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Abstract: In the present work, initial stage carbonization of γ-Fe(100) surface in C2H2 from 1000 K to
1600 K has been investigated by a molecular dynamic (MD) simulation, based on which the atomic
mechanism of initial stage carbonization was provided. The absorption of C and H atoms during
the carbonization process under different temperatures was analyzed. The related distributions of C
and H atoms in carbonized layer were provided. The results manifested that higher temperature
enhanced the inward diffusion of C and H, meanwhile caused the desorption of H atom. Furthermore,
the effect of preset polycrystal γ-Fe on the carbonization process has been discussed, indicating a
promoting role to the absorption and inner diffusion of C and H atom. The results of this study may
support the optimal design of high-performance steel to some extent.
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1. Introduction

Iron-based alloys are generally accompanied with carbides, which are of great inter-
est since the extensive application of steel in industry [1]. With long time development,
carbonization is still an indispensable way for the surface treatment and strengthening of
iron so far. The related atomistic scale mechanism and kinetics of carbonization play an
influential role on the property of steel, while these are difficult to be detected by experi-
mental facilities such as X-ray diffraction, scanning electron microscopy and transmission
electron microscopy [2,3]. In addition, due to the increasing use of nanoscale materials
and components, the mechanism of initial stage reaction occurring within atomistic scale
determines their future performance [4–6]. In the field of nanoscale behaviors analysis,
molecular dynamics (MD) simulation shows its superiority and well application.

Regarding to the previous work on Fe-C alloy by MD simulations, most of them
focused on the carbon diffusion in bcc or fcc iron [7–11]. The mutual effects between carbon
interstitial and defects in iron have been intensely studied [12–19]. Furthermore, some of
them were well devoted to the phase transformation mechanisms in Fe-C alloys [20–24].
The above-mentioned investigations revealed the atomistic mechanisms on the carbon
interstitial in Fe. To improve the carbonization efficiency and related performance of Fe-C,
the higher C concentration supplement is necessary. Since the C2H2 has the highest C
concentration providing a noteworthy ability when carbonized with γ-Fe, it is one of the
promising carbonization gases. During the carbonization process of γ-Fe in C2H2, the
absorption of C and H atoms could induce lattice mismatch and chemical reaction with Fe.
Hence, it is significant to study the atomistic system of Fe-C-H.

Recently, the bond order potential (BOP) for Fe-C-H has been proposed by Zhou et al. [25],
which making MD simulation on carbonization of γ-Fe in C2H2 become possible. By this
BOP framework, Jiao et al. analyzed the effects of hydrogen on the deformation behavior
of fcc Fe-C crystal [26]. Deep understanding on the deformation mechanism of fcc Fe-C
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single crystal with nanovoid was given. However, the absorption of C and H atoms into
Fe lattice under high temperature has not been considered. In the present work, by BOP
based MD simulation, the absorption and related distribution of C and H atoms in fcc Fe
were researched. The effect of pre-existed polycrystal on the carbonization process has
been discussed.

The paper is organized as follows: Section 2 gives the computational details including
model setup and simulation parameters; Section 3 provided the results discussion including
initial stage of carbonization process, structure of carbonized layer and effect of preset
polycrystal on initial carbonization.

2. Computational Details

The initial carbonization model was set up as follows. Firstly, an fcc Fe with size as
73 × 73 × 73 Å along [100], [010] and [001] was built, which contains 32,000 atoms. To
obtain Fe(100) nanofilm with top and bottom as surface, the simulation box was enlarged
to 108.3 Å along z direction. Then, C2H2 molecules were distributed randomly near the
top and bottom surfaces. Since the time scale of MD simulation was too short to the
nanosecond, a relatively large acetylene gas pressure was set as 200 atm to decide the
number of C2H2 molecules. Hence the chemical reaction could be completed within MD
simulation time [27–29]. The initial model of γ-Fe(100) nanofilm surrounding with C2H2 is
shown in Figure 1.
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Figure 1. Initial carbonization model. A γ-Fe(100) nanofilm filling with C2H2 molecules at top and
bottom surfaces.

To probe the reactive process of Fe in C2H2, the latest developed bond-order po-
tential (BOP) was applied to describe the interaction of Fe-C-H. The Fe-C-H potential
was combined by Fe-C, Fe-H and C-H bond order potentials. We used the BOP I, which
has been proved to provide the exact lattice constant, cohesive energy, elastic constants,
surface energy of α-Fe and γ-Fe comparing with experimental results [30,31] and den-
sity functional theory calculations [32–34]. Significantly, the diffusion kinetics of C and
H were correctly described by such a potential. By using BOP I, the carbonization of
Fe by C2H2 was simulated in the present work via an open-source LAMMPS (Version:
https://www.lammps.org/ accessed on 5 May 2020) code [35].

To maintain fcc structure, the temperature was set from 1000 K to 1600 K. A time step
of 0.5 fs was used, and the total simulation time was 3 ns long enough to provide an initial
reaction process. A temperature damping constant of 50 fs for NVT (canonical) ensemble

https://www.lammps.org/
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under Nose-Hoover heat bath was applied for all the cases. The distributions of C/H
atoms were obtained by meshing Fe along z direction from the surface with thickness as
a monolayer [36,37].

3. Results and Discussion
3.1. Initial Stage of Carbonization Process

Under temperature from 1000 K to 1600 K, C2H2 molecules were decomposed into C
and H atoms then absorbed into Fe crystal. Accompanying with the carbonization process,
the number of absorbed C and H atoms into the top surface under different temperatures
was tracked, as shown in Figure 2. The absorption rate of both C and H atoms remarkably
increased from the beginning to nearly 0.2 ns, indicated by the curve gradient. Such a
rate was enhanced by increasing the temperature from 1000 K to 1600 K. However, the
temperature displaced an inverse effect for C and H atoms after 0.2 ns. The number of
absorbed C still grew up slowly after 0.2 ns. It was raised by increasing the temperature,
which was nearly three times under 1600 K comparing with that under 1000 K. The number
of absorbed H atoms was increased from 100 to 250 under 1000 K whereas decreased from
320 to 260 under 1600 K. This indicated that the absorption of C atoms was promoted by
temperature increasing while H atoms may desorb from Fe under a higher temperature.
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Figure 2. Numbers of (a) C atoms and (b) H atoms absorbed into top carbonized layer during
carbonization process under temperature from 1000 K to 1600 K.

To investigate the H desorption under 1600 K in detail, the tacking of H atoms was
performed. The atomistic configurations of one H atom desorbing from carbonized layer is
shown in Figure 3. There was an absorbed H atom colored as green which was bonded
with Fe at 522.5 ps. After that, it was desorbed from the carbonized Fe and bonded with
another H atom generating a hydrogen molecule. The desorption of H atoms was also
demonstrated by previous results based on both simulation and experiment [38–40].

The atomistic configurations of Fe after carbonized for 3 ns was shown in Figure 4. Fe,
C and H atoms were, respectively, colored by yellow, red and blue. Under 1000 K, almost
all the C and H atoms were located near the surface while they were transported to inner
layers as the temperature increases. As indicated by Figure 4, thermal activation enhanced
the inward diffusion of both C and H atoms. Furthermore, the residual C atoms gathered
and reacted to form benzene rings under all temperatures, shown as the zoomed view of
Figure 4. Such a chemical phenomenon has also been observed experimentally [41,42].
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Figure 4. Atomistic configurations of Fe nanofilm after carbonized for 3 ns. The residual C atoms
formed benzene rings, showing as the zoomed view at the top.

3.2. Structure of Carbonized Layer

To clarify the temperature effect on C/H distribution in carbonized layer, the number
of C and H atoms located in monolayer 1 (the first from top surface) to 5 (the fifth from
top surface) after carbonized for 3 ns under different temperatures was calculated, shown
as in Figure 5. The schematic of monolayer of Fe crystal is presented in Figure 5a. As in
Figure 5b, it is shown that most C atoms existed at the topmost layer under all temperatures.
Under 1600 K, the number of C atoms in all the monolayers was the largest one. From
Figure 5c, it seems that H atoms are much more transported to the inner layers, especially
under 1600 K. The distribution of C and H atoms implied that the inward transport of both
C and H atoms was intensified by temperature increasing, more notable for H atoms. Even
though the desorption of H under 1600 K caused the decreasing of the total number of the
absorbed H atoms in the carbonized layer, more H atoms stayed at inner layers compared
with lower temperature.

Apart from the distribution of interstitial atoms, the interstitial sites of C and H atoms
were observed in Fe after carbonized for 3 ns, as shown in Figure 6. As framed out by the
red boxes, the absorbed C occupied the interstitial sites of austenite structure. C atoms
stayed at the surface under 1000 K, but migrated to deeper layers under 1600 K. To compare
the solubility of C and H atoms in austenite structure, the average mass fraction of C/Fe
and H/Fe ratios for the first five Fe layers has been calculated, as shown in Figure 7. The
mass fraction of C increased with temperature and was in the range of 0.7% to 1.5% from
1000 K to 1420 K. It agrees with experimental result which is 0.77% under 727 ºC and 2.11%
under 1148 ºC.
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Figure 5. (a) The schematic of the monolayer of Fe crystal. Distributions of (b) C atoms and (c) H atoms in the top surface
layer after carbonization for 3 ns under different temperatures.
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Figure 7. The average mass fraction of C/Fe and H/Fe ratios for the first five Fe layers after
carbonization for 3 ns under different temperatures.

3.3. Effect of Preset Polycrystal on Initial Carbonization

Moreover, almost all the samples used in industry experienced a combined reinforce-
ment process, such as laser shocking followed by carbonization. After a laser shocking
process, the surface of Fe turns to polycrystal type, leading to an effect of preset polycrystal
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on carbonized layer. Relatively, an initial model of a preset polycrystal Fe was built as
Figure 8. Three crystal grains divided by two grain boundaries was formed along each
axis with a grain size of nearly 2.3 nm. Then C2H2 molecules were randomly filled into the
top and bottom space near the surface. Corresponding simulations were carried on for the
polycrystal Fe under 1000 K to 1600 K by the same setting as monocrystal type.
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Figure 8. Initial carbonization model of a preset polycrystal. A polycrystal with a grain size as 2.3 nm
is set up first, shown by common neighbor analysis on the left. Then the top and bottom surfaces are
filled with C2H2 molecules, shown by element type on the right.

The comparison of the total number of absorbed C and H atoms in the top carbonized
layer of monocrystal and polycrystal Fe after carbonized for 3 ns under different tempera-
tures was shown in Figure 9. It is suggested that more C and H atoms are absorbed into
polycrystal Fe under all temperatures. A previous study by reactive molecular dynamics
has stated that the pre-existing defects promoted carbon diffusion [43]. Since the atom in
the grain boundary has a lower density than that inside the grain, grain boundary could
supply more space for interstitial atoms to move. Here, in this study, the results also
displayed that the grain boundary may act as an energy-favorable configuration for the
absorption of C and H atoms.

Figure 9. Total number of absorbed (a) C atoms and (b) H atoms in top carbonized layer of monocrys-
tal and polycrystal Fe after carbonized for 3 ns under different temperatures.
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To further study the effect of preset polycrystal on the carbonized layer, the time evo-
lution of carbonized thickness during carbonization process was calculated. The thickness
was decided by the center of mass concerning all the absorbed C atoms. The comparison
of the carbonized thickness of monocrystal and polycrystal Fe under 1000 K and 1600 K
was shown in Figure 10. It is observed that, under 1000 K, the carbonized thickness for
both monocrystal and polycrystal types greatly increased before 0.2 ns and, afterwards,
remained a relatively low level. In addition, the thickness of the carbonized layer of
polycrystal Fe was nearly 4 times to that of monocrystal type. However, under 1600 K,
although the total number of absorbed C atoms was similar to what shown in Figure 9,
the carbonized thickness increased because the inner transportation was enhanced by
preset polycrystal.
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Figure 10. Evolution of carbonized thickness during carbonization process of monocrystal and
polycrystal Fe under 1000 K and 1600 K.

4. Conclusions

In this paper, by means of MD simulation with BOP, the initial stage carbonization
of γ-Fe(100) surface in C2H2 under high temperature has been studied. It is shown that
a higher temperature enhanced the absorption of C atoms but led to the desorption of H
atoms from Fe crystal. C atoms occupied the interstitial sites of austenite structure, and
their inner transportation were promoted by increasing the temperature. Furthermore, the
effect of polycrystal on carbonization has been investigated, playing as a facilitation to
reinforce the absorption and inward diffusion of C atoms. We believe the present results
could theoretically promote the understanding and improvement on high-temperature
carbonization of steel.
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