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Hundreds of genomic loci have been identified with the recent advances of
schizophrenia in genome-wide association studies (GWAS) and sequencing studies.
However, the functional interactions among those genes remain largely unknown.
We developed a network-based approach to integrate multiple genetic risk factors,
which lead to the discovery of new susceptibility genes and causal sub-networks, or
pathways in schizophrenia. We identified significantly and consistently over-represented
pathways in the largest schizophrenia GWA studies, which are highly relevant to
synaptic plasticity, neural development and signaling transduction, such as long-term
potentiation, neurotrophin signaling pathway, and the ERBB signaling pathway. We
also demonstrated that genes targeted by common SNPs are more likely to interact
with genes harboring de novo mutations (DNMs) in the protein-protein interaction
(PPI) network, suggesting a mutual interplay of both common and rare variants in
schizophrenia. We further developed an edge-based search algorithm to identify the
top-ranked gene modules associated with schizophrenia risk. Our results suggest that
the N-methyl-D-aspartate receptor (NMDAR) interactome may play a leading role in the
pathology of schizophrenia, as it is highly targeted by multiple types of genetic risk
factors.

Keywords: schizophrenia, GWAS, PPI Network, copy number variation (CNV), gene modules

INTRODUCTION

Schizophrenia is a psychiatric disorder with profound genetic heterogeneity. Genetic risk factors
of schizophrenia range in frequency from common to rare, including common single nucleotide
polymorphisms (SNPs), recurrent rare copy number variants (CNVs) and de novo mutations
(DNMs) (Friedman et al., 2008; International Schizophrenia Consortium, 2008; Vrijenhoek et al.,
2008; Walsh et al., 2008; Xu et al., 2008; Glessner et al., 2010; Mulle et al., 2010; Girard et al.,
2011; Levinson et al., 2011; Vacic et al., 2011; Kirov et al., 2012; Xu et al., 2012; Ripke et al., 2013;
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Sleiman et al., 2013; Fromer et al., 2014; Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014). Current
genome-wide association studies (GWAS) in schizophrenia have
reported 108 genome-wide significant loci, each of small effect
size (Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). It has also been reported that at least a
quarter of the genetic contribution to schizophrenia risk can
be explained by common SNPs (Lee et al., 2012; Ripke et al.,
2013; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). On the other hand, multiple case-control
studies have identified rare CNVs of strong effect to the risk of
schizophrenia (International Schizophrenia Consortium, 2008;
Vrijenhoek et al., 2008; Walsh et al., 2008; Xu et al., 2008; Glessner
et al., 2010; Mulle et al., 2010; Levinson et al., 2011; Bergen et al.,
2012; Kirov et al., 2012; Szatkiewicz et al., 2014). In addition,
recent sequencing studies have shed new light on the genetic
basis of schizophrenia that DNMs play a prominent part in the
sporadic form of schizophrenia (Xu et al., 2012; Gulsuner et al.,
2013; Fromer et al., 2014; McCarthy et al., 2014).

In these studies, multiple pieces of evidence show that genetic
susceptibility of schizophrenia displays disruption across a group
of functionally related genes implying a complex genetic network
underlying schizophrenia (Glessner et al., 2010; Gulsuner et al.,
2013; Fromer et al., 2014). To explore the network structure
of schizophrenia, many network-based approaches have been
applied to different types of genetic variations (Bullmore and
Sporns, 2009; Gilman et al., 2012; Jia et al., 2012; Luo et al.,
2014a,b). Among the different types of gene networks, protein-
protein interaction (PPI) networks have been shown to be a
powerful tool to identify the disease-associated modules and
pathways, and reveal the biological significance of diverse
genetic variations (Barabasi et al., 2011; Jia et al., 2011; Chang
et al., 2013; Han et al., 2013; International Multiple Sclerosis
Genetics Consortium, 2013; Leiserson et al., 2013; Luo et al.,
2014b; Zhou et al., 2014). For example, instead of pursuing
genome-wide significance, two GWA studies have successfully
identified disease-associated gene modules, which are comprised
of many closely interacting genes showing nominal significance,
by integrating PPI networks analysis into GWAS (Han et al.,
2013; International Multiple Sclerosis Genetics Consortium,
2013). However, it is still a challenge to conduct a comprehensive
PPI network analysis, in particular by incorporating different
types of genetic factors from different tissue types.

In the present study, we established a network-based approach
to investigate the gene modules and pathways underlying
schizophrenia, and to explore the inherent associations among
multiple genetic risk factors. Our analysis uncovered significantly
enriched association signals in pathways relevant to synaptic
plasticity, neural development and signaling transduction such as
long-term potentiation, neurotrophin signaling pathway, ERBB
signaling pathway and MAPK signaling pathway, suggesting
those play contributory roles in the pathophysiology of
schizophrenia. We also demonstrated that genes targeted by
common SNPs are more likely to interact with genes carrying
DNMs. Finally, we identified a group of interacting genes
showing a significant combined effect to the genetic susceptibility
of schizophrenia.

MATERIALS AND METHODS

GWAS Data Sets
Gene-level P values were calculated based on SNP P values
from the largest GWAS conducted by Schizophrenia Psychiatric
Genome-Wide Association Study Consortium (PGC), which
recruited 36,989 cases and 113,075 controls (PGC phase 2,
abbreviated as PGC2) (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014). The association results
were downloaded from the website of PGC1. As a control, we used
the GWAS data of Crohn’s disease (CD) from the International
IBD Genetics Consortium2 including a total of 3,685 cases and
5,968 controls (Jostins et al., 2012).

Gene-Level Associations
Gene-level associations were calculated by VEGAS (Liu et al.,
2010). VEGAS performs Monte-Carlo simulations from the
multivariate normal distribution based on the LD pattern from
reference populations and assigns an estimated P value to
each gene. SNPs located within 50 kb upstream and 50 kb
down stream of gene boundaries are used in the analysis in
order to capture regulatory regions and SNPs in LD. Previous
studies suggested P-value < 0.05 as the threshold of gene-level
significance (Liu et al., 2010; International Multiple Sclerosis
Genetics Consortium, 2013). However, since the number of
genome-wide significant loci from the PGC2 study are much
more than from the previous studies as a result of study size
differences, the gene-level significance at both P-value < 0.01
(2501 significant genes) and P-value < 0.05 (4698 significant
genes) was evaluated in this study. Genes located in the MHC
region (25–34 mb on chr6) were excluded in the analysis.

Rare Variations Curation
In this study, we used the sequencing results from previous
studies (Xu et al., 2012; Gulsuner et al., 2013; Fromer et al.,
2014) and annotated the variants by wANNOVAR3 (Chang and
Wang, 2012). We used SIFT and Polyphen2 (HDIV) scores
compiled by dbNSFP2 database as well as the AVSIFT score based
on annotations at http://sift.bii.a-star.edu.sg to assess whether
the missense variants are benign or damaging (Supplementary
Table S1).

For the CNVs, we collected the genes disrupted by
CNVs reported in large case-control studies of schizophrenia
(Supplementary Table S2).

Network Analysis
Schematic overview of the network analysis pipeline in this study
was provided in Supplementary Figure S2.

The PPI Network was constructed based on the database
iRefindex, which collected the protein interactions from a
number of primary interaction databases (Razick et al., 2008).
In order to control the rate of false positive interactions, we
selected only those interactions that were supported by at least

1http://www.med.unc.edu/pgc/downloads
2http://www.ibdgenetics.org
3http://wannovar.usc.edu

Frontiers in Genetics | www.frontiersin.org 2 September 2018 | Volume 9 | Article 434

http://sift.bii.a-star.edu.sg
http://www.med.unc.edu/pgc/downloads
http://www.ibdgenetics.org
http://wannovar.usc.edu
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00434 September 26, 2018 Time: 15:23 # 3

Chang et al. Gene Networks Underlying Schizophrenia

FIGURE 1 | (A,B) Comparison of the number of nodes between the real network and random networks. Connectedness of the LCC based on gene-wise significant
genes (Pgene < 0.01) from PGC2 study. The background distributions are generated by the number of nodes and edges of LCCs from 10,000 random simulations. P
values are estimated by the proportion of LCCs from 10,000 random networks with more nodes or edges than the real network. Both node and edge numbers of
the real data are significantly larger than random simulations (Pnode = 0.0012; Pedge = 0.0003).

two independent PubMed literatures. A high-confidence network
with 9,090 proteins (nodes) and 25,864 interactions (edges) was
subsequently built for downstream analyses.

We next mapped the significant genes (P < 0.05) identified
by VEGAS to the PPI network, and obtained a sub-network
comprised of the significant genes and the interactions among
them. The sub-network contains several connected components
and many singletons. We then extracted the largest connected
component (LCC) of the sub-network for downstream analysis.

To test whether the size of the LCC is larger than what would
be expected by chance, we randomly assigned P values of the same
network and generated the simulated LCCs. We repeated this
procedure 10,000 times, and use these simulations as background
to estimate the significance of the LCCs generated from the real
data (Figure 1 and Supplementary Table S3). To investigate the
biological significance of the genes in the LCC, we carried out
a gene function enrichment analysis against the KEGG database
using DAVID (Supplementary Table S4) (Huang et al., 2007).

Gens (GWAS Edge-Based Network
Search) Algorithm
Gens algorithm is modified based on a previously published
node-based network search method (Ideker et al., 2002; Chuang
et al., 2007; Jia et al., 2011).

Gens first assigns a weight to each edge of the network
calculated by the gene-wise P values and mRNA expression
correlations of interacting gene pairs (Supplementary Data
Sheet 1). The weight of each edge is defined as

Wij = Cij ×
√
Pi × Pj

where Cij denotes the Pearson Correlation Coefficient of
interacting gene pairs, gene i and gene j. Pi is the P value of Gene
i, Pj is the P value of Gene j.

The gene mRNA expression data were downloaded from Allen
Brain Atlas4

The weight of each edge was then converted into a Z score

Zij = φ−1 (1−Wij
)

where φ−1 represents the inverse normal cumulative distribution
function.

The score of gene module is defined as

Zm =
∑

Zij/
√

k

where k is the number of edges in the module.
The search procedure starts from the seed edge, neighborhood

interactors are added into the module if they can yield an
increment greater than Zm×r, r is set to 0.05 in this study.

To evaluate the likelihood of the detected modules were
identified by chance, Gens creates a background distribution
by scoring 100,000 randomly generated modules with the same
number of genes as the detected module. The significance is
calculated as the proportion of those random generated modules
whose Zm are larger than or equal to that of the identified
module. Gens also adjusted the identified module size by defining
a normalized module score

Zn = (Zm −mean (Zm (π)))
/
sd (Zm (π)),

4http://human.brain-map.org/static/download
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where Zm(π) represents the distribution of Zm generated by
100,000 simulations.

RESULTS

Enriched Pathways Underlying
Schizophrenia
We first used VEGAS to convert the SNP associations into gene-
level P values (Supplementary Figure S1). We next extracted
the sub-networks by genes with a significant gene-level P
value. The identified sub-networks are comprised of connected
components and singletons. Among the connected components,
the LCC contains most of the nodes and edges in the sub-
network, which may participate in potential pathways underlying
schizophrenia. To investigate the biological significance of the
LCCs, we carried out a gene function enrichment analysis on the
gene set of LCCs. We found significantly over-represented KEGG
pathways, which are highly relevant to synaptic plasticity, neural
development and signaling transduction such as long-term
potentiation, neurotrophin signaling pathway, ERBB signaling
pathway, MAPK signaling pathway, and T cell receptor signaling
pathway. Other enriched pathways include proteasome, ubiquitin
mediated proteolysis pathway and multiple cancers associated
pathways (Supplementary Table S4).

We further confirmed that the sizes of LCCs are significantly
larger than the LCCs generated by simulated random networks
(Figure 1 and Supplementary Table S3). For comparison, we
performed the same analysis on a CD cohort, the LCC size is also
larger than random simulations (Supplementary Table S3). This
result is consistent with a previous study pointing to a biological
plausibility that a set of genes coherently contribute to disease risk
through interactive co-function and co-regulation (International
Multiple Sclerosis Genetics Consortium, 2013).

Mutual Interplay of Common and Rare
Genetic Risk Factors in Schizophrenia
To examine whether genes belonging to the LCC network and
identified by GWAS data are more likely to interact with genes
harboring DNMs, We added the genes carrying potential DNMs
(frameshift insertions/deletions, missense variants, or nonsense
variants) and extracted the LCC based on the merged gene set.
The size of the LCC significantly increased, larger than 10,000
simulations of the above procedure based on the same number of
randomly selected genes. As a control, we tested the same number
of top significant genes from CD GWAS. The size of the resulting
LCC was not significantly different from random simulations.
Furthermore, we also found the size of LCC did not increase
significantly than random simulations if genes with silent de
novo variants in schizophrenia cases were included (Figure 2 and
Supplementary Table S5).

Causal Gene Modules Identified by
Network Search Algorithm
In an attempt to add some more understanding to the
schizophrenia genetic puzzle, we collected evidence for literature
reported genes that are known to be disrupted by CNVs in

schizophrenia patients (Supplementary Table S2), and added
them to the PPI network analysis. We subsequently derived the
LCC from genes targeted by SNPs, DNMs, and CNVs.

To pinpoint a small group of interactive genes with significant
combined/additive effect to schizophrenia, we developed an
edge-based network search algorithm (Gens) for detecting causal
gene modules in PPI networks (Supplementary Figure S2).
The results from gene-level significance at both 0.05 and 0.01
were highly consistent with each other demonstrating that
the top-ranked gene modules overlapped considerably in their
gene content. The shared genes between top-ranked modules
significantly pointed to the interactome of N-methyl-D-aspartate
receptor (NMDAR) genes including DLG1, DLG2, DLG4, ERBB4,
GRIN2A, and GRIN2B (Supplementary Figure S3). All of
those genes exhibited strong associations with schizophrenia
susceptibility (DLG1, rs436564, P = 8.97 × 10−4; DLG2,
rs12294291, P = 4.90 × 10−7; DLG4, rs222854, P = 3.76 × 10−5;
ERBB4, rs16846200, P = 1.62 × 10−5; GRIN2A, rs9922678,
P = 6.72 × 10−9; GRIN2B, rs11757887, P = 8.81 × 10−7;
Supplementary Figure S4) with GRIN2A, reaching genome-wide
significance in the PGC2 study.

Some of the NMDAR genes are also targeted by rare variations.
For example, DLG1 and GRIN2A have been reported to be
targeted by DNMs; DLG1, DLG2, and ERBB4 have been reported
to be targeted by CNVs. To further explore the risk genes from
the PPI network, we next select all the gene modules with
P < 0.05 (P value calculated by random simulation, see Methods)
and calculated the frequency of genes occurring in the selected
modules. Genes with the frequency above the upper quartiles
were defined as ‘top genes’. The ‘top genes’ was used to construct
a new PPI network of 152 nodes and 324 edges (Figure 3),
which reflects the most significant gene module derived from the
network analysis.

Enrichment analysis indicated that they are enriched in the
neurotrophin signaling pathway (P = 7.27 × 10−13), ERBB
signaling pathway (P = 1.84 × 10−7), long-term potentiation
(P = 5.37× 10−5), MAPK signaling pathway (P = 3.16× 10−5), T
cell receptor signaling pathway (P = 1.17 × 10−5), and pathways
in cancer (P = 4.87 × 10−8) to name a few (Supplementary
Table S6). Moreover, in this network, we found multiple genes
are connected with the core members of NMDAR interactome,
such as ATP2B2, DLGAP, MAP1A, NOS1, PTK2B, PTPRG and
PRKCA. Among them, ATP2B2 (rs9879311, P = 2.77× 10−6) and
NOS1 (rs2293052, P = 1.24× 10−6) exhibited strong associations
with schizophrenia risk in the PGC2 GWAS.

Beside the NMDAR interactome, we also found candidate
genes showing strong associations with schizophrenia risk in the
network, such as ANKS1B (rs10745841, P = 1.28× 10−6), CHUK
(rs975752, P = 2.52× 10−6), CNTN2 (rs16937, P = 8.69× 10−7),
CNTNAP2 (rs6961013, P = 4.80 × 10−5), CREB1 (rs2709410,
P = 4.07× 10−6), CREB5 (rs4722797, P = 7.58× 10−6; rs887622,
P = 8.79 × 10−6), CUL3 (rs11685299, P = 1.11 × 10−8),
EP300 (rs9607782, P = 6.76 × 10−12), GABBR2 (rs2304389,
P = 3.81 × 10−7), GNA13 (rs11868185, P = 4.44 × 10−5),
NCOR2 (rs2229840, P = 2.90 × 10−4), NTRK3 (rs146797905,
P = 3.35× 10−7; rs8042993, P = 7.84× 10−6), PAK2 (rs10446497,
P = 5.30 × 10−6), PTK2 (rs4961278, P = 1.86 × 10−5), PTK2B
(rs2565065, P = 1.94× 10−7), PTN (rs3735025, P = 7.75× 10−9),
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FIGURE 2 | (A,B) Comparison of the number of nodes between the real network (damaging events) and random networks. (C,D) Comparison of the number of
nodes between the real network (benign events) and random networks. Connectedness of the LCC based on gene-level significant genes (Pgene < 0.01) from PGC2
study and genes harboring DNMs. Original size of LCC based on gene-wise significant genes constituting 402 nodes and 620 edges. 635 genes harboring DNMs
are added to generate the new LCC. The background distribution is generated by 10,000 LCCs based on adding 635 random selected genes. P values are
estimated by the proportion of LCCs from random networks with more nodes or edges than the real network. As a control, we use the LCC generated by adding top
635 gene-level significant genes from Crohn’s disease as control. Dash line denotes the size of LCC generated by adding DNMs. Solid line denotes the size of LCC
generated by adding CD top genes. Adding DNMs significantly increased the size of LCCs (DNMs: Pnode = 0.0022, Pedge = 0.0032; CD: Pnode = 0.1941,
Pedge = 0.0678), while adding top CD genes did not. For comparison, we also added the synonymous and non-frameshift substitutions to generate the new LCC.
The size of new LCC is not significantly larger than random simulations (Benign substitutions: Pnode = 0.698, Pedge = 0.0571; CD: Pnode = 0.1922, Pedge = 0.1900).

PTPRF (rs11210892, P = 4.97 × 10−10), STK4 (rs6065777,
P = 5.92 × 10−6), TCF4 (rs9636107, P = 9.09 × 10−13).
Among them, CUL3, EP300, NCOR2, PTK2B, and PTPRF were
targeted by DNMs, and PAK2, PARK2 and PTK2 were targeted
by CNVs.

DISCUSSION

Given the heterogeneity and complexity of the genomic
landscape in schizophrenia, we employed multiple

network-based methods to reveal the instinct associations
among different types of genetic risk variants, resulting in the
discovery of novel gene modules and pathways underlying
schizophrenia (Supplementary Figure S2).

With the recent GWAS success measures in schizophrenia
uncovering 108 genome-wide significant loci (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014),
the genetic underpinning of this complex disease have begun
to unravel. However, a considerable number of nominally
significant loci are likely to be identified in future studies
through the analysis of larger sample sizes or the application of
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FIGURE 3 | PPI network visualization of the most significant gene module derived from the network analysis. Gene-level P values (<0.05) are colored from green to
red. Genes harboring DNMs and CNVs are shown as circles, and triangles respectively. Genes harboring both DNMs and CNVs are diamond shaped. Edges width
reflects the gene co-expression correlation between two connected nodes. Solid and dash line denote positive, and negative correlations respectively.

new and innovative methods. For example, the schizophrenia
susceptibility gene CAMKK2 showing nominal significance
(rs1063843, P = 2.32× 10−5) in the PGC2 study was successfully
identified by integrative analysis of gene expression and PPI (Luo
X.J. et al., 2014).

We hypothesize that a group of functionally related genes with
nominal significance could jointly contribute to schizophrenia
susceptibility. We further performed a PPI network-based
pathway analysis on two GWA studies of schizophrenia and
identified significantly enriched KEGG pathways in both studies.
Some pathways have been strongly associated with schizophrenia,
such as the long-term potentiation, ERBB signaling pathway and
MAPK signaling pathway (Fazzari et al., 2010; Pitcher et al., 2011;
Funk et al., 2012; Savanthrapadian et al., 2013; Salavati et al.,
2015). Interestingly, we found both the proteasome pathway and
the ubiquitin mediated proteolysis pathway to be significantly
enriched (Supplementary Table S4). Dysfunction of the
ubiquitin-proteasome pathway (UPP) has been implicated in the
pathology of various neurodegenerative conditions, and has been
linked to several late-onset neurodegenerative diseases caused by

aggregate-prone proteins such as Alzheimer’s disease Parkinson’s
disease and Huntington’s disease (Rubinsztein, 2006; Hegde
and Upadhya, 2011). Cumulative evidence also suggests that
schizophrenia patients have aberrant gene expression patterns
and protein expression disruptions in the UPP suggesting the
UPP may also contribute to the deficits in schizophrenia (Vawter
et al., 2001; Aston et al., 2004; Altar et al., 2005; Bousman et al.,
2010; Rubio et al., 2013). Our results are consistent with these
findings and provide new evidence in support of the association
between the UPP and the pathogenesis of schizophrenia.

Cumulative evidence suggests that DNMs are an important
cause of mental disorders such as schizophrenia, autism and
intellectual disability (Veltman and Brunner, 2012). DNMs
occur in different genes of different patients may be collectively
responsible for a portion of sporadic schizophrenia cases.
However, unlike CNVs, genes recurrently mutated by SNVs
are rare and the overlap of genes disrupted by DNMs from
recent studies is also small (Supplementary Figure S5). Thus,
we naturally raise the question if genes targeted by common
SNPs are more likely to be targeted by DNMs, and if genes
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targeted by common SNPs are more likely to interact with genes
carrying DNMs? For the first question, the PGC2 study unveiled
significant overlap between genes in the schizophrenia GWAS
associated intervals and those with DNMs in schizophrenia
(P = 0.0061) (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014). For the second question, our
analysis provides new evidence suggesting that genes targeted
by common SNPs or DNMs are likely to interact with each
other or participant in the same pathway. Collectively, these
results suggest that schizophrenia susceptibility involves a mutual
interplay of both common and rare genetic risk factors.

We additionally developed an edge-based network search
algorithm to identify the leading disease associated modules
underlying schizophrenia. The network search method was
initially node-based, and developed in order to detect a
group of interactive genes which show significantly changes in
mRNA expression (Ideker et al., 2002). Later, this method was
successfully applied on the post-GWAS network analysis (Jia
et al., 2011; Jia et al., 2012; Han et al., 2013; International Multiple
Sclerosis Genetics Consortium, 2013). Here, the advantage of
Gens is that the edge-based method can utilize not only the
node P values for the node but also the gene co-expression
information as edge weights to score and rank the detected
modules (Methods).

Using this approach, we found the top-ranked modules
were significantly enriched in the NMDAR pathway associated
genes including DLG1, DLG2, DLG4, ERBB4, GRIN2A, and
GRIN2B. All of those genes show strong association with
schizophrenia from GWAS. DLG1, DLG2, ERBB4, and GRIN2A
were also targeted by DNMs or CNVs. In addition to GRIN2A,
which has surpassed genome-wide significance (rs9922678,
P = 6.72 × 10−9) in the PGC2 study, DLG2 (rs12294291,
P = 4.90 × 10−7), GRIN2B (rs11757887, P = 8.81 × 10−7)
also showed strong associations nearly reaching genome-wide
significance. These results suggested that the dysfunction of
the NMDAR complex plays a leading role in the pathology of
schizophrenia and is highly impacted by multiple genetic risk
factors.

We further pinpointed two genes ATP2B2 (rs9879311,
P = 2.77× 10−6) and NOS1 (rs2293052, P = 1.24× 10−6), which
were closely connected to the NMDAR interactome and showed
strong associations with schizophrenia risk. ATP2B2 encodes
the plasma membrane calcium-transporting ATPase 2 which
plays an important role in intracellular calcium homeostasis and
extrudes Ca2+ from cytosol into extracellular space. Family-based
association studies suggested ATP2B2 as a risk gene for autism
in multiple ethnicities (Carayol et al., 2011; Prandini et al., 2012;
Yang et al., 2013). A previous study also suggested ATP2B2 could
confer risk to schizophrenia (Ikeda et al., 2010). NOS1 encodes a
member of nitric oxide synthases, which functions as a biologic
mediator in neurotransmission. Previous studies also provided
evidence of the associations between NOS1 and schizophrenia
risk (Shinkai et al., 2002; Reif et al., 2011; Zhang et al., 2014).

Besides the NMDAR interactome, CUL3, EP300, PTN, PTPRF,
TCF4 reached genome-wide significance in the PGC2 study.
CUL3, EP300, and PTPRF were also targeted by DNMs. EP300
servers as an important hub in the network which directly

interacted with 14 genes (TCF4, EGR1, SREBF1, and SREBF2
located in genome-wide significant regions; AKT1 and SMAD7
targeted by DNMs). The product of EP300 functions as histone
acetyltransferase and regulates transcription via chromatin
remodeling. Defects of EP300 can cause Rubinstein-Taybi
syndrome (a disease with short stature and intellectual disability)
and may result in the formation of tumors (Tillinghast et al.,
2003; Roelfsema et al., 2005; Negri et al., 2015). Interestingly,
the DNM (NM_001429, exon14, c.C2656G, p.P886A) found
in EP300 is not predicted as damaging by either SIFT nor
PolyPhen2, and a common missense variant in EP300 is also
strongly associated with schizophrenia (rs20551, P = 1.38× 10−8;
NM_001429, exon15, c.A2989G, p.I997V), which suggest that
slight changes in the protein conformation of EP300 may confer
risk to schizophrenia. EP300 is also interacted and co-expressed
with CREB1 in the network. It is reported that EP300 can
mediate cAMP-gene regulation through phosphorylated CREB
proteins. CREB1 also showed strong association (rs2709410,
P = 4.07 × 10−6) in the PGC2 study. CREB1 has been linked
to drug addiction, memory disorders and neurodegenerative
diseases (Bilecki and Przewlocki, 2000; Nestler, 2002; Josselyn
and Nguyen, 2005; Lee et al., 2005). There is also some
evidence of the association between CREB1 and schizophrenia
(Li et al., 2013; Ma et al., 2014; Kumar et al., 2015). PTN
is another important hub, which interacted with eight genes
(NCAN, PSMB10, and SGSM2 located in genome-wide significant
regions; NCAN, PSMD2, and SGSM2 targeted by DNMs).
PTN encodes pleiotrophin, which may suppress long-term
potentiation induction (Pavlov et al., 2002).

In the network, candidate genes with nominal significance
such as ANKS1B, CNTN2, CNTNAP2, GABBR2, NCOR2, and
NTRK3 also may be involved in the pathology of schizophrenia.
The product of ANKS1B is predominantly expressed in brain
tissue and interacted with amyloid beta protein precursor,
which may play a role in brain development. A recent study
demonstrated that ANKS1B product regulates synaptic GluN2B
levels and further influence the NMDAR function. Multiple
pieces of evidence have linked CNTN2, CNTNAP2, GABBR2, and
NTRK3 to neuropsychiatric disorders, including schizophrenia
(Weickert et al., 2005; Friedman et al., 2008; Otnaess et al., 2009;
Fazzari et al., 2010; Fatemi et al., 2011; Roussos et al., 2012;
Bormuth et al., 2013; Fatemi et al., 2013; Karayannis et al., 2014).
SNPs in NCOR2 are associated with cocaine dependence in a
recent GWAS (Gelernter et al., 2014).

In conclusion, the heterogeneity and complexity of the genetic
landscape in schizophrenia is high. Here, we demonstrate that
common and rare genetic risk factors converge on PPI networks
that are enriched for schizophrenia candidate genes involved in
synaptic plasticity and neural development. We also provide new
evidence demonstrating that the NMDAR interactome is highly
targeted by multiple types of genetic risk factors and may play
a leading role in the risk of schizophrenia. Furthermore, we
pinpointed many nominally significant genes in GWAS showing
strong evidence to influence schizophrenia risk according to
their network properties. These genes may reach genome-wide
significance or carry DNMs to be unveiled in further genetic
studies with more samples.
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