. High functionality of polymers provides novel properties with applica-
tions in diverse fields like drug delivery9, tissue engineering10, super-soft materials11, and antibacterial surfaces12 
etc. On the other hand, multiple loop formation in macromolecules is often encountered and plays an impor-
tant role in biological processes such as stabilization of globular proteins13 or transcriptional regularization of 
genes14. In this concern, it is of fundamental interests to study conformational properties of complex polymer 
architectures.

In statistical description of polymers, a considerable attention is paid to the universal quantities describing 
equilibrium size and shape of typical conformation adapted by individual macromolecule in a solvent15,16. In 
particular, many physical properties are manifestations of the underlaying polymer conformation, including the 
hydrodynamic properties of polymer fluids17, the folding dynamics and catalytic activity of proteins18 etc. As 
a size measure of a single macromolecule one usually considers the mean square radius of gyration R2

g , which 
is directly measurable in static scattering experiments19,20. Denoting coordinates of the monomers along the 
polymer chain by �rn , n = 1, . . . ,N , this quantity is defined as:

and is thus given by a trace of gyration tensor Q21. Here and below, 〈(. . .)〉 denotes ensemble average over possible 
polymer conformations. Another important quantity that characterizes the size of a polymer coil is hydrodynamic 
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radius RH , which is directly obtained in dynamic light scattering experiments22–24. This quantity was introduced 
based on the following motivation25. According to the Stokes–Einstein equation, the diffusion coefficient D of a 
spherical particle of radius Rs in a solvent of viscosity η at temperature T is given by:

where kB is Boltzmann constant. In order to generalize the above relation for the case of molecules of more 
complex shape, their center-of-mass diffusion coefficient D is given by Eq. (2) with Rs replaced by RH . The latter 
is given as the average of the reciprocal distances between all pairs of monomers26:

Namely, RH is related with the averaged components of the Oseen tensor Hnm characterizing the hydrodynamic 
interactions between monomers n and m27. To compare R2

g and R−1
H  , it is convenient to introduce the universal 

size ratio

which does not depend on any details of chemical microstructure and is governed by polymer architecture. In 
the present paper we restrict our consideration to the ideal (Gaussian) polymers, i.e. monomers have no excluded 
volume. This to a certain extent corresponds to the behavior of flexible polymers in the so-called θ-solvents. Note 
that our theoretical approach is not capable to correctly capture structural properties of more rigid branched 
polymers like dendrimers or molecular bottlebrushes. The intrinsic rigidity of these macromolecules is controlled 
by steric repulsions between connected branches or grafts. This approach allows to obtain the exact analytical 
results for the set of universal quantities characterizing conformational properties of macromolecules. In particu-
lar, for a linear Gaussian polymer chain the exact analytical result for the ratio (4) in d = 3 dimensions reads28–30:

The universal ratio of a Gaussian ring polymer was calculated in Refs. 29,31,32 and is given by

The validity of theoretically derived ratios ρchain and ρring was confirmed in several simulation studies 30,32,33.
The distinct example of branched macromolecule is the so-called rosette polymer34, containing f c linear 

chains and f r closed loops (rings), radiating from the same branching point (see Fig. 1). Note that for f r = 0 
one restores architecture of a star polymer with f c functionalized linear chains radiating from a central core, for 
which an exact analytical result is known for the size ratio (Ref.26):

The estimates for ρstar have been also obtained by numerical Monte-Carlo simulations35. Using molecular dynam-
ics (MD) simulations, Uehara and Deguchi derived the universal size ratios for macromolecules such as single 
ring ( f c = 0 , f r = 1 ), tadpole ( f r = 1 , f c = 1 ) and double ring ( f r = 2 , f c = 0)32. The overview of existing 
literature data for universal size ratios obtained in analytical ρtheory and numerical ρsim investigations are listed 
in Table 1. Note large discrepancy between previous numerical study of star polymers35 and the theoretical result 
of Eq. (7). This significant difference between theory and simulations is due to too short chains that were used 
in Ref. 35 with maximum degree of polymerization N = 150 . As it will be shown the finite-size effect of polymer 
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Figure 1.   Schematic presentation of rosette polymer topology comprised f r = 4 rings (green) and f c = 8 
linear chains (red) grafted to a central core (black).
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chains strongly affects measured value of ρ . In our numerical study we calculate ρ in the asymptotic limit. For 
this purpose we simulated long polymer chains with degree of polymerization equal to N = 6400.

The aim of the present work is to extend the previous analysis of rosette-like polymers34, by thoroughly study-
ing their universal size characteristics. For this purpose we apply the analytical theory, based on path-integration 
method, and extensive numerical molecular dynamics simulations. The layout of the paper is as follows. In the 
next section, we introduce the continuous chain model and provide the details of analytical calculation of the 
universal size ratios ρ for various polymer architectures applying path integration method. In Sect. 3 we describe 
the numerical model and details of MD simulations. In the same section we present numerical results and com-
pare them with our theoretical predictions. We draw conclusions and remarks in Sect. 4.

Analytical approach
The model.  Within the frame of continuous chain model36, a single Gaussian polymer chain of length L 
is represented as a path �r(s) , parameterized by 0 < s < L . We adapt this model to more complicated branched 
polymer topologies, containing in general f c linear branches and f r closed rings (see Fig. 1). In the following, let 
us use notation f = f c + f r for total functionality of such structure. The weight of each ith path ( i = 1, . . . , f  ) 
is given by

The corresponding partition function of rosette polymer is thus:

where D {�r} denotes multiple path integration over trajectories �ri(s) ( i = 1, . . . , f  ) assumed to be of equal length 
Li = L , the first product of δ-functions reflects the fact that all f c + f r trajectories start at the same point (central 
core), and the second δ-functions product up to f r describes the closed ring structures of f r trajectories (their 
starting and end points coincide). Note that (9) is normalised in such a way that the partition function of the 
system consisting of f c + f r open linear Gaussian chains (star-like structure) is unity. The expression for partition 
function of rosette-like polymer architecture have been evaluated in Ref. 34 and in Gaussian approximation reads:

where d denotes spatial dimensionality. Within the frame of presented model, the expression for the mean square 
gyration radius from Eq. (1) can be rewritten as

whereas the expression (3) for hydrodynamic radius reads:

where 〈(. . .)〉 denotes averaging over an ensemble of all possible configurations defined as:
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Table 1.   Literature data for the universal size ratio for different polymer topologies, derived using analytical 
theory ρtheory and numerical simulations ρsim . The theoretical values for tadpol and double ring architectures 
were calculated on the basis of our general analytical result, cf. Eq. (28).

Topology f c f r ρtheory ρsim

Chain 1 0 1.5045 Eq. (5) 1.5045± 0.000533

Ring 0 1 1.253 Eq. (6) 1.253± 0.01332

Star 3 0 1.40 Eq. (7) 1.1135

Star 4 0 1.33 Eq. (7) 1.0435

Tadpol 1 1 1.415 Eq. (29) 1.380± 0.02132

Double ring 0 2 1.217 Eq. (30) 1.215± 0.01132
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Calculation of hydrodynamic radius and universal size ratio.  The crucial point in the calculation of 
the hydrodynamic radius is utilization of the following equality37:

where Ŵ(x) is Gamma function. Applying the above expression to Eq. (12) allows to rewrite the mean reciprocal 
distance from the definition of RH as

with notation

Below we will apply path integration approach to calculate the mean reciprocal distances.
Exploiting the Fourier-transform of the δ-functions in definition (13)

we get a set of wave vectors �qj with j = 1, . . . , f r associated with f r closed loop trajectories, which is an important 
point in following evaluation. To visualize different contributions into �|�ri(s2)− �rj(s1)|−1� , it is convenient to use 
the diagrammatic technique (see Fig. 2). Taking into account the general rules of diagram calculations15, each 
segment between any two restriction points sa and sb is oriented and bears a wave vector �pab given by a sum of 
incoming and outcoming wave vectors injected at restriction points and end points. At these points, the flow of 
wave vectors is conserved. A factor exp

(

−pab
2(sb − sa)/2

)

 is associated with each segment. An integration is 
to be made over all independent segment areas and over wave vectors injected at the end points.

To make these rules more clear, let us start with diagram (1), corresponding to the case when both points 
s1 and s2 are located along any linear arm of rosette polymer. The vector �k is injected at restriction point s1 and 
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Figure 2.   Diagrammatic presentation of contributions into �R−1

H � according to (12). Solid lines are schematic 
presentation of polymer paths, arrows denote point s1 , s2.
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the segment s2 − s1 is associated with factor exp
(

−k 2(s2 − s1)/2
)

 . Next step is performing integration over k. 
Passing to d-dimensional spherical coordinates, we have:

and thus integration over k can be easily performed

The analytic expression corresponding to contribution from diagram (1) thus reads

Diagram (2) describes the situation when restriction points s1 and s2 are located along two different linear 
arms of rosette polymer. We thus have a segment of length (s2 + s1) between them, associated with factor 
exp

(

−k 2(s2 + s1)/2
)

 . After performing integration over k we receive

In the case (3), both s1 and s2 are located on the closed loop, let it be the loop with j = 1 . Here, we need to 
take into account the wave vector �q1 , “circulating” along this loop, so that three segments should be taken 
into account with lengths s1 , s2 − s1 , and L− s2 , correspondingly, with associated factors exp

(

−q1
2s1/2

)

 , 
exp

(

−(q1 + k) 2(s2 − s1)/2
)

 , exp
(

−q 2(L− s2)/2
)

 . Integration over the wave vector q1 gives

After performing final integration over k we receive

Following the same scheme, we receive analytic expressions, corresponding to diagrams (4) and (5) on Fig. 2:

Note that each diagram in Fig. 2 is associated with the corresponding combinatorial factor. Namely, the contribu-
tion (1) in above expressions is taken with the pre-factor f c , contribution (2) with f

c(f c−1)
2  , (3) with f r , (4) with 

f r (f r−1)
2  and the last contribution (5) with the pre-factor f r f c . Summing up all contributions from Eq. (25) with 

taking into account corresponding pre-factors, on the base of Eq. (15) we finally obtain the expression for the 
hydrodynamic radius of a rosette structure:
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The expression for the mean square gyration radius of a rosette architecture is34:

Finally, using Eqs. (26) and (27), we calculate the the universal size ratio (4) of rosette-like polymer architecture 
in Gaussian approximation:

Substituting d = 3 in expression (28), for f r = 0 , both at f c = 1 and f c = 2 we restore the universal size ratio 
of a linear polymer (5), whereas f c > 2 and f r = 0 gives the expression for a star polymer (7). For f c = 0 and 
f r = 1 we reproduce the known analytical expression of a single ring from Eq. (6). Consequently f c = 0 and 
f r = 2 Eq. (28) provides the formula for universal size ratio of a star comprised of two ring polymers:

For f c = 1 and f r = 1 we find analytic expression for the so-called tadpole architecture:

In Fig. 3 we plot calculated theoretical values of the universal size ratio vs number of functionalized chains 
for stars comprised of linear polymers with f c > 0 , f r = 0 (red symbols) and ring polymers f r > 0 , f c = 0 
(blue) as well as rosette polymers with equal number of grafted linear chains and rings f r = f c > 0 (purple). 
For all architectures we observe decrease in ρ with increasing functionality. In the next subsection we compare 
our theoretical predictions with the result of MD simulations.

Numerical approach
The method.  Numerical data in this work have been obtained from MD simulations. We consider simple 
three-dimensional numerical model of a rosette polymer consisting of arms which are f c linear chains and/or 
f r ring polymers. Each arm is composed of N sizeless particles of equal mass m connected by bonds. We study 
ideal (Gaussian) conformations of rosette polymers corresponding to a certain extent to the conformations of 
real rosette polymers at dilute θ solvent conditions. In our numerical model the connectivity along the polymer 
chain backbone is assured via harmonic potential

where k = 200 kBT/b2 is the interaction strength measured in units of thermal energy kBT and and the equi-
librium bond distance r0 = b.
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The molecular dynamics simulations were performed by solving the Langevin equation of motion for the 
position �ri = [xi , yi , zi] of each monomer,

which describes the motion of bonded monomers. Forces �Fi in Eq. (32) above are obtained from the harmonic 
interaction potential between (Eq. 31). The second and third term on the right hand side of Eq. (32) is a slowly 
evolving viscous force −ζ �̇ri and a rapidly fluctuating stochastic force �FRi  respectively. This random force �FRi  is 
related to the friction coefficient ζ by the fluctuation-dissipation theorem ��FRi (t)�FRj (t′)� = kBTζ δijδ(t − t ′) . 
The friction coefficient used in simulations was ζ = 0.5mτ−1 where τ = [mb2/(kBT)]1/2 is the unit of time. 
A Langevin thermostat was used to keep the temperature constant. The integration step employed to solve the 
equations of motions was taken to be �t = 0.0025τ . All simulations were performed in a cubic box with periodic 
boundary conditions imposed in all spatial dimensions. We used Large-scale Atomic/Molecular Massively Paral-
lel Simulator (LAMMPS)38 to perform simulations. Simulation snapshots were rendered using Visual Molecular 
Dynamics (VMD)39.

(32)m�̈ri = �Fi − ζ �̇ri + �FRi , i = 1, . . . , fN ,

1 2 3 4 5 6 7 8

f
1

1.1

1.2

1.3

1.4

1.5

1.6

ρ

linear
rosette
ring

Figure 3.   Summary of theoretical results for universal size ratio ρ as given by (28) vs functionality f = f c + f r 
for different polymer topologies. Data for architectures containing: only linear chains (star-like polymer with 
f r = 0 ) as function of f = f c (red symbols), only ring polymer (with f c = 0 ) as function of f = f r (blue 
symbols) and “symmetric” rosette structure with equal number of rings and linear branches f = f r + f c (purple 
symbols).

Figure 4.   Molecular dynamics data for the universal size ratio ρ of linear chains (red symbols) and ring 
polymers (blue symbols) plotted as a function of correction-to-scaling variable N−1/2 with corresponding 
simulation snapshots for polymer architectures with degree of polymerization N = 6400 . Solid lines represent 
fitting functions of the general form given in Eq. (33). Horizontal dotted lines correspond to asymptotic values 
ρ∞ predicted by theory, cf. Eqs. (5) and (6).
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Results.  Simulations of rosette polymers were performed for the following number of monomer beads per 
arm N = 100, 200, 400, 800, 1600 and 6400. The number of arms for star polymers composed of solely linear 
chains (i.e. with f r=0) and ring polymers (i.e. with f c = 0 ) were varied in the range between 1 to 4. In the case of 
rosette polymers which are hybrid polymer architectures comprised of linear chains and ring polymers we con-
sidered two arm functionalities with f c = f r = 1 and 2. To increase conformational sampling each simulation 
was carried out with 50 identical molecules in a simulation box. In the course of simulations the universal size 
ratio was measured, cf. Eq. (4). In the numerical calculation of quantities like ρ a crucial aspect is finite degree 
of polymerization N that we are dealing with in simulations, while theoretically obtained values of ρ hold in the 
asymptotic limit N → ∞ . Thus, the finite-size effects (or corrections to scaling) should be appropriately taken 
into account. For the size ratio of an ideal linear chain, this correction is given by

Figure 5.   Molecular dynamics data for the universal size ratio ρ of star polymers comprised of a) linear, b) ring 
polymers and c) rosette polymers plotted as a function of correction-to-scaling variable N−1/2 . Data displayed 
for different amount of arms f c and f r as indicated. For rosette polymers data are for symmetric number of 
arms f c = f r . Solid lines represent fitting functions according to Eq. (33). Horizontal dotted lines correspond 
to asymptotic values obtained from analytical theory, see Table 2. Insets show simulation snapshots for with 
N = 6400 and: (a) f c = 3 , (b) f r = 2 and (c) f c = f r = 1.
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where ρ∞ is the asymptotic value obtained at N → ∞ , a is non-universal amplitude, � is the correction-to-
scaling exponent for θ-solvent is � = 1/230 whereas for good solvent conditions is ≃ 0.5333. In our numerical 
analysis we use Eq. (33) to obtain the universal size ratio in the asymptotic limit for all considered architectures. 
For this purpose we plot ρ vs correction-to-scaling term N−1/2 and get ρ = ρ∞ for N → ∞.

In Fig. 4 we display the results of our MD simulations for two “benchmark” systems which are Gaussian linear 
chain (red circles) and Gaussian ring (blue circles). For both architectures systematic increase in the size ratio 
is observed with increasing value of N. In the asymptotic limit N → ∞ we obtain ρchain = 1.499± 0.005 and 
ρring = 1.244± 0.004 . These numerical values with very good accuracy reproduce known theoretical results. 
The latter are given by Eq. (5) for linear chains and by (6) for rings. The complete list of numerically derived 
universal size ratios and their comparison to theoretical values can be found in Table 2.

In Fig. 5 we show numerically derived universal size ratios as a function of N−1/2 for more complex architec-
tures. We investigated conformations of stars comprised of linear chains, stars of ring polymers and rosette poly-
mers with equal number of grafted linear and ring chains. For all architectures we observe systematic approach-
ing to asymptotic values predicted by theory with increasing value of N per arm. For stars of linear chains with 
functionality f c = 3 and 4 (cf. Fig. 5a) simulations provide the following universal size ratios: 1.395± 0.006 and 
1.336± 0.006 . Both values are with very good agreement to the theoretical prediction given by Eq. (7). Note 
that the values of ρ calculated in the course of our simulations are much closer to the analytical theory results as 
compared to existing numerical data35. For stars comprised of cyclic macromolecules (cf. Fig. 5b) we reproduce 
the theoretical value of Eq. (29) for double ring architecture ( f r = 2 ) as well as for stars with larger number of 
grafted rings, cf. Eq. (28) with f c = 0 and f r = 3 or 4. Namely, we get 1.204± 0.010 for f r = 2 , 1.165± 0.011 
for f r = 3 and 1.135± 0.012 for f r = 4 . For the tadpole architecture, the simplest rosette polymer which is 
comprised of f c = 1 and f r = 1 arms (see snapshot in Fig. 5c), we obtain the size ratio of 1.401± 0.008 which 
matches theoretically predicted value for this type of polymer from Eq. (30). For rosette polymers with f c = 2 
and f r = 2 our simulations provide 1.295± 0.018 which is comparable with the corresponding value calculated 
from the formula given in Eq. (28). The full list of calculated values of ρ is in Table 2.

Conclusions
We have studied by combination of analytical theory and molecular dynamics simulations conformational prop-
erties of rosette polymers which are complex macromolecules consisting of f c linear chains (branches) and f r 
closed loops (rings) radiating from the central branching point. Our focus was on characterizing structure of 
ideal polymer conformation with no excluded volume interactions. For this purpose we investigated basic struc-
tural quantities such as the mean square radius of gyration R2

g , the hydrodynamic radius R−1
H  and most impor-

tantly the universal size ratio ρ ≡
√

R2
g/RH . Our calculations demonstrated gradual decrease in ρ with increasing 

functionality f = f c + f r of grafted polymers. The analytical results are in perfect agreement with our numerical 
simulations data. Since both quantities R2

g and RH are directly accessible via correspondingly static and dynamic 
scattering techniques we hope that our results will stimulate further experimental studies on the behavior of 
complex polymer architectures in solutions.
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