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The change in the feeding system can greatly improve the growth performance
of the yak (Bos grunniens), an important livestock species in the plateau region.
Here, we comprehensively compared the effects of different feeding systems on the
growth performance and ruminal development of yaks, and investigated the effects
of ruminal microorganisms and metabolites using the 16S rRNA gene sequencing
and liquid chromatograph–mass spectrometer (LC-MS) technologies. We found that
compared to traditional grazing feeding, house feeding significantly improved the growth
performance (such as average daily gain and net meat weight) and rumen development
of the yaks. At the genus level, the abundance of Rikenellaceae RC9 Gut group,
Christensenellaceae R-7 group, Lachnospiraceae NK3A20 group, Ruminococcaceae
UCG-014, and Prevotellaceae UCG-003 showed significant differences and was
closely related to rumen development in the two distinct feeding systems. Also,
metabolomics revealed that the change in the feeding system significantly affected
the concentration and metabolic pathways of the related rumen metabolites. The
metabolites with significant differences were significantly enriched in purine metabolism
(xanthine, adenine, inosine, etc.), tyrosine metabolism (L-tyrosine, dopaquinone, etc.),
phenylalanine metabolism (dihydro-3-caumaric acid, hippuric acid, etc.), and cAMP
signaling pathway [acetylcholine, (-)-epinephrine, etc.]. This study scientifically support
the house fattening feeding system for yaks. Also, our results provide new insights
into the composition and function of microbial communities that promote ruminal
development and in general growth of the yaks.

Keywords: yak, feeding system, rumen, microorganism, metabolomics, growth

INTRODUCTION

The yak (Bos grunniens), an outstanding livestock of Qinghai-Tibet Plateau and adjacent areas,
provides basic materials of living to the people on the plateau. For several centuries, yak has been
an integral part of plateau history and culture, making a great contribution to the Asian plateau
economy (Liang et al., 2016). In past years, though the management and breeding techniques
have been improved, the traditional concept of grazing is still popular in local herdsmen. It
forces yaks to adapt to the local environment of natural pasture mostly with a single food source
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(Long et al., 1999). Meanwhile, overgrazing has led to serious
grassland degradation in the Qinghai-Tibet Plateau (Wang and
Fu, 2004; Klein et al., 2007; Miao et al., 2015). Therefore,
to alleviate this situation, it has become vital to change the
concept of grazing feeding system to house feeding. Moreover,
nutritional management, including the change in the traditional
feeding system, can improve the overall health and growth
performance of yaks.

In ruminants, rumen functions as an important intermediate
between light energy absorbed through photosynthesis and the
production of easily digestible compounds such as milk and
meat (Jami et al., 2014). Rumen, involving complex rumen
microbial communities including bacteria, archaea, fungi, and
protozoa, can transform indigestible plants into nutrients and
energy (Flint et al., 2008). In the rumen microbial community,
bacteria account for about 95% and are the most active
microorganisms (Brulc et al., 2009; Deusch et al., 2017). Notably,
ruminal motility is closely related to microbial fermentation
in the rumen that ensures normal physiological activities.
Previous studies showed that rumen community composition
is extremely sensitive to foods or feeding patterns (Henderson
et al., 2015; Zhang J. et al., 2017). For instance, high-concentrate
diets improve the proliferation and differentiation of rumen
epithelial cells and the expression of transforming growth
factor-β1 (TGFB1) and the transcription factor PPAR-α to
promote the development of rumen epithelial papilla (Connor
et al., 2014). Besides, rumen microbial metabolites facilitate
the self-proliferation of microorganisms and also interact with
other metabolic factors to control microbial metabolism and
related nutritional pathways (Saleem et al., 2013; Bannink
et al., 2016). However, so far, there is limited knowledge
of microbial composition and rumen metabolites concerning
yak rumen development and change in the feeding systems.
A comprehensive analysis of this kind can provide an important
insight into the microbial metabolic process that may aid animal
husbandry production, including yak.

We hypothesized that the change in feeding regimes (grazing
→ house fattening) could affect the yak rumen microbiota and
metabolites, thereby influencing the development of the rumen
and the growth performance of the yak. Surprisingly, there is no
comprehensive study of analyzing the effects of different feeding
systems in yaks so far. Accordingly, here, we comprehensively
analyzed the effects of two different feeding systems on
the growth of rumen, ruminal microorganisms, and their
metabolites in yaks. For this, we combined 16s rRNA sequencing
technology with LC-MS to study the community of yak rumen
bacteria and discussed the possible relationship between rumen
microorganisms and metabolites, which possibly influences the
rumen development and individual growth of the animal.

MATERIALS AND METHODS

Animal Welfare
Lanzhou Institute of Husbandry and Pharmaceutical Sciences of
the Chinese Academy of Agricultural Sciences (CAAS) approved
all animal experiments, and the grant number is 1610322020018.

All the slaughter and sampling procedures strictly complied
with the Guidelines on Ethical Treatment of Experimental
Animals of China.

Animals, Feeding Regimes, and Weight
Determination
Twenty healthy male yaks were selected from Datong County,
Qinghai Province, China, and were randomly divided (10 in
group each) into grazing (Group G) and stabling group (Group
HF). This study started in May and lasted for 160 days, with
the first 10 days as preadaptation. All experimental animals
were dewormed before the test and weighed every 30 days
before morning feeding or grazing. Group HF was fed on
total mixed ration (TMR) that were compounded according
to the total energy required for daily gain of 400 g for
200 kg beef cattle (shown in Supplementary Table 1). Group
G (control group) was grazed in the natural grassland without
supplementary feed.

Sample Collection and Measurements
All yaks were fasted for 24 h and water-deprived for 8 h
after the end of the test period. Then, six yaks were randomly
selected from each group to collect the rumen fluid using a
flexible oral stomach tube with a metal strainer. The tools were
washed with clean warm water during collection of rumen fluid,
and the first 100 ml of fluid was discarded to eliminate saliva
contamination. In the end, the 50-ml rumen fluid of each yak
was collected to be measured for rumen pH by pH meter (PHBJ-
261L, INESA, Shanghai, China). The samples were divided into
10-ml sterile centrifuge tubes and stored in liquid nitrogen
for further tests.

Subsequently, 12 yaks were slaughtered to measure carcass
weight and net meat weight following the methods of “Cattle
Production Science” (Mo, 2010). Also, rumen tissues were
collected for histological observation. For that, the tissues
were fixed in 4% paraformaldehyde, and then the steps
of dehydration, pruning, embedding, slicing, dyeing, and
sealing were carried out in sequential order. Finally, the
rumen tissues were observed by a digital trinocular camera
microscope (BA410Digital, Motic, Xiamen, China), and five
indicators, including the length and width of rumen papillae,
the thickness of rumen epithelial, stratum corneum, and
muscular thickness, were measured by Motic Images Advanced
software (version 3.2).

16s rRNA Gene Amplification and MiSeq
Sequencing
Based on the manufacturer’s instructions, the microbial DNA
was extracted by OMEGA Soil DNA Kit. Then, the purity
and concentration of DNA was verified by NanoDrop 2000c
(ThermoFisher Scientific Inc., Waltham, MA, United States)
and 1% agarose gel electrophoresis. V3–V4 variable regions
of 16s rRNA genes were PCR (Polymerase Chain Reaction)
amplified with primers 343F (5′-TACGGRAGGCAGCAG-3′)
and 798R (5′-AGGGTATCTAATCCT-3′) via ABI GeneAmp R©

9700 (ABI, United States) with TransStart R© Fastpfu DNA
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Polymerase (TransGen, Shanghai, China). The total PCR
reaction volume was 50 µl containing 10 µl of 5 × TransStart§

FastPfu Buffer, 4 µl of dNTPs (2.5 mM), each 1 µl of
Forward Primer (10 µM) and Reverse Primer (10 µM),
and 10 ng template DNA; the rest was added with autoclaved
distilled water to 50 µl. The amplified PCR products were
analyzed by 2% agarose gel electrophoresis, and AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City,
CA, United States) was used for DNA purification. The
final purified products were quantified by QuantiFluor
dsDNA System (Promega, United States) following the
manufacturer’s instruction.

Equal amounts of purified amplicon were pooled to construct
the paired-end sequencing libraries, which were sequenced
using the Illumina MiSeq platform (Illumina, San Diego, CA,
United States) by Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China) following the standard protocols.

Sequence and Rumen Microflora
Processing
The raw sequencing data in FASTQ files were processed and
quality-filtered using Trimmomatic software (Bolger et al.,
2014). Paired-end reads were assembled using the FLASH
software (Reyon et al., 2012) with the following assembly
parameters: 10 bp of minimal overlapping, 200 bp of maximum
overlapping, and 20% of maximum mismatch rate. Then, the
ambiguous, homologous, or <200 bp reads were excluded, and
the reads with 75% of bases above Q20 were retained. Also,
the chimeric reads were removed. The last two steps were
performed using the QIIME software (version 1.9.11) (Caporaso
et al., 2010). After removal of primer sequences, clean reads
were clustered to generate the operational taxonomic units
(OTUs) using the UPARSE software (version 7.0.10902) with
97% similarity cut-off (Edgar, 2013). The representative read of
each OTU was selected using QIIME package (version 1.9.11).
All representative reads were annotated and blasted against
Silva 16s rRNA database (version 1323) using RDP classifier
algorithm (version 2.114) with 70% of confidence threshold
(Wang et al., 2007).

Alpha diversity indexes were performed by MOTHUR
(version v1.30.2) (Schloss et al., 2009). The ACE estimator
(ACE) and Chao1 Richness Index (Chao1) were used to
analyze the richness of the community, and Shannon indices,
Simpson, and Good’s coverage index were used to analyze the
community diversity.

Beta diversity was calculated based on the unweighted UniFrac
distance, and the results were visualized via principal coordinate
analysis (PCoA) and plotted according to GUniFrac and ape
packages in R (Chen et al., 2012; Paradis and Schliep, 2019). To
distinguish significant differences in the abundance at the phyla
and genera levels, we used Statsp package in R and SciPy package

1http://qiime.org/install/index.html
2http://drive5.com/uparse/
3https://www.arb-silva.de/
4https://sourceforge.net/projects/rdp-classifier

in PYTHON along with Wilcoxon rank-sum test within STAMP
(Jones et al., 2001; Parks et al., 2014).

LC-MS Metabolomics Analysis of Rumen
Fluid
All 12 rumen fluid sample tubes were thawed at room
temperature (RT), and then 100 µl of each sample was transferred
into a new 1.5-ml centrifuge tube. The samples were vortexed
for 30 s after the addition of 300 µl of methanol and 10 µl
of internal standard (3.0 mg/ml, DL-o-chlorophenylalanine).
The mixture was then centrifuged (12,000 rpm/min, 4◦C)
for 15 min, and the respective supernatants were transferred
to a fresh vial for LC-MS (Thermo, Ultimate 3000LC, Q
Exactive). A preheated hyper gold C18 column (100 × 4.6 mm,
3 µm internal diameter) was used for chromatographic
separation in positive ion mode (ESI +) and negative ion
modes (ESI-). The samples were eluted with a mobile phase
consisting of solvent A (water and 5% acetonitrile with 0.1%
formic acid) and solvent B (acetonitrile with 0.1% formic
acid) with a flow rate of 0.35 ml/min. The elution was
performed in three steps, with mobile phase proportions (A:B)
100%:0% for 1 min, 80%:20% for 1.5 min, and 0%:100% for
9.5 min, respectively.

Other relative conditions were as follows: Sheath Gas 45 arb,
Aux Gas 15 arb, Sweep Gas 1 arb, ion source temperature: 300◦C
and capillary temperature: 350◦C. Also, the quality control (QC)
samples consisting of equivalent mixtures of all rumen fluids
samples were analyzed regularly to ensure the reliability of data.

Metabolomics Data Analysis
Baseline filtration, peak identification, peak alignment, peak
filling, and retention time (RT) of the raw data were
performed by Progenesis QI software (Waters Corporation,
Milford, United States). Finally, a data matrix of RT, mass–
charge ratio (MZ), and peak strength was obtained. To
observe the metabolic changes between groups, principal
component analysis (PCA) and orthogonal partial least squares
discriminant analysis (OPLS-DA) were performed by the R
package ropls (Version 1.6.2), and 7-fold cross validation
was used to evaluate the model stability. The significantly
different metabolites were selected based on the combination
of the variable important in projection (VIP) obtained from
the OPLS-DA model and the Student’s t-test. The metabolites
with VIP > 1 and P < 0.05 were considered as significantly
different metabolites.

For hierarchical clustering of each sample, we used the
qualitative data of significantly different metabolites in the
gplots package in R (Warnes et al., 2005) to accurately screen
marker metabolites and study the alterations in related metabolic
processes. For Spearman correlation analysis, we used the
pheatmap package in R (Kolde, 2012), and P-values < 0.05 were
selected as statistically significant.

The dataset for 16s rRNA gene sequencing and
metabolome was deposited in doi.org/10.6084/m9.figshare.
14538567.v1.
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RESULTS

Characterization of Growth
Performance, Rumen pH, and
Morphological Development of Yak
The characteristics of yak growth performance are listed in
Table 1. The total average body weight gain and average daily
weight gain in group HF were 161.50 kg and 860 g, respectively.
On the contrary, in group G, the total average body weight
gain and average daily weight gain were 98.50 kg and 520 g,
respectively. Also, we observed a significant difference (P < 0.01)
in carcass weight and net meat weight between the two groups.

The microstructure of the rumen epithelium is shown in
Figure 1. Besides, Table 2 presented the six measured indicators
of rumen. We observed that the length and width of rumen
papillae (P < 0.01), the thickness of rumen epithelial, and the
stratum corneum (P < 0.05) were significantly lower in group
G than in group HF. Meanwhile, the rumen pH in group G
was significantly higher due to the change in feeding regimes
(P < 0.05).

Richness, Diversity Estimates, and
Rumen Bacteria Composition
In total, from all of the rumen liquid samples, we retained 587,595
sequences as the high-quality dataset. After extracting non-
repeating sequences from optimized sequences and excluding
the non-repeating single sequences, a total of 2,619 OTUs
were obtained by clustering at 97% identity. The sampling
depth, signifying the optimal evaluation of rumen bacterial
composition, is reflected by the Shannon index and Sobs
index curves. Supplementary Figure 1 shows that curves
gradually stabilized after initial rising, indicating the depth
of sample sequencing that covered most of the intestinal
flora, which was used for subsequent data analysis. Besides,
to access the sufficient OTU coverage of samples, we found
that the Good’s coverages of all the samples exceeded 99%,
suggesting the accuracy of sequencing data that covered all the
species in the sample.

The Chao value went from 1724.50 ± 116.30 to
1184.30 ± 149.23 (P < 0.001), the Shannon index went
from 5.925 ± 0.094 to 5.023 ± 0.308 (P < 0.001), the Ace index
went from 1708.70 ± 118.65 to 1178.20 ± 148.85 (P < 0.001),

TABLE 1 | The growth performance of yaks in different feeding systems.

Items Group (mean ± SD) P-value

G (kg) HF (kg)

Initial body weight 208.33 ± 12.53 215.67 ± 21.83 0.6549

Final body weight 306.83 ± 24.34 B 377.17 ± 15.77 A 0.0010

Average daily gain 0.52 ± 0.12 b 0.86 ± 0.15 a 0.0017

Carcass weight 124.28 ± 8.77 B 208.04 ± 8.75 A < 0.001

Net meat weight 94.73 ± 4.55 B 176.23 ± 10.61 A < 0.001

Different small and capital letters represent the significant (P < 0.01) and highly
significant difference (P < 0.001), respectively. SE: Standard Error.

and the Simpson index went from 0.008± 0.001 to 0.021± 0.007
(P < 0.01) (Supplementary Figure 2). This indicates that there
were significant differences in microbial diversity and richness
between the two different feeding systems. Importantly, we
found that there was higher diversity in the grazing group than
in the house fattening group. Taxonomic analysis revealed a total
of 29 bacterial phyla, including 22 bacterial phyla in both groups
and 7 phyla only in the HF group. Among them, Firmicutes
and Bacteroidetes were the dominant phylum with 56.03%,
36.11% in group G and 69.90%, 21.00% in group HF, respectively
(Figure 2A). A total 428 different genera was detected in the
rumen liquids of yaks at the genus level. Among them, 220
genera were identified in both groups, while 42 and 132 genera
were unique for group G and group HF, respectively. Prevotella
1 (10.40%, 3.40%), Christensenellaceae R-7 group (6.79%,
10.56%), Ruminococcus 2 (0.89%, 12.17%), Ruminococcaceae
NK4A214 group (8.91%, 6.75%), Rikenellaceae RC9 gut group
(7.18%, 2.15%), and Lachnospiraceae NK3A20 group (1.08%,
5.25%) were predominant genera in group G and group HF,
respectively (Figure 2B).

Differences in Bacterial Community
Composition Between the Two Feeding
Systems
At the phylum level, the relative abundances of Firmicutes,
Cyanobacteria, chloroflexi, and Elusimicrobia were significantly
higher (P < 0.05) in the HF group than in the G group
(Figure 3A). On the contrary, Bacteroidetes, Kiritimatiellaeota,
Verrucomicrobia, and Fusobacteria were significantly higher in
the G group (P < 0.05).

At the genus level, the ruminal microbiome of the grazing
group showed a higher abundance of Rikenellaceae RC9 gut
group and Prevotellaceae UCG-003 than the stabling group
(P < 0.05) (Figure 3B). Also, the Christensenellaceae R-7
group, Lachnospiraceae NK3A20 group, and Ruminococcaceae
UCG-014 in the grazing yak were significantly higher than
in stabling yak (P < 0.05). Next, to validate the differences
in bacterial community between the grazing and house
fattening yaks, we used PCoA with unweighted UniFrac matrix
distances to reveal the influence of the two feeding systems
(Supplementary Figure 3).

Correlations Between the Indicators of
Ruminal Development and Rumen
Bacteria
To understand the relationship between microbial populations
showing significant differences in abundance at the genera
level and ruminal development indicators, we constructed a
correlation heat map based on Spearman’s correlation coefficient
(Figure 4). We found that the Christensenellaceae R-7 group
and Ruminococcus 2 were significantly positively correlated
with the thickness of epithelium and stratum corneum.
Also, these were positively correlated with the rumen nipple
width and length, respectively. Likewise, Ruminococcus 2,
Ruminococcaceae_UCG 001, and Lachnospiraceae NK3A20
group were significantly positively correlated with the rumen
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FIGURE 1 | Effects of different feeding systems on the morphological development of yak rumen. (A) The grazing group. (B) The house fattening group.

nipple length. Besides, the Rikenellaceae RC9 gut group
was negatively correlated with the nipple length and the
thickness of ruminal epithelium and stratum corneum.
Similarly, Prevotellaceae UCG 003 was negatively correlated
with the nipple length.

Metabolomics of Rumen Samples
Ruminal fluid metabolites from grazing and house fattening
groups, including QC samples, were analyzed by LC-MS. The
PCA following positive and negative mode ionization showed
a primary unsupervised separation between the two groups
including QC samples (Figure 5A). To better distinguish the
differences between the groups and improve effectiveness, OPLS-
DA with positive and negative mode ionization was performed
to supervise the multivariate analysis (Figures 5B,C). We found
that the two groups were separated clearly and all the samples in
the score plots were in the 95% Hotelling T2 ellipse, indicating
the validity of the OPLS-DA model.

As shown in Supplementary Table 2, there were 177
differential metabolites, including 49 positively and 128
negatively ionized metabolites, between the grazing and
house fattening group with a variable importance projection
(VIP) value >1.0 and P < 0.05. The 49 positively ionized
metabolites included 26 lipids and lipid-like molecules, 4
organoheterocyclic compounds, 3 nucleosides, nucleotides,

TABLE 2 | Effects of different feeding systems on various indicators of rumen.

Items Group (mean ± SD) P-value

G HF

pH 7.68 ± 0.31a 7.21 ± 0.25b 0.014

Papilla length (µm) 1529.03 ± 157.87B 2204.39 ± 239.95A 0.0031

Papilla width (µm) 346.91 ± 48.65B 444.88 ± 25.67A 0.0014

Epithelial (µm) 70.23 ± 10.52b 90.43 ± 12.71a 0.021

Stratum corneum (µm) 20.32 ± 1.93b 23.46 ± 2.79a 0.046

Muscle layer (µm) 3681.24 ± 440.22 3106.13 ± 367.51 0.445

Different small and capital letters represent the significant (P < 0.05) and highly
significant difference (P < 0.01). SE: Standard Error.

and analogs, 1 organic oxygen compounds, 1 organic nitrogen
compounds, 2 benzenoids, 7 organic acids and derivatives, 1
phenylpropanoids and polyketides, 3 alkaloids and derivatives,
and 1 organooxygen compounds. Similar to the positively ionized
metabolites, the more differential metabolites were divided into
more categories, including 76 lipids and lipid-like molecules, 9
organic acids and derivatives, 10 organoheterocyclic compounds,
12 phenylpropanoids and polyketides, 6 nucleosides, nucleotides,
and analogs, 6 benzenoids, 6 organic oxygen compounds, and 3
lignans, neolignans, and related compounds.

Hierarchical clustering analysis (HCA) with a heat map
allowed the visualization of the expression of concentrated
metabolites in each sample. Besides, it distinctly revealed the
metabolome differences between the two feeding systems. HCA
heat maps for the positive and the negative ionization data
are shown in Figures 6, 7. The differential metabolites in
the positive mode ionization group were divided into five
distinct clusters. Cluster 1 consisted of 11 metabolites, such as
7-methylinosine, hexadecanedioic acid mono-L-carnitine ester,
and deoxyguanosine. Cluster 2 included pantothenic acid,
acetylcholine, and 18 other metabolites. Cluster 3 contained
12 metabolites, including D-Urobilin, DUDP, D-Pipecolic acid,
and 9 other metabolites. Cluster 4 contained octadecanedioic
acid, calystegin A3, and N-Palmitoyl GABA. Cluster 5 included
L-Tyrosine and two other metabolites. Similarly, in the negative
ionization group of compounds, Cluster 1 included gentisic
acid, xanthine, cucurbic acid, and 44 other metabolites.
Cluster 2 consisted of adenine, hippuric acid, adenosine, and
29 other metabolites. Cluster 3 had 29 metabolites such
as hydroxyphenyllactic acid, acetyl-DL-leucine, and gamma-
tocotrienol. Cluster 4 contained dihydro-3-coumaric acid,
glutarate semialdehyde, and six other metabolites. Cluster
5 included inosine, suberic acid, and hexadecanedioic acid.
Hierarchical clustering analysis heatmap revealed a significant
effect on the rumen metabolome between the grazing and house
fattening yaks. For instance, compared to the G group, in
the HF group, among the clusters belonging to the positive
ionization group, clusters 2, 4, and 5 were upregulated,
whereas clusters 1 and 3 were downregulated. Similarly,
among clusters belonging to the negative ionization group,
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FIGURE 2 | Bacterial community compositions across the two feeding systems. (A) Phylum level; (B) Genus level.

clusters 1 and 3 were upregulated, while clusters 2, 4, and 5
were downregulated.

KEGG Enrichment Analysis and
Correlations Between the Differential
Metabolites and Rumen Bacteria
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis revealed that the identified differential metabolites
between the two feeding systems were mainly enriched
in purine, tyrosine, and phenylalanine metabolism, cAMP
signaling pathway, and so on (Figure 8). To understand
the relationship between the composition and function of
microbial communities, we performed a correlation analysis
between the rumen microbiome and differential metabolites
(Figure 9). We found that the dynamic fluctuations in some
metabolites were closely related to the abundance of various
microbial communities. Among them, genus Ruminococcus 2
was negatively associated with dopaquinone, adenine, guanosine,
and inosine but was positively associated with xanthine,
acetylcholine, and hydroxyphenyllactic acid. Likewise, genus
Ruminococcaceae_UCG 001 was negatively associated with
dopaquinone, adenine, and guanosine but was positively
associated with xanthine, L-tyrosine, and hydroxyphenyllactic
acid. Genus Lachnospiraceae NK3A20 group was positively
associated with xanthine, hydroxyphenyllactic acid, PE, and
PI but was negatively associated with dopaquinone and
guanosine. Genus Christensenellaceae R-7 group was negatively
associated with dopaquinone, adenine, guanosine, inosine, and
PE. Genus Rikenellaceae RC9 gut group was positively associated

with dopaquinone, adenine, guanosine, and inosine but was
negatively associated with xanthine, L-tyrosine, acetylcholine,
and hydroxyphenyllactic acid.

DISCUSSION

The yak lives in an extremely special environment usually with a
long period of withered grass every year. However, in past years,
under the traditional grazing system, the growth performance of
yaks has been reduced significantly. This has markedly limited
the economic benefits forcing a significant increase in livestock
causing overgrazing and grassland degradation in the plateau
region (Shang et al., 2014). In this study, we found that compared
to the grazing yaks, the average daily weight gain and average net
meat weight of group HF were increased 0.34 kg and 81.50 kg,
respectively, suggesting that house feeding can increase the
growth performance, thereby exerting the genetic potential of the
yak’s excellent traits for better economic benefits.

In ruminants, the rumen is like a large anaerobic fermentation
tank, in which rumen microorganisms ferment and degrade
plants, or convert non-digestible plant feeds into volatile fatty
acids (VFA). Here, to comprehensively analyze the effects of
different feeding systems on the yak rumen, we analyzed the
morphological structure of the rumen and evaluated rumen
development indicators. The rumen nipple length is the most
important factor that can reflect the impact of different feeding
treatments on rumen development (Lesmeister et al., 2004). Also,
the rumen epithelium is very important for the absorption of the
final fermentation product, as 50 to 85% of VFA are absorbed
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FIGURE 3 | (A) The bacteria with significant differences between two feeding systems at the phylum level; (B) The bacteria with significant differences between two
feeding systems at the genus level. *P < 0.05; **P < 0.01.

directly through the rumen epithelium, and the absorption rate
of VFA by the ruminal epithelium is highly dependent on the
papillary surface area and the availability of transport proteins
(Bannink et al., 2008; Melo et al., 2013). We found that the rumen
nipple length, width, and epithelial thickness in the HF group
were significantly better than in the G group. These changes may
be due to the lack of VFA productivity in the grazing yaks without
the concentrated feed (Nocek and Kesler, 1980). However, the
thickness of the rumen muscular layer became lower in group HF.
It may be a reason that the food of the grazing yaks was all pasture,
as a kind of roughage that stimulated the muscle development
of the rumen wall and thicken the muscle layer. Concisely,
these evidences indicate that the change in feeding regime would
accordingly alter the rumen morphology. For instance, the HF
regime improved the development of rumen papilla for better
absorption of VFA. Previous studies showed that the nutrient

absorption and transport by the ruminal epithelium largely
depends on the degree of keratinization of stratum corneum cells
and the integrity of the stratum corneum (Baldwin and Jesse,
1992). In our study, the ruminal stratum corneum of yaks in
group HF was significantly higher than that of yaks in group
G, indicating increased nutrient absorption by promoting the
growth and development of the HF yaks.

Furthermore, we explored the impact of feeding regimes on
the composition and diversity of the rumen bacterial community.
Previous studies suggest that the core rumen microbiota consists
of 10 different bacterial groups in ruminants (such as beef cattle),
although the relative abundance can vary (Petri et al., 2013).
Consistent with previous studies (Leng et al., 2011; Dan et al.,
2016; Zhou et al., 2017; Liu et al., 2019), here, we found that
the phyla Bacteroidetes, Firmicutes, and Proteobacteria form the
rumen core microbiome in the yaks. Also, the high relative
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FIGURE 4 | Correlations analysis between ruminal development indicators and rumen bacteria. Rows and columns represent the indicated ruminal development
indicator and genus, respectively. Each lattice represents a Pearson correlation coefficient between an indicator with a genus. Red and blue denote positive and
negative correlation, respectively. *P < 0.05, **P < 0.01.

abundance of the phyla Acidobacteria indicated that it was
the highest conserved dominant microbial community in the
rumen. At the genus level, Prevotella 1, Christensenellaceae R-
7 group, Ruminococcus 2, Rikenellaceae RC9 gut group, and
Ruminococcaceae NK4A214 group showed high abundance,
and they were the dominant bacteria in rumen of yaks.
Moreover, Lachnospiraceae NK3A20 group, Ruminococcaceae
UCG-014, Prevotellaceae UCG-003, and Succiniclasticum were
also identified. However, a previous study shows that none of
the clones were more than 97% similar to the known genus
Prevotella with 16s rRNA sequence cloning technology in two
different feeding systems. We speculated that it may be due
to the difference in the sequencing method and the technical
deviations in 16S rRNA gene PCR (Fang et al., 2015). According
to the indicators, the rumen bacterial diversity and richness of the
grazing yaks were significantly higher than the house fattening
yaks. This was contrary to previous research that showed that the
rumen microbial diversity of the grazing yaks was lower than that
of the house fattening yaks (Cao et al., 2016). We speculate that
this may be due to the small sample size in the previous study
and the difference in yak breed. Overall, we found that the yak
rumen microbial composition was directly related to the different
feeding systems.

The two feeding systems revealed significant differences
showing that Christensenellaceae R-7 group and Ruminococcus
2 were highly abundant in grazing yaks than in the house

fattening yaks. Notably, Firmicutes and Christensenellaceae have
been closely linked to animal health, and their relative abundance
was shown to affect the body mass index (Goodrich et al., 2014).
Previous studies reported that Christensenellaceae could quickly
respond to an increase in animal or plant products in the diet
(David et al., 2014). Moreover, Christensenellaceae is positively
correlated with protein catabolism and intestinal metabolites of
dietary animal protein (Roager et al., 2016; Beaumont et al., 2017;
Manor et al., 2018). Similarly, the change in the abundance of
Ruminococcus, once considered to be the main fiber-degrading
bacteria in the rumen, can significantly alter the digestion
and utilization of rumen nutrients (Doerner and White, 1990;
Purushe et al., 2010). Also, Ruminococcus growth has been be
positively correlated with the expression of Toll-like receptor
(TLR) genes. These genes can recognize the host’s outer wall
bacteria and the induction of bacterial products, and trigger
an immune response to maintain host–microbe homeostasis
(Liu et al., 2015). Similarly, a previous study regarding 16s
rRNA gene libraries indicated that Ruminococcus was found
in grazing and house feeding systems and the content was
higher in grazing yak rumen (Fang et al., 2015). These results
show that genus Ruminococcus may act as an important part
in yak rumen. In our study, we found that Christensenellaceae
R-7 group was significantly positively correlated with nipple
width, epithelial thickness, and stratum corneum thickness.
Ruminococcus 2 was significantly positively correlated with nipple
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FIGURE 5 | Principal component analysis (PCA) score plots of metabolic profiling in positive (Pos) and negative (Neg) ion mode (A). OPLS-DA models of positive (B)
and negative (C) mode ionization. Different colors represent different groups; pink, grazing group; blue, house fattening group; yellow, QC group.

length, epithelial thickness, and stratum corneum thickness.
These results indicate that with an increase in abundance of
Christensenellaceae R-7 group and Ruminococcus 2, the rumen
development improves and the rumen becomes more conducive
to the absorption and digestion of nutrients. Similarly, the
abundance of Lachnospiraceae NK3A20 group was significantly
increased in the house fattening yaks, and it was positively
correlated with rumen nipple length. Lachnospiraceae, the main
component of the gastrointestinal microbiota of ruminants
(Kittelmann et al., 2013), is closely related to the butyrate
production (Vital et al., 2014; Haas and Blanchard, 2017). It
was reported that the infusion of butyric acid could increase
the length, width, and surface area of the rumen epithelial
papilla of castrated cattles (Xu et al., 2001). Here, we speculate
that Lachnospiraceae NK3A20 group not only promotes the
rumen development by promoting butyric acid production but
also affects the rumen development directly. By increasing the
abundance of Lachnospiraceae NK3A20 group, the efficiency of

the yak’s rumen was improved so that the yak could get more
energy and accelerate the growth and development. Also, we
found that the abundance of Rikenellaceae RC9 gut group in
group HF was significantly lower and was negatively correlated
with the length of the ruminal papilla, epithelial thickness,
and stratum corneum thickness. Rikenellaceae RC9 gut group,
belonging to the Rikenellaceae family, plays an important role
in the digestion of crude fiber (Zhang, 2017). Previous studies
showed that when the content of neutral detergent fiber in the
diet is reduced from 39.7 to 30.9%, the relative abundance of
Rikenellaceae RC9 gut group in the rumen decreased by 69.8%
(Zened et al., 2013). Therefore, the decrease of roughage content
in the house fattening group in our study could explain the
decrease of Rikenellaceae RC9 gut group in the rumen of the house
fattening yak. Prevotellaceae UCG-003 was significantly reduced
in the HF group and negatively correlated with the length of
the rumen papilla. Prevotellaceae UCG-003, classified under the
Prevotellaceae family, is sensitive to rumen pH (Mao et al., 2016).
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FIGURE 6 | Hierarchical clustering analysis (HCA) with a heat map for the expression of different metabolites in yak rumen between grazing group and house
fattening group following positive mode ionization.

It seems that a decrease in rumen pH of the house fattening yak
reduced the abundance of Prevotellaceae UCG-003. Previously,
it was found that the predominant Prevotella can improve feed
utilization (Purushe et al., 2010), and Prevotellaceae UCG-003
can utilize branched-chain VFAs and participate in glucose
metabolism (Liu et al., 2019). This explains the decrease of
Prevotellaceae UCG-003 abundance in the HF group; however,
the mechanism of reduced Prevotellaceae UCG-003 induced
nipple length needs further exploration.

Metabolomics can better explain the change in phenotypes
than genomics and proteomics (Vinayavekhin et al., 2010). Our
metabolomics data showed that the alteration in feeding mode
did also change the concentration of many rumen metabolites,
which could be related to the variation of rumen microbial

abundance. Next, we explored the key metabolic pathways
based on impact values and P-values (Chen et al., 2018;
Wang et al., 2018; Yang et al., 2018). The metabolites with
significant difference that were screened were mainly enriched
in tyrosine metabolism, purine metabolism, phenylalanine
metabolism, and cAMP signaling pathway. Overall, the relative
concentrations of carbohydrates, amino acids, purines, and
other metabolites in the rumen of house fattening yaks were
significantly higher than the grazing yaks. Amino acids are
important for the growth and metabolism of microorganisms.
They are also the key components in the synthesis of proteins
and peptides and regulate several metabolic pathways (Mariz
et al., 2018). Tyrosine is an essential aromatic amino acid, and
both phenylalanine and tyrosine metabolism were related to
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FIGURE 7 | Hierarchical clustering analysis (HCA) with a heat map for the expression of different metabolites in yak rumen between grazing group and house
fattening group following negative mode ionization.

tyrosine, indicating that tyrosine may play an important role
in the change of feeding system. Previous studies showed that
tyrosine metabolism is instrumental in synthesis of thyroid
hormones, catecholamines, and melanin (Zhang et al., 2004).
Also, the rumen tyrosine content in fattening sheep was found
positively correlated with the production performance (Li, 2020).

Here, tyrosine was significantly upregulated in the HF group,
which can be converted to tyrosamine through decarboxylation
reaction (Burlingame and Chapman, 1983). Notably, excessive
accumulation of tyramine, a biogenic amine, can prevent
epithelial cell regeneration, leading to epithelial damage in
the rumen (Mao et al., 2016). Fortunately, we found that the
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FIGURE 8 | The analysis of different metabolites pathway enrichment (A) positive mode ionization; (B) negative mode ionization. *P < 0.05, **P < 0.01.

alteration of feeding system did not significantly increase the
tyramine content in the rumen. Meanwhile, we found that the
concentration of dopaquinone, involved in tyrosine metabolism,
was significantly reduced in group HF. Dopaquinone is formed
from dopamine by tyrosinase, and an increase in dopamine
affects the synthesis and secretion of growth hormone (GH)
to promote the growth of animals (Terry and Craig, 1985).
A significant decrease in dopaquinone in group HF may increase
dopamine, thereby promoting the growth and development of

house fattening yaks. (-)-Epinephrine was increased significantly
in the rumen of house fattening yaks; however, its effects on
rumen remain to be clarified. Carbohydrate, such as maltose and
melibiose, were significantly increased in the HF group. These
disaccharides can be hydrolyzed to produce glucose for growth
and development of body. Starch, as a non-fiber carbohydrate,
can be rapidly degraded into maltose, maltotriose, and a small
amount of free glucose by the breakage of α-D-1,4-glycosidic
bond by α-amylase produced from the amylolytic bacteria of the
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FIGURE 9 | Correlation analysis between the rumen microbiome and differential metabolites. Row, columns, and lattice represent the metabolites, genus, and
Pearson correlation coefficient between a component and metabolite, respectively. *P < 0.05, **P < 0.01.

rumen (Reynolds, 2006). It was reported that some Prevotella
genera can degrade nutrients such as protein, starch, and xylan
(Purushe et al., 2010). This explains the improved ability of
HF yak to degrade nutrients with an increase in Prevotella
abundance. At the same time, rumen microorganisms also need
to maintain their growth by producing lactic acid to further

produce propionic acid using molasses and maltose (Zhu and
Mao, 2011). An increase of propionic acid can improve the
internal environment and promote the growth and development
of the rumen, protein synthesis, and digestive enzyme activity,
which is conducive to the absorption of nutrients and improves
animal growth performance.
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Notably, we found that the concentrations of several
metabolites enriched in the purine metabolism were also changed
significantly. Usually, the amount of nucleic acid entering the
rumen is very low as it is fully degraded in there. Also,
the microbial communities in rumen epithelium can degrade
epithelial debris, including nucleic acids and their derivatives
(Chen et al., 1990). The protozoan in the rumen cannot
synthesize purines and pyrimidines but can absorb free adenine
and guanine to synthesize nucleic acids for their needs. The
nucleic acid of the protozoan in the rumen may mainly come
from rumen bacteria (McAllan, 1982). Xanthine is considered
as a biomarker for microbial protein synthesis (McAllan and
Smith, 1973; Zhang R. et al., 2017). We found that xanthine
was significantly increased in HF yaks. Importantly, adenine and
guanine can, respectively, produce hypoxanthine and xanthine
deamination (Chen et al., 1990), and inosine can also be
enzymatically degraded to xanthine (Stentoft et al., 2015).
We speculate that change in the feeding system decreased
guanine, inosine, and adenine but increased xanthine in the
HF group. These results also showed that the transformation
from grazing mode to house fattening mode improved purine
metabolism in the rumen.

Besides, in the HF yaks, we found significant changes
in the concentrations of phosphatidylethanolamines (PE),
phosphatidylinositols (PI), and phosphatidylglycerols (PG),
which are related to lipid metabolism. Interestingly, the change
in PE concentration is consistent with the findings in dairy cows
(Li et al., 2012).

Phosphatidylethanolamines (PE) mainly exists in the outer
layer of the bacteria cell wall and is a precursor of ethanolamine
(Stentoft et al., 2015). It accounts for >75% of total lipids in
Bacteroides. Notably, the change in the feeding system decreased
the rumen pH in the HF group, which could cease the growth
and reproduction of Bacteroides releasing lipopolysaccharide
(LPS) in the rumen (Bannerman et al., 2003; Klevenhusen
et al., 2013). However, we did not find significant changes of
LPS in the results of the metabolome; therefore, we speculated
that the increase of PE in the HF group might be due to
the comprehensive effects of the alteration in feeding system
that may have promoted the regeneration and shedding of
rumen epithelial cells. Phosphatidylinositol transfer protein
(PITP) promotes the transport of phospholipid molecules,
including PI. Also, it is a precursor for the synthesis of a
secondary messenger named 1,4,5-inositol triphosphate. Notably,
the PI metabolic process can also be affected by the signaling
pathways involving phospholipase C, phosphatidylinositol 3-
kinase, membrane transport, and other biological functions, such
as glycometabolism, lipid metabolism, and protein metabolism
(Jiang and Li, 2016). But up to now, the exact mechanism is
unknown and needs to be investigated further.

CONCLUSION

We combined the data of growth performance, rumen
development, microbiome, and metabolomics to
comprehensively analyze the effect of feeding system

transformation in yaks. We explored the possible relationship
among specific rumen bacterial communities, metabolites, and
rumen development in yak. Notably, the metabolomics findings
were consistent with animal phenotypes, while the house
fattening system provided more nutrients and was conducive to
the growth and development of yaks. We show that barn feeding
can promote the growth performance and ruminal development
of yaks. Comprehensive analysis of the feeding systems effects
in yaks can not only improve the economic benefits in Qinghai-
Tibet Plateau but also provide a basis for better understanding of
metabolites and microbial functions of yaks.
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