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PDGF-driven proliferation, migration, and IL8 chemokine
secretion in human corneal fibroblasts involve JAK2-STAT3
signaling pathway
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Purpose: Platelet-derived growth factor (PDGF) is associated with corneal fibroblast migration and proliferation and
plays an important role in corneal wound healing. However, the intracellular mechanisms of PDGF-mediated functions
in corneal fibroblasts are poorly understood. We tested the hypothesis that PDGF functional activities in the cornea involve
the Janus kinase-2/signal transducers and activators of transcription-3 (JAK2-STAT3) signaling pathway and whether
PDGF induces the expression of suppressors of cytokine signaling 3 (SOCS3), belonging to the novel family of feedback
regulators of cytokine and growth factor activities.

Methods: Human corneal fibroblast (HSF) cultures were used as an in vitro model for functional analysis. Real-time
polymerase chain reactions were performed to quantify gene expression. Immunoprecipitation and immunoblotting
techniques were used to measure protein expression. Cell growth, migration, and ELISA assays were used for functional
validation.

Results: Low endogenous levels of STAT3 and SOCS3 mRNA and protein expression were noted in HSFs. PDGF
treatment of HSF significantly induced SOCS3 mRNA (3.0—4.5 fold) and protein (1.5-2.5 fold) expression in a time-
dependent manner. Similarly, PDGF treatment of HSF significantly increased STAT3 protein expression at two tested
time points (2.5-2.96 fold). Cultures exposed to vehicle (control) did not show any change in SOCS3 and STAT3 mRNA
or protein expression. An addition of AG-490, a selective inhibitor of the JAK2-STAT3 pathway, significantly inhibited
PDGF-mediated STAT3 induction and cell growth and migration in HSF. We also observed that PDGF induced
interleukin-8 (IL8) chemokine secretion (2 fold) and AG-490 inhibited IL8 secretion.

Conclusions: Our data showed that PDGF induced STAT3, SOCS3, and IL8 chemokine secretion in human corneal
fibroblasts. Further, PDGF-induced cell growth, migration, and IL8 secretion in corneal fibroblast involve the JAK2-
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STATS3 signaling pathway.

Corneal wound healing plays a critical role in the
maintenance of corneal transparency and visual acuity.
Corneal epithelial cell migration and proliferation, keratocyte
apoptosis,  extracellular  matrix  remodeling, and
transdifferentiation of keratocyte to fibroblasts and
myofibroblasts are involved in corneal wound healing [1-3].
These processes are largely regulated by the cytokines and
growth factors through the activation of several intracellular
signaling pathways including those involving mitogen-
activated proteins (MAP) kinases, Janus kinases (JAKs), and
signal transducers and activators of transcription (STATSs)
[4-6]. Recently, a family of inhibitory molecules called the
suppressors of cytokine signaling (SOCS) proteins have been
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described [7,8]. These proteins have highly divergent amino
termini, a central Src-homology 2 (SH2) domain, and a
conserved COOH-terminal region known as the SOCS box.
Cytokines rapidly induce SOCS expression, and SOCS
proteins in turn regulate cytokine signal transduction and
STAT activation negatively either through inhibition of JAK
kinases or by direct binding to signaling chains in the receptor
complex [7]. Mutational analysis of SOCSI has established
that both the NH,-terminus and SH2 domain are essential for
blocking JAK activity and cytokine signaling, but the COOH-
terminal SOCS-box region is not required. Furthermore, the
SH2 domain is necessary but not sufficient to inhibit JAK
activity [9,10]. Another SOCS protein, SOCS3, can be
induced by many cytokines and growth factors such as
interleukin (IL)-2, IL3, leptin, and insulin [8,9,11]. The
expression of SOCS3 is rapidly induced in T cells in response
to IL2 and can strongly inhibit IL2-induced STATS
phosphorylation [11]. Unlike other SOCS proteins, SOCS3 is
rapidly tyrosine-phosphorylated after IL2 stimulation,
although the importance of this phosphorylation is still
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unclear [11]. Although SOCS proteins inhibit the JAK/STAT
pathway, their function in the modulation of other signaling
pathways is unknown. Recently, SOCS gene expression has
been shown to be induced by many cytokines and growth
factors including the platelet-derived growth factor (PDGF)
[12]. Gene microarray analysis of PDGF-stimulated human
corneal fibroblasts showed a significant increase in SOCS3
expression [13].

Cytokines and chemokines also regulate immune
response by regulating proliferation and migration of
inflammatory and other cells to help in the process of wound
healing [14-17]. A proinflammatory cytokine, ILS8, is
produced by epithelial and fibroblast cells and plays an
important role in inflammation and wound healing [18,19].
IL8 has a capacity to recruit T-cells as well as nonspecific
inflammatory cells into sites of inflammation by activating
neutrophils [20]. IL8 has been shown to stimulate a-smooth
muscle actin production in human fibroblasts when applied to
the excision wounds in chickens and causes the wounds to
contract and close more rapidly [21]. Furthermore, IL8 is
chemotactic for fibroblasts and accelerates their migration and
can stimulate deposition of tenascin, fibronectin, and collagen
I during wound healing in vivo [21]. Both human corneal
keratocytes and epithelial cells have been shown to synthesize
and release IL8 following cytokine stimulation and/or
infection [22,23].

Platelet-derived growth factor (PDGF) is a known
modulator of fibroblast cell mitosis and chemotaxis [24-26].
Earlier, we have demonstrated the expression of PDGF-AA,
PDGF-BB, and PDGF-AB and their receptors in the human
cornea and their role in proliferation and chemotaxis using
cultured human corneal fibroblasts [27]. Out of the three
tested isoforms, PDGF-BB demonstrated a significantly
higher chemotactic effect compared to PDGF-AA or PDGF-
AB in human corneal fibroblasts [27]. Interestingly, PDGF-
AA showed strongest chemotactic response in rabbit corneal
epithelial cells [28]. Because of the chemotactic role of PDGF
in corneal wound healing, we hypothesized that PDGF
regulates the neutrophil chemoattractant, IL8. IL8 is known
to enhance corneal wound healing by chemoattracting
leukocytes and fibroblasts into the wound site rapidly [29,
30]. We anticipated PDGF-mediated SOCS3 overexpression
as a mechanism to regulate corneal inflammation and
hypothesized that PDGF regulates IL8 chemokine secretion
to promote cell migration and aids in other processes of wound
repair and healing. The intracellular signaling mechanisms of
PDGF-induced fibroblast migration, proliferation, and
corneal wound healing are poorly understood. Jester et al.
[31] reported that PDGF has a synergistic effect on TGFf-
induced transformation of rabbit corneal keratocytes to
myofibroblasts and proposed that PDGF is an important
mediator of wound healing. A recent report on skin fibroblasts
suggests that STAT3 is involved in PDGF-driven cell
migration, and this process is negatively regulated by SOCS3
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[32]. A significant increase in SOCS3 transcript levels by
PDGF in human corneal fibroblasts noted on gene array
analysis together with our previous investigations with PDGF
prompted us to hypothesize that PDGF-mediated cellular
proliferation and migration in cornea involve JAK/STAT
pathway under negative feedback regulation by SOCS3.
Using cultured human corneal fibroblasts, we showed that
PDGF-induced cellular proliferation and migration involves
JAK2-STATS3 pathway under the regulation of SOCS3.

METHODS

Cell culture: Donor human corneas were procured from the
Hartland Eye Banks (St. Louis, MO). Primary human corneal
fibroblasts (HSF) were generated from donor human corneas
using a method described previously [33]. Briefly, the cornea
was washed with an HSF medium, and the epithelium and
endothelium were removed by gentle scraping with a scalpel
blade. The corneal stroma was cut into small pieces and
incubated in humidified CO; incubator at 37 °C in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal
bovine serum to obtain HSF. Seventy percent confluent
cultures of HSF (passages 1-3) were used for experiments. To
investigate the effect of PDGF, a mixture of PDGF containing
equal amounts of PDGF-AA, PDGF-AB, and PDGF-BB was
used for all experiments. Cultures were exposed to the mixture
of PDGF (AA, AB, and BB) at a final concentration of 20 ng/
ml for 1 hor 8 h. The JAK-STAT inhibitor, AG-490, was used
at 100 uM final concentration for the indicated time to inhibit
downstream signaling. For all the experiments, cultures were
serum-starved for 24 h before being exposed to the cytokine
and/or the inhibitor. The cytokines were bought from R&D
System (Minneapolis, MN), and the AG-490 inhibitor was
purchased from Calbiochem (San Diego, CA).

RNA extraction, cDNA synthesis, and quantitative real-time
polymerase chain reaction: Total RNA from the cells was
extracted using an RNeasy kit (Qiagen Inc., Valencia, CA)
and was reverse transcribed to cDNA (Promega, Madison,
WI) following the vendor’s instructions using the ImProm-II
Reverse Transcription kit. Real-time polymerase chain
reaction (PCR) was performed using the iQ5 real-time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA).
Fifty microliters of a reaction mixture containing 2 pul cDNA
(250 ng), 2 pl forward primer (5'-TGG CGA AGG AAA TGG
TCA CA-3';200 nM), 2 pl reverse primer (5'-GGT GAC TGT
CCC GGA GGA GA-3"; 200 nM), and 25 pl 2X iQ SYBR
Green Supermix (Bio-Rad Laboratories) was run at universal
cycle (95 °C for 3 min, 40 cycles of 95 °C for 30 s followed
by 60 °C for 60 s) according to the manufacturer’s
instructions. The B-actin forward primer (5'-CGG CTA CAG
CTT CAC CAC CA-3") and reverse primer (5'-CGG GCA
GCT CGT AGC TCT TC-3') were used as a housekeeping
gene. The threshold cycle (Ct) was used to detect the increase
in the signal associated with an exponential growth of PCR
product during the log-linear phase. The relative expression
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was calculated using the following formula, 222¢t, The ACt
validation experiments showed similar amplification
efficiency for all templates used (the difference between linear
slopes for all templates is less than 0.1). Three independent
experiments were performed and the average (+SEM;
standard error of the mean) results are presented in graphic
form.

Immunoprecipitation and immunoblotting: Cells were
washed three times in ice-cold PBS and lysed directly on
plates using M-PER protein lysis buffer containing protease
inhibitor cocktail (Pierce Biotech, Rockford, IL). To
immunoprecipitate SOCS3, we used 1000 pg/ml of total
corneal fibroblast protein extracts and incubated them with 50
pl of protein A/G agarose beads (Santa Cruz Biotechnology
Inc., Santa Cruz, CA) for 3 h at 4 °C. After preclearing, 5 pl
of 1 mg/ml SOCS3 goat polyclonal antibody (Santa Cruz
Biotechnology Inc.) was added to each treatment group and 5
pl of pre-immune serum served as the negative control [34].
Protein A/G agarose beads (50 pl) were added to each tube
after 1 h followed by overnight incubation at 4 °C. Beads were
washed once with lysis buffer (20 mM Tris-HCI, pH 7.6;
150 mM NaCl; 0.5% Triton X-100; and 10 pM
phenylmethylsulfonyl fluoride) followed with two washes
with PBS. The samples were suspended in Laemmli’s sample
buffer (30 pl), vortexed for 1 min, centrifuged for 5 min at
10,000x g, and boiled for 5 min. For immunoblotting, the
protein extracts were suspended in 30 pl of Laemmli’s sample
buffer containing B-mercaptoethanol, resolved by 4%—-10%
SDS-PAGE, and transferred to a 0.45-pm pore size
nitrocellulose membrane (Invitrogen, San Diego, CA) [35].
The STAT3, SOCS3, and B-actin antibodies were purchased
from Santa Cruz Biotech. The anti-mouse, rabbit- or goat-
HRP, or AP antibodies were from Amersham (Piscataway,
NJ) or Santa Cruz Biotech.

Interleukin-8 ELISA: Corneal fibroblast cultures (~70%
confluence) were serum-starved for 24 h and stimulated with
PDGEF for 8 h. At end-time points, supernatants were collected
from three independent experiments and IL8 levels were
measured using  solid-phase  amplified  sensitivity
immunoassay as specified by the manufacturer (ELISA
system, BioSource Europe S.A, Nivelles, Belgium).
Standards and cytokine controls were included. The plates
were read at 450 nm on a 96-well microplate reader
(Molecular Devices, Sunnyvale, CA) using SOFT-MAX-Pro
software (Molecular Devices). The mean blank reading was
subtracted from each sample and control reading. A standard
curve was plotted, and an IL8 concentration in each sample
was determined by interpolation from the standard curve
[36]. The data represents the mean of three independent
experiments +SEM .

Cell proliferation assay: To assess the effect of PDGF on
corneal fibroblast proliferation, a viable cell number was
counted using a 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyl
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tetrazolium bromide (MTT)-based method as described
previously [37]. The assay utilizes a tetrazolium compound,
MTT (Sigma-Aldrich, St Louis, MO), that is bio-reduced by
viable cells to a purple colored formazan product
(proportional to the number of viable cells), which can be
detected by measuring its absorbance at 570 nm. Using a 96
well plate, 2x103 cells were plated in each well in 100 pl of
DMEM, and 10 pl of MTT reagent was added to each well.
Wells containing media alone without cells served as the
negative controls. The plates were incubated for 2 h at 37 °C
in a humidified 5% CO; incubator. To study the effect of
PDGF on cell growth, 20 ng/ml of PDGF (an equal mixture
of AA, AB, and BB) was added in each well. Four replicates
of each treatment were used for each experiment. Absorbance
was recorded at 570 nm using a 96 well plate reader (BioTEk
FLx 800, Winooski, VT).

Cell migration assay: The 48 well Boyden chemotaxis
chamber apparatus (Neuro Probe, Gaithersburg, MD) was
used for the chemotaxis assay using polyvinyl pyrrolidine-
free polycarbonate filters with a thickness of 10 um and pore
size¢ of 8§ pum. Cell migration assay was performed as
previously described [27]. Briefly, polycarbonate filters were
precoated with collagen type I solution (Sigma-Aldrich, St.
Louis, MO). Thirty microliters of DMEM having no cytokine
or cells was placed in the lower chamber of the Boyden
apparatus, and after placing the polycarbonate filter, 50 pl of
DMEM containing 20 ng/ml of PDGF and 15,000 HSF was
placed in the upper chamber. The apparatus was incubated in
humidified CO; at 37 °C for the desired duration. The total
number of cells migrated to the lower side of the membrane
were counted from three independent experiments at 1 h and
8 h time points following methods reported earlier [27].
Image and statistical analysis: The results were expressed as
meantstandard error of the mean (SEM) of three to four
replicates as indicated. Statistical analysis was performed
using two-way analysis of variance (ANOVA) followed by
Bonferroni multiple comparisons test for real-time PCR and
cellular proliferation data. The cellular migration and ILS8
ELISA results were analyzed using one-way ANOVA
followed by Tukey’s multiple comparison test. A p-value less
than 0.05 was considered significant. The gel data was
analyzed using Image J 1.38 X image analysis software (NIH,
Bethesda, MD).

RESULTS

Platelet-derived growth factor mediates suppressor of
cystokine-3 induction in corneal fibroblasts: We quantified
the suppressor of cystokine-3 (SOCS3) mRNA and protein
levels in human corneal fibroblasts by real-time PCR and
immunoprecipitation, respectively. The quantitative PCR
detected low endogenous SOCS3 expression in HSF, and
PDGF treatment resulted in a threefold increase in SOCS3
RNA expression at 1 h and 4.25 fold increase at 8 h (Figure
1A). The addition of AG-490 (100 uM), a selective inhibitor
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of JAK2-STAT3 pathway, caused 29% and 45% (p<0.05)
reduction in PDGF-induced SOSC3 levels at 1 h and 8 h,
respectively (Figure 1A). These results were in agreement
with the findings of the PDGF-exposed HSF cDNA analysis
carried with Affymetrix HG-U133 GeneChip system [13].
The PDGF-stimulated HSF samples revealed through
immunoprecipitation a 1.5 fold and 2.5 fold increase in
SOCS3 protein levels at 1 h and 8 h, respectively (Figure 1B).
The vehicle-treated control samples did not show any change
in SOCS3 mRNA (Figure 1A) or protein (Figure 1B)
expression.

Platelet-derived growth factor-driven STAT3 induction is
JAK2-STAT3 mediated: Activation of STAT3 is known to
induce SOCS3 expression as a negative feed back mechanism.
To test the hypothesis that PDGF-induced SOCS3 increase is
STAT3-mediated in HSF, we determined the changes in the
STAT3 levels in HSF treated with PDGF. Western blot
analysis of STAT3 demonstrated 2.5 fold and 2.96 fold
increases in STAT3 levels at 1 h and 8 h, respectively, in the
PDGF-stimulated HSF (Figure 2). The addition of AG-490
(100 uM), a selective inhibitor of JAK/STAT pathway, caused
about 40% reduction in PDGF-induced STAT3 levels in HSF
(1.6-2.0 fold; Figure 2).

Platelet-derived growth factor induces interleukin-8
chemokine secretion via JAK2-STAT3 pathway: The role of
PDGEF in corneal wound healing [27,28,31] and IL8-mediated
neutrophil chemotaxis [12,20] has been previously
documented. IL8 enhances healing by rapidly
chemoattracting leukocytes and fibroblasts into the wound
site [19]. We observed that PDGF increases IL8 chemokine
secretion twofold in human corneal fibroblasts, indicating that
IL8 is involved in PDGF-mediated corneal wound healing.
We also observed that AG-490, a selective JAK/STAT
inhibitor, significantly suppressed the PDGF-induced IL8
chemokine secretion levels in HSF (Figure 3). We did not
detect complete blocking of PDGF-mediated IL8 secretion at
100 uM concentration of AG-490. This could be due to the
lack of PDGF-mediated SOCS3 induction in the presence of
AG-490 (Figure 1) or the presence of alternative pathway(s)
for PDGF-mediated IL8 signaling.

Platelet-derived growth factor mediates cell growth and
migration via JAK2-STAT3 pathway: Human corneal
fibroblast cultures exposed to PDGF demonstrated 19%-30%
increase in corneal fibroblast proliferation at 1 h (30%,
p<0.001),8h (21%, p<0.001),and 48 h (19%, p<0.001; Figure
4). As seen in Figure 4, treatment of AG-490 (100 uM)
significantly blocked PDGF-induced cell growth in HSF at 1
h (36%, not significant), 8 h (63%, p<0.01), and 48 h (68%,
p<0.001). Additionally, PDGF treatment increased corneal
fibroblast migration at two tested time points (1 h and 8 h). It
caused a 142% (p<0.001) increase in corneal fibroblast
migration at 8 h, and AG-490 (100 uM) treatment inhibited
37% (p<0.01) of the PDGF-induced cell migration at this time
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point (Figure 5). However, no significant change in cell
migration in response to PDGF was noted at 1 h (data not
shown). This data suggest that JAK2-STAT3 signaling
pathway is involved in PDGF-induced corneal fibroblast
proliferation and migration (Figure 4 and Figure 5).

DISCUSSION

PDGF and their receptors are expressed in the cornea, and its
role in corneal wound healing is well established [16,27,31].

61 I Control
EE PDGF (20ng/ml)

=2 PDGF(20ng/ml)+AG490(100pM)

(%5,
I

~
1

*%

SOCS-3 mRNA (fold increase)
N w

-
n

0- - .
Time
IP:SOCS3 _ °_ _
WB: SOCS3 g w88 W
c <« O ovpc e « O
[o] o O © O O o (|]
O m o 20 0 o
SOCS3—» | we = & - -
1hr 8 hrs

Figure 1. PDGF-mediated SOCS3 induction in human corneal
fibroblasts involves JAK2-STAT3 pathway. Human corneal
fibroblasts were exposed to a mixture of PDGF (AA, AB, and BB)
at a final concentration of 20 ng/ml with or without JAK2-STAT3
inhibitor, AG-490 (final concentration of 100 pM) for 1 h or 8 h.
SOCS3 transcript levels were quantified by real-time PCR, and
protein levels were determined by immunoprecipitation and
immunoblotting using the SOCS3 polyclonal antibody. A: The fold
change in SOCS3 transcript levels compared to untreated control is
shown as mean +SEM. The PDGF treatment increases SOCS3
mRNA levels by threefold at 1 h and 4.5 fold at 8 h, and AG-490
treatment inhibits PDGF-induced SOCS3 mRNA levels
significantly. The asterisk indicates a p<0.05 versus control and the
double asterisk indicates a p<0.05 versus PDGF. B: SOCS3 protein
levels in PDGF-treated, BSA-treated or untreated cells showing 1.5
to 2.5 fold increase in SOCS3 protein expression by PDGF treatment.
Pre-immune serum was used as a negative control for
immunoprecipitation.
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However, the underlying mechanism through which PDGF
acts in the cornea is largely unknown. PDGF, upon binding to
the receptors, can activate numerous signaling pathways
including the tyrosine kinases from JAK and transcription
factors from the family of STAT proteins [38-43]. Binding to
tyrosine kinase family receptors leads to dimerization, auto
phosphorylation of tyrosine residues, and recruitment of a
variety of Src-homology 2 domains containing intracellular
proteins, which activate downstream pathways such as
mitogen activated protein (MAP) kinase, JAK/STAT, and PI3
kinase [38,41,42]. Multiple reports showed that STAT signals

1h 8h

STAT3 90kD
PDGF (20ng/ml) - + + — + +
AG490 (100pM) - — +t -~ F
Beta actin 43kD

Figure 2. PDGF-mediated STAT3 induction in human corneal
fibroblasts involves JAK2-STAT3 pathway. Human corneal
fibroblasts were induced with the mixture of PDGF (AA, AB, and
BB) at a final concentration of 20 ng/ml for 1 h or 8 h in the presence
or absence of 100 uM AG-490. Protein levels were measured by
immunoblotting using a polyclonal STAT3 antibody. PDGF
treatment significantly increased STAT3 protein expression by 2.5
fold (1 h) to 2.96 fold (8 h). B-Actin immunoblot shows the equal
loading in each lane.
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Figure 3. PDGF induces IL8 chemokine secretion via JAK2-STAT3
pathway. Human corneal fibroblast cultures were serum-starved for
24 h and stimulated with PDGF in the presence or absence of JAK2-
STATS3 inhibitor, AG-490, for 8 h, and IL8 chemokine levels in
supernatants were measured by solid-phase sandwich ELISA. PDGF
induced IL8 chemokine secretion (twofold), and AG-490
significantly inhibits IL8 secretion. Data are shown as pg/ml
concentration. The asterisk indicates a p<0.01 versus control.
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are under stringent regulation by a family of endogenous
negative feedback regulators generically called SOCS
[44-46]. SOCS proteins bind to tyrosine-phosphorylated
receptors and non-receptor tyrosine kinases and prevent
recruitment of STATs to the activated receptor complex
[44-46]

Although the role of PDGF in corneal fibroblast
proliferation and migration has been previously reported
[27], it is unknown whether effects of PDGF in the cornea are
mediated through the activation of JAK2-STAT3 pathways
and whether its activity in this ocular tissue is regulated by
SOCS. Moreover, both PDGF and IL8 are chemoattractant
and contribute in corneal wound healing, but the role of PDGF
in IL8-mediated chemotaxis is not described [1,16,17]. This
is a first report to demonstrate that PDGF induces ILS8
chemokine secretion in human corneal fibroblasts. The
induction of IL8 facilitates an early innate immune response
to infection in the corneal stroma and represents an elementary
defense mechanism in corneal wound healing [29]. IL8
enhances healing by rapidly chemoattracting leukocytes and
fibroblasts into the wound site, stimulating the latter to
differentiate into myofibroblasts. In turn, myofibroblasts are
critical for wound contraction and closure and for the
production of extracellular matrix molecules, which leads to
precocious development of granulation tissue [21,47,48]. Our
data suggest that PDGF-mediated IL8 chemokine secretion
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Figure 4. PDGF-induced cell proliferation involves JAK2-STAT3
pathway. Human corneal fibroblasts were exposed to PDGF in the
presence or absence of JAK2-STATS3 inhibitor, AG-490, for 1 h, 8
h, or 48 h, and cell proliferation was quantified using the MTT assay.
PDGEF induced cell proliferation significantly in HSF, and AG-490
showed significant suppression of PDGF-induced cell proliferation.
Data are shown as mean £SD of absorbance at 570 nm. The asterisk
indicates a p<0.001 versus control, the double asterisk indicates a
p<0.01 versus PDGF, and the triple asterisk indicates a p<0.001
versus PDGF.

1024


http://www.molvis.org/molvis/v14/a122

Molecular Vision 2008; 14:1020-1027 <http://www.molvis.org/molvis/v14/a122>

and cell growth and migration in corneal fibroblasts occur via
JAK2-STATS3 pathway. We observed that the JAK2-STAT3
inhibitor (AG-490) inhibits PDGF functional activity in
human corneal fibroblasts. A high (100 uM) concentration of
AG-490 did not completely block the PDGF functional
activity, suggesting the possibility of additional regulators in
PDGF-induced cell proliferation, migration, and ILS8
secretion. The role of signaling pathways like Ras-ERK, Akt,
and PIP3-PKC in PDGF-mediated cell proliferation and
migration has been shown earlier [49,50]. We observed that
PDGF induces both STAT3 and SOCS3 expression and that
the JAK2-STATS3 inhibitor suppresses SOCS3 expression in
human corneal fibroblasts. This observation suggests that
PDGF activity in the cornea may be under the negative
feedback regulation of SOCS3 (Figure 6).

We have previously shown the role of STATI in
keratocyte apoptosis that occurs in response to corneal
epithelial injury using STAT1 null mice and proposed that
STATI could be a therapeutic target for transient inhibition
of keratocyte apoptosis to modulate corneal wound healing
[51]. Our gene array study showed time-dependent regulation
of SOCS3 in human corneal fibroblasts stimulated with
PDGEF. Our study results suggest that SOCS3 has a role in
PDGF-mediated wound healing in the cornea [13]. Nagai et
al. [32] demonstrated the role of STAT3 and SOCS3 in skin
fibroblast cell migration. These authors noted nearly complete
inhibition of PDGF-mediated STAT3 phosphorylation and
over 50% decrease in cell migration in the skin fibroblasts that
were overexpressing SOCS3. Using the transgenic animal
approach, Akira and his coworkers reported that STAT3

804
8 hours

Cells/400X magnification field

Control

PDGF (20 ng/ml)  PDGF(20ng/mI+AG490(100uM)
Figure 5. PDGF-induced cell migration involves JAK2-STAT3
pathway. Human corneal fibroblasts were exposed to PDGF in the
presence or absence of JAK2-STATS3 inhibitor, AG-490, for 8 h, and
cell migration was quantified using the Boyden chamber chemotaxis
assay. PDGF-induced corneal fibroblast migration was inhibited
significatly by AG-490. The asterisk indicates a p<0.001 versus
control and the double asterisk indicates a p<0.01 versus PDGF.
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modulates numerous biological activities including apoptosis,
cell growth, and migration [52]. We report that PDGF-
mediated cell growth and migration in human corneal
fibroblast involves STAT3-SOCS3.

IL8 gene transcription is induced by various
proinflammatory stimuli such as lipopolysaccharide, IL1J3
and tumor necrosis factoro [34]. The half-life of IL§ mRNA
in human corneal fibroblast has been reported to be less than
1.5 h while neuropeptides like calcitonin gene-related peptide
and substance P have been shown to enhance its half-life by
increasing its mRNA stability [53]. Proinflammatory stimuli
are considered to be a major regulator of IL8 steady-state
levels in response to injury. IL8 has been shown to be involved
in many of the wound healing processes. It not only serves as
a chemotactic factor for leukocytes and fibroblasts but also
stimulates fibroblast differentiation into myofibroblasts and
promotes angiogenesis [47,48]. More studies are required to
investigate other components modulated by the IL8 in corneal
wound healing. Based on the involvement of JAK2-STAT3
pathway in PDGF-mediated corneal wound healing, we
predict that PDGF-induced IL8 chemokine secretion could be
one of the mechanisms that might be a critical mediator of
wound healing in the cornea.

In summary, this study demonstrates the mechanism of
PDGF-mediated corneal wound healing in vitro. The PDGF
induces the proliferation, migration, and IL8 chemokine
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Figure 6. Schematic of PDGF-mediated corneal wound healing.
PDGF secreted at the site of the corneal wound induces its receptors
on the corneal fibroblast that induces JAK2 followed by STAT3
phosphorylation and nuclear translocation. STAT3 induces the
transcription of genes involved in cell growth, migration, and IL8
chemokine secretion resulting in the initiation of corneal wound
healing. SOCS3 serves as an endogenous regulator of JAK2-STAT3
inhibition as seen with the chemical inhibitor, AG-490, in vitro.
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secretion in human corneal fibroblasts in part through the
JAK2-STAT3 signaling pathway. Additionally, we observed
that PDGF induces the expression of SOCS3 as a potential
mechanism to negatively regulate inflammatory signaling
during corneal wound healing.
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