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ABSTRACT
Targeted immunization of centralized nodes in large-scale networks has attracted significant attention.
However, in real-world scenarios, knowledge and observations of the network may be limited, thereby
precluding a full assessment of the optimal nodes to immunize (or quarantine) in order to avoid epidemic
spreading such as that of the current coronavirus disease (COVID-19) epidemic. Here, we study a novel
immunization strategy where only n nodes are observed at a time and the most central among these n nodes
is immunized.This process can globally immunize a network. We find that even for small n (≈10) there is
significant improvement in the immunization (quarantine), which is very close to the levels of immunization
with full knowledge. We develop an analytical framework for our method and determine the critical perco-
lation threshold pc and the size of the giant component P∞ for networks with arbitrary degree distributions
P(k). In the limit of n→ ∞we recover prior work on targeted immunization, whereas for n= 1 we recover
the known case of random immunization. Between these two extremes, we observe that, as n increases,
pc increases quickly towards its optimal value under targeted immunization with complete information. In
particular, we find a new general scaling relationship between |pc(∞)− pc(n)| and n as |pc(∞)− pc(n)| ∼
n−1exp(−αn). For scale-free (SF) networks, where P(k)∼ k−γ , 2< γ < 3, we find that pc has a transition
from zero to nonzerowhen n increases from n= 1 toO(logN) (whereN is the size of the network).Thus, for
SF networks, having knowledge of ≈logN nodes and immunizing the most optimal among them can dra-
matically reduce epidemic spreading.We also demonstrate our limited knowledge immunization strategy on
several real-world networks and confirm that in these real networks, pc increases significantly even for small n.
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INTRODUCTION
Networks play a crucial role in many diverse sys-
tems [1–11]. Connectivity of components is criti-
cal formaintaining the functioning of infrastructures
like the Internet [12] and transportation networks
[13], as well as for developing efficient immuniza-
tion against epidemics [14] and the spread of infor-
mation in social systems [15]. Because of this im-
portance, researchers have long focused on how a
network can be optimally immunized or fragmented
to prevent epidemics or maintain infrastructure re-
silience [16–20].Manyapproacheshaveusedperco-
lation theory from statistical physics to prevent the
spread of viruses or assess network resilience under
the infection or failure of some fraction of nodes or
links [21–32].

Early studies in networks found that immu-
nizing real networks against an epidemic is highly

challenging due to the existence of hubs that
prevent eradication of the virus even if many
nodes are immunized [33–35]. These largest
degree nodes, are targeted, the network can
quickly be separated, leading to immunity or
failure [36]. However, previous models of targeted
immunization have assumed full knowledge of the
network structure that in most cases is not available.
Research has shown that even those in control of
a network often have knowledge of only a small
portion of the whole network structure [37–41].
This has been further demonstrated with the current
coronavirus disease 2019 (COVID-19) epidemic
where the detailed social network of individuals is
unknown.

In this paper, we study targeted immuniza-
tion in networks with limited knowledge. Note
that the methodology equally applies to efficient
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attacks (where the targeted nodes are removed) on
networks. We assume that at each stage, n nodes
are observed and the node with highest degree is
immunized and thus unable to continue spreading
infection. This procedure is repeated until a 1 − p
fraction of nodes are immunized. In particular, our
model could apply to a situation where several co-
operative teams are sent to immunize a network and
each team has access to information on a small sub-
set (n nodes) of the network. We develop a theoret-
ical framework for this model of immunization with
limited informationusingpercolation theory for net-
works with arbitrary degree distribution. In the limit
of n = N we recover prior work on targeted im-
munization [36], whereas for n = 1 we recover the
case of random immunization [34,35]. We observe
excellent agreement between our theoretical frame-
work and simulation results regarding the efficiency
of the immunization asmeasured by both the critical
threshold pc and the size of the giant component P∞
for p > pc as a function of n. We note that a smaller
giant component implies improved immunization,
whereas a larger critical threshold pc is alsomore effi-
cient since fewer quarantines/vaccines areneeded to
stop the epidemic.We find a scaling relationship be-
tween n and pc for both Erdős-Rényi (ER) and scale-
free (SF) networks, which we determine both an-
alytically and through simulations. Surprisingly, we
find thatpc quickly reaches a large value and aplateau
even for relatively small n (of order 10), after which
increasing n has negligible effect on pc.This suggests
that obtaining information on even a small number
(n) of people can lead to significantmitigation of the
epidemic.

RESULTS
Model
Let G(V, E) be a network where V and E are the
sets of nodes and edges, respectively.The number of
nodes in the network isN= |V|. We assume that an
immunizing teamhas limited knowledge of the over-
all network structure and instead possesses only lim-
ited information on several nodes. Specifically, we
randomly select n nodes for which the immunizing
team is assumed to obtain information on their node
degree. We then immunize the node with the high-
est degree among these n. This could be performed
bymany teams such that they collectively immunize
a fraction of 1− p nodes. The process leads to iden-
tical results if instead of immunizing the nodes they
are put into quarantine. We note that the immuniz-
ing team only retains knowledge of the initial node
degree and does not reduce the degree based on
any neighbors that might have been immunized or
quarantined.This is due to the fact that when asking

individuals about their neighbors, the individuals are
unlikely to know that a neighbor has recently been
immunized or quarantined.

In Fig. 1, the limited information immunization
is illustrated and compared to the global targeted im-
munizationon anetwork.Here a total of n=3nodes
are observed. In panel (a), an individual with global
information about the network structure chooses
the highest degree node u to immunize. However,
in panel (b), the individual knows only the degree
of three nodes in the network at any time, i.e. v1,
v2, v3. Consequently, node v3 with the highest de-
gree k= 4 (marked in red) is immunized.

ER networks
Wenow study our limited knowledge immunization
strategy, i.e. the general result, Equations (M8) and
(M9) in theMethods section, onERnetworks. First,
we analyze the giant component P∞. For the case
n = 1, limited knowledge immunization reduces
to the classical random immunization, while for
n → ∞ (meaning that the global network is
observed) corresponds to targeted immunization
[17,33,35,36]. Using Equation (M9) in the Meth-
ods section, the giant component P∞ can be solved
numerically for any given p. In Fig. 2(a), simula-
tions and analytical results are shown for the giant
component P∞ as a function of 1 − p under lim-
ited information immunization for differentn. As the
knowledge index n increases from 1 to N, the lim-
ited knowledge immunizationmoves frombeing like
random immunization to being like targeted immu-
nization.The simulations are in excellent agreement
with the theoretical results (lines).

Next, we focus on the critical threshold, pc, of
limited knowledge immunization. Overall, we find
that one does not need much knowledge of the
network to improve the immunization and n ∼ 10
is enough to achieve similar results as for targeted
immunization with complete information. This can
be seen by observing the critical threshold pc as a
function of n in Fig. 2(b). In Fig. 2(c) we show the
variation of pc with 〈k〉 for several fixed n.

We can also derive the behavior of pc in the limit
of large n analytically. By examining Equation (M5)
in the Methods section we note that, when n→ ∞,
there are two distinct behaviors depending on
whether k is small, F(k) < p; or k is large, F(k) > p.
It can be shown (see Section II.C of the online sup-
plementary material) that the leading term behaves
as

F p(k) ∼

⎧⎪⎨
⎪⎩

F (k)
p − 1

n e
−αk n , F (k) < p,

1 − 1
n e

−αk n , p < F (k) < 1,

1, F (k) = 1,
(1)
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Full knowledge Limited knowledge

Figure 1. Schematic illustration of our limited knowledge immunization strategy. The
immunizer is able to observe the degree of nodes that are colored green, while
the gray nodes are unknown. (a) For the classical targeted immunization, one has
complete information on the global structure of the network and chooses the highest
degree node (u) to immunize. (b) Here the case of an individual with limited knowledge
of the network is demonstrated. In this figure, we set n = 3 and only the degrees of
nodes v1, v2 and v3 are known. Given this limited information, the immunizer would
choose to immunize v3, being unaware that an unobserved higher degree node ex-
ists. At the next immunization, only nodes that have not been immunized yet will be
observed.

(a) (b)

(c) (d)

Figure 2. Results on ER networks. (a) The giant component P∞ of an ER network with
〈k〉 = 4 varies with the fraction of immunized nodes 1− p under limited knowledge. As
n is increased, the limited knowledge immunization tends to have the same immuniza-
tion effect as targeted immunization. (b) The critical threshold pc of limited knowledge
immunization as a function of n on ER networks. The values of pc were determined from
the p of the maximal second largest clusters [28]. Note that already for small n∼ 10,
pc is high and close to targeted immunization (global knowledge, n ∼ N). (c) Critical
threshold pc as a function of the mean degree 〈k〉 of ER networks for limited knowl-
edge immunization. (d) The scaling of |pc(∞) − pc| with n on ER networks. Symbols
are average results of simulations over 100 independent realizations of ER networks
with 106 nodes. All simulation results (symbols) agree well with theoretical results of
Equation (M10) in the Methods section (dashed lines).

where αk = |log[p/F(k)]|. In the limit n → ∞, we
can get the expected result for targeted immuniza-
tion, Fp(k)=min{F(k)/p, 1} [35,36].

Substituting Equation (1) into Equation
(M10) in the Methods section and not-
ing that, from a sum of exponentials decay-
ing with n, only the lowest decay rate con-
tributes to the leading term, we obtain (see
Section II.C of the online supplementary material)

pc (n) ∼ p∞
c − A

1
n
e−αn , (2)

where p∞
c = pc (n → ∞), and the decay rate α is

now
α = min

k
| log(p∞

c /F (k))|.
The prefactor is A = (2p∞

c kslow)/(k>k<), where
k< is the largest degree such that F (k) < p∞

c ,
k> = k< + 1 and kslow is the degree that gives the
lowest rate α. (See the illustration in the online sup-
plementary material).

It is clear that kslow must be k< or k> because
F(k) is monotonic. If F(kslow)= F(k>)= 1 then k<

should be taken as kslow, and the corresponding α

should be taken. It should also be noted that if kslow
is not unique, it would simply change the prefactor
A in Equation (2). Another special case is where
F (kslow) = p∞

c ; then |p∞
c − pc | ∼ 1/n (see

Section III of the online supplementary material).
In Fig. 2(d) we show �pc = |p∞

c − pc | as a
function of n. As expected from the theory, we can
see that �pc ∼ 1/n for small n and exponential de-
cay for large n. When pc → 1, which occurs for the
ERnetworkwhen 〈k〉→1, the power law regimebe-
comesmuch broader, as explained in Section II.C of
the online supplementary material.

SF networks
Next, we study SF networks with P(k) = Ak−γ ,
k = m, · · ·, K, where A = (γ−1)mγ − 1 is the nor-
malization factor, andm andK are theminimumand
maximum degrees, respectively [33,34]. Similar to
ER networks, the size of the giant component P∞
can be obtained from Equation (M9) in the Meth-
ods section. InFig. 3(a),we showP∞ as a functionof
1 − p for different n values. The results demon-
strate that SF networks becomemore immunized as
n increases. Compared with ER networks, we can
observe that slightly higher values of n (more knowl-
edge) are needed to reach the near-steady-state re-
gion of a fully targeted strategy. In Fig. 3(c) we show
how pc varies with γ for small n for the SF net-
work where the minimum and maximum degrees
of the network are m = 2 and K = 1000, respec-
tively. In Fig. 3(d) we show �pc = |p∞

c − pc | as
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(a)

(c)

(b)

(d)

Figure 3. Results for SF networks. Comparison of theory (lines) and simulation (sym-
bols) for limited knowledge immunization, n, for SF networks. (a) The size of the giant
component versus n for the SF network with γ = 2.5. (b) Critical threshold pc versus n
on SF networks. (c) The critical threshold pc as a function of γ for different values of n.
(d) The log-log plot of |pc(∞) − pc| with n on SF networks showing both a power law
and exponential behavior. Simulations are obtained for networks of 106 nodes and aver-
ages are taken over 100 independent realizations. The minimum and maximum degrees
of the network are m= 2 and K= 1000, respectively. The theoretical results (dashed
lines) are calculated from Equation (M10) in the Methods section and are in excellent
agreement with the simulation results (symbols).

a function of n. As expected from the theory, Equa-
tion (2), the log-log plot captures the slope of −1
for small n while an exponential regime exists for
large n.

For SF networks with 2 < γ < 3, under ran-
dom immunization (n = 1), it has been shown that
pc = 0 for an infinite system [34], while for
high-degree immunization (n → ∞), pc > 0
[35,36]. Next we determine for which n, pc be-
comes nonzero and how it depends on the sys-
tem size N. To this end, we analyze Equations
(M5) and (M10) in the Methods section for large
k (high degrees govern the behavior in SF net-
works) and small n and p as follows (elaborated in
Section II.D of the online supplementary material).
It can be shown that, for large degrees,

F (k) ≈ 1 − (k/m)1−γ .

Substituting this intoEquation(M5) in theMethods
section and assuming that (k/m)γ − 1 
 n for large
degrees, it can be concluded that

Pp(k) ≈ pn−1P (k). (3)

In addition, we note that Pp(k) has a new nat-
ural cutoff, Kp, which depends on p and N as

(see Section II.D of the online supplementary
material)

K p ∼ pn/(γ−1)N1/(γ−1).

This helps us to evaluate the second moment of
Pp(k):

〈k2p〉 ∼
∫ K p

m
k2 pn−1Ak−γ

∼ pn−1K p
3−γ ∼ pn−1+nβNβ.

Here β = (3− γ )/(γ − 1).
Considering this, and substituting Equation (3)

into Equation (M10) in the Methods section, keep-
ing the leading terms in the limit of largeN, weobtain
(see Section II.D of the online supplementary mate-
rial for further details)

pc ∼ C (n)N−δ/n ∼ C (n) exp
[
−δ

log N
n

]
,

(4)where

δ = β

1 + β
= 3 − γ

2

and

C (n) = φ1/n , φ =
(
3 − γ

γ − 2
1
m

)(γ−1)/2

.

From Equation (4), it is easy to see that if
n � logN then pc → 0, while if n ∼ logN then pc
is nonzero. Note that the prefactorC(n) depends on
n but not onN.

In Fig. 4(a) we show pc versus γ . It is known that,
for 2 < γ < 3 and n = 1, if N → ∞ then pc →
0 [34]. Also, for n = 5, we can see that system size
matters and pc decreases asN increases. In Fig. 4(b)
we show that the scaling with n/logN of Equa-
tion (4) is valid. Furthermore, it can be seen from
Fig. 4(b) that, when n is small orN is large, such that
n/logN�1 (inFig. 4(b) it is 0.07), pc approaches 0.
Figure 4(c) supports the exponential scaling of
pc versus n−1logN obtained analytically in Equa-
tion (4).

Real networks
Our analytical framework is derived and well sup-
ported, as shown above, on an ensemble of networks
generated by the random configurationmodel. Here
we also test our analytical framework on six real-
world networks ranging from computer to social
networks. They include (a) autonomous computer
networks from the Skitter project [42], (b) the reply
network of the social news website Digg [43,44],
(c) the network of autonomous systems of the In-
ternet from the CAIDA project [42], (d) the social
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(a)

(b) (c)

Figure 4. How pc for SF networks depends on γ and the system size N. (a) The
critical threshold pc as a function of γ for different values of n and N; pc de-
creases with increasing N. For n = 1 and 2 < γ < 3, it is well known that
pc approaches zero for an infinite system. (b) The critical threshold pc as a function
of n/logN for the SF network with γ = 2.1. The inset shows magnifying the data for
small n = 1, . . . , 5; note that pc approaches zero for n/logN � 1. (c) The scaling of
pc with N and n for large N and small n. Here C (n) is the prefactor. The minimum and
maximum degrees of the nodes arem= 2 and K=N1/(γ−1), respectively. This confirms
Equation (4) for γ = 2.1 and δ = (3 − γ )/2 = 0.45.

friendship network from Douban [45], (e) tech-
p2p, the eDonkey peer-to-peer network [43,46] and
(f) sc-rel9, the scientific computing network
[43,47]. Detailed information and statistical fea-
tures of these networks are summarized in Section
IV of the online supplementary material. To test our
theory, we execute the limited knowledge immu-
nization strategy on the above real-world networks
and use the peak of the second giant component to
determine the critical pointpc, as shown inFig. 5. For
six real-world networks, we plot the distribution of
the critical point over 200 independent realizations,
together with the theoretical results. As can be seen
from Fig. 5, the critical thresholds pc for the empiri-
cal data are generally consistent with our theoretical
predictions. Moreover, we find that our limited
knowledge immunization approach is very efficient
at preventing outbreaks even for small n of order 10.

DISCUSSION
In summary, our results provide a framework
for understanding and carrying out efficient
immunization (or efficient attack) with limited
knowledge. Especially in cases of global pandemics,
e.g. the current COVID-19 epidemic, it is impossi-
ble to know the full interactions of all individuals and
immunize themost central. We find that an effective

(a) (b) (c)

(d) (e) (f)

Figure 5. Limited knowledge efficient immunization on six real-word networks (a–f). Each panel is the result of 200 independent simulations. In each
panel, filled circles, horizontal lines and dashed lines represent the mean, median value and analytical results of Equation (M10) in theMethods section,
respectively. In the simulations, we use the peak of the second largest component to identify the critical point pc.
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way to limit spreading is to obtain information on a
few (n of the order of 10) individuals and target (test
or quarantine) themost central. For example, testers
could stand at a supermarket and select a small num-
ber of people entering the store simultaneously.
Information on the connections of these people,
e.g. the number of people they live with or work
closely with, where and how often they meet with
other people etc., could be obtained quickly through
interviews or through cell phone tracking and only
the individual with the most connections in the
group could be tested, quarantined or immunized.
Our results demonstrate that even when this is done
in small groups of people (low n on the order of
10), it is possible to obtain a significant decrease in
global epidemics compared to randomly selecting
individuals. In our model, this can be seen by the
significantly reduced size of the giant component
and the significantly high critical threshold pc. Over-
all, these findings could help to develop efficient
approaches for immunizing large networks and
designing resilient infrastructures.

Finally, we note the following two possible vari-
ations of our model. In one approach, once we get
the degree of a node, we could also obtain partial
information (some links) of neighboring nodes and
utilize that information to target the highest degree
node. We find that adding this knowledge does not
change the key results of the proposed model. For
detailed results, we refer the reader to Section V
of the online supplementary material. Additionally,
our immunization approach assumes the existence
of a link as binary. Another variant of the model
that would be interesting is to incorporate difference
frequencies of interactions between different nodes.
This would suggest that some nodes are likely to in-
fect some of their neighbors more than others. Such
a setting could be implemented through a weighted
network, which would be an interesting topic for fu-
ture study.

METHODS
Suppose that the degree distribution of a network is
given by P(k), and F (k) = ∑k

s=0 P (s ) is the cu-
mulative probability that the degree of a randomly
chosen node is less than or equal to k. Furthermore,
at an arbitrary time t during the iterative percolation
process, assume that the distribution of the original
degree (including the immunized neighbors) of the
remaining nodes is P(k, t). Then the degree distri-
bution of the node that is immunized at time t is
given by

Pr (k, t) = F (k, t)n − F (k − 1, t)n

≡ �[F (k, t)n], (M1)

where F(k, t) is the cumulative distribution of
P(k, t). This formula can be recognized as being
derived from ‘order statistics’ giving the ‘maximum’
of several independent random variables [48] (see
Section II.A of the online supplementary ma-
terial). For k = 0, Equation (M1) becomes
Pr(0, t) = F(0, t)n. Hence, we define F(k =
1, t)= 0, and then Equation (M1) is valid for k≥ 0.

In a limited knowledge immunization, each
node’s immunization changes the degree distribu-
tion of the remaining nodes as

N(k, t + 1) = N(k, t) − Pr (k, t), (M2)

where N(k, t) is the number of nodes with degree k
at time t and Pr(k, t) is the likelihood that a node im-
munized at time t has degree k.

Then, substituting Equation (M1) into Equa-
tion (M2) gives

N(k, t + 1) = N(k, t) − �[F (k, t)n],

which in the continuous limit becomes

∂N(k, t)
∂t

= −�[F (k, t)n].

SubstitutingN(k, t)= (N− t)P(k, t) yields

−P (k, t) + (N − t)
∂ P (k, t)

∂t
= −�[F (k, t)n],

and using P(k, t)= �F(k, t), we obtain

�

[
− F (k, t) + (N − t)

∂F (k, t)
∂t

+

F (k, t)n
]

= 0.

Note that F(k=−1, t)= 0, and thus the entire term
inside the � is 0 for k = −1. Similarly, this implies
that, for k= 0 and likewise for any k≥ 0, this term is
also 0.Thus, we obtain the simple ordinary differen-
tial equation

(N−t)
∂

∂t
F (k, t)= F (k, t)−F (k, t)n (M3)

with the initial condition F(k, t = 0) = F(k).
It can be shown (see Section II.B of the on-
line supplementary material) that the solution of
Equation (M3) is

F (k, t) = (1 + (F (k)1−n − 1)

×e (n−1) log[(N−t)/N])−1/(n−1), (M4)

Page 6 of 8



Natl Sci Rev, 2021, Vol. 8, nwaa229

or, equivalently,

F p(k) = (1 + (F (k)1−n − 1)pn−1)−1/(n−1),

(M5)

where Fp(k) is the cumulative distribution of the de-
gree after immunizing a 1− p fraction of nodes. For
n = 1, the solution of Equation (M3) is Fp(k) =
F(k), as expected. Also, Equation (M5) converges to
F(k) in the limit n→ 1.

We can now obtain the degree distribution of the
occupied nodes after a 1 − p fraction of nodes are
immunized, which is given by

Pp(k)=�F p(k)= F p(k)−F p(k−1). (M6)

The equation for v, the probability of a randomly
chosen link to lead to a node not in the giant
component, is

1−v =
∞∑
k=0

k P (k)
〈k〉 P (	|k)(1−vk−1), (M7)

where P(	|k) is the probability of a node to be oc-
cupied given its degree is k.This self-consistent equa-
tion can be recognized as being derived based on the
generating function method [3]. Using Bayes the-
orem, we note that P(k)P(	|k) = P(	)P(k|	) =
pPp(k). Hence, Equation (M7) becomes

1 − v = p
〈k〉

∞∑
k=0

k Pp(k)(1 − vk−1). (M8)

The giant component is given by

P∞ =
∞∑
k=0

P (k)P (	|k)(1 − vk)

= p
∞∑
k=0

Pp(k)(1 − vk), (M9)

where v is found from Equation (M8).
At criticality, we take the derivative of both sides

of Equation (M8) and substitute v = 1, represent-
ing the location where the first solution with v < 1
exists, as opposed to only the v = 1 solution. Thus,
the critical condition is

1 = pc
〈k〉

∞∑
k=0

k(k − 1)Ppc (k). (M10)
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