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Abstract

The viral load of patients infected with SARS-CoV-2 varies on logarithmic scales and possi-

bly with age. Controversial claims have been made in the literature regarding whether the

viral load distribution actually depends on the age of the patients. Such a dependence would

have implications for the COVID-19 spreading mechanism, the age-dependent immune sys-

tem reaction, and thus for policymaking. We hereby develop a method to analyze viral-load

distribution data as a function of the patients’ age within a flexible, non-parametric, hierarchi-

cal, Bayesian, and causal model. The causal nature of the developed reconstruction addi-

tionally allows to test for bias in the data. This could be due to, e.g., bias in patient-testing

and data collection or systematic errors in the measurement of the viral load. We perform

these tests by calculating the Bayesian evidence for each implied possible causal direction.

The possibility of testing for bias in data collection and identifying causal directions can be

very useful in other contexts as well. For this reason we make our model freely available.

When applied to publicly available age and SARS-CoV-2 viral load data, we find a statisti-

cally significant increase in the viral load with age, but only for one of the two analyzed data-

sets. If we consider this dataset, and based on the current understanding of viral load’s

impact on patients’ infectivity, we expect a non-negligible difference in the infectivity of differ-

ent age groups. This difference is nonetheless too small to justify considering any age group

as noninfectious.

Introduction

Children do not seem to be major drivers in the transmission of Severe Acute Respiratory Syn-

drome Coronavirus 2 (SARS-CoV-2) in the general population [1]. However, the exact degree

to which children and adolescents get infected by, and are able to transmit the virus is not yet

well known. Their role in the community spread depends on their susceptibility, symptoms,

viral load, social contact patterns, behavior, and existing mitigation strategies as schools and
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daycares closings. Among all these variables, the viral load plays a fundamental role. The viral

load might help to predict disease severity [2] and mortality [3–5] and can serve as a proxy for

the infectivity of the patient [6–8]. The severity of a disease, its infectivity, and its mortality are

certainly fundamental parameters that must be considered when deciding on best-practice

preventative measures to fight the pandemic spread. Research in this direction can enable

truly data-driven policymaking like, for example, school openings and focused lockdowns. For

this scope, it is important to understand how the viral load depends on the patients’ age.

In this work, we examine viral load as a proxy for infectivity. We reanalyze the age-stratified

viral load data from Jones et al. [9] in order to better understand the actual relation between

these variables. We do this in the hope of gaining insight into fundamental differences

reported in the literature regarding the relationship between viral load and age. We achieve

this goal by developing a flexible, non-parametric, causal, and Bayesian model to reconstruct

the conditional probability density function (PDF) of the viral load given the patient’s age. The

developed method is a second central result of this work: it can be applied to future studies on

SARS-CoV-2, to similar data from other diseases, and also to many causally connected quanti-

ties in very different contexts.

The non-parametric PDF reconstruction is regularized by mild assumptions on the

smoothness of the underlying statistical processes. In particular, we assume that the log-densi-

ties are Gaussian-process realizations, drawn with an a priori flexible correlation kernel

parametrized by a Matérn family correlation function. The parameters of this correlation func-

tion are then inferred along with the PDF through a variational inference algorithm. To

achieve this, we adapt methods developed for information field theory, the information theory

for fields [10, 11]. In this context, fields are understood as spatially varying (physical) quanti-

ties. The reconstructed PDFs are regarded as scalar fields whose values are defined at each

point of the two-dimensional space spanned by age and viral load and represent the probability

of observing a given combination of age and viral load. The toolkit of information field theory

has proven itself to be successful in a wide range of applications, ranging from 3D tomography

[12], over time-resolved astronomical imaging [13], to causality inference [14].

Outline

The rest of this work is structured as follows: in Sec. Related work, we discuss the state of the

art of the research on the assessment of the viral load-vs-age dependence. In Sec. Model design,

we motivate the need for a causal description and show how this description is built into the

model and the inference scheme we adopt. In Sec. Data, we describe how the data has been

acquired and processed. We then outline the main results of our study in Sec. Results, focusing

on their impact on the infectivity of SARS-CoV-2. Finally, in Sec. Conclusions we summarize

the benefits of our approach while highlighting its potential limitations and identifying possi-

ble future work directions.

Related work

Since the outbreak of SARS-CoV-2, efforts have been made in order to understand whether

certain age groups are more susceptible than others. This could either mean that people from

such age groups are more likely to get infected or that they show more severe symptoms com-

pared to older or younger individuals. In addition to this, patients from specific age groups

could be more infectious than others, hence more likely vehiculating the disease. To shed light

on these problems, viral load—which is a proxy for infectivity—can be a useful tool. It is mea-

sured by reverse transcription PCR (RT-qPCR) assays from nasopharyngeal and oropharyn-

geal swabs via the so-called cycle threshold (Ct) value. The viral load is the virus concentration
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in the upper respiratory tract and it is usually expressed as the number of viral RNA copies per

mL of sample or entire swab specimen or simply by the Ct value.

Several works have analyzed whether viral loads differ between children and adults [1, 15–

27], and between young children and adolescents [28–30], and have led to conflicting results.

At least eight studies from different countries have concluded that SARS-CoV-2 viral RNA

loads among children and adults were comparable [1, 15, 16, 19, 21–24]. In these studies,

dependence between age and viral load has been tested using one and two-way analysis of vari-

ance (ANOVA) [15] and median of the viral load. A further study [17] found that mean and

median viral load values did not vary conspicuously by age but noted that the highest values

were measured in patients born from 1995 to 2009. In contrast, at least five studies reported

significant differences in viral loads of young children and adults [18–20, 25–27]. Euser et al.

[18] suggested an approximately 16-fold higher viral load in the oldest age group (>79 years),

compared to the youngest age group (<12 years). Here, age-group differences in the viral load

distribution are assessed making use of the Kruskal-Wallis test and linear regression. Another

work [20] estimated the amount of SARS-CoV-2 in the upper respiratory tract of young chil-

dren (<5 years) to be 10-fold to 100-fold greater than in adults whereas a work from Zachariah

et al. [30] showed that mean viral load was significantly higher in infants (<1 year) as com-

pared to older children and adolescents.

Finally, one of the largest and most widely followed studies on the subject—even though

the number of children and adolescents included is fairly small—was carried out by Jones et al.

[9] in early 2020. Dependence between viral load and age has been tested for different age

groups both as categorical data and treating age as a continuous variable. In order to compare

the viral load of different age categories, the categorical data has been analyzed in a parametric

(Welch’s T-test), non-parametric (Mann-Whitney rank test), and Bayesian fashion (modeling

viral loads as a mixture of gamma distributions). When considering age as a continuous vari-

able, viral loads have been predicted from age, type of PCR system, and age-PCR system inter-

action. This study from Jones et al. [9] did not reveal large differences in the viral loads of

different age groups, a result that was publicly debated in Germany for its possible implications

for school opening policies. In the following, we reanalyze this data. In a very recent publica-

tion, Jones et al. [31] extended their initial version of the study. In this newer version, they

make use of thin-plate spline regression to conclude that children and adolescents have a

slightly lower viral load than adults, but that this difference is unlikely to be clinically relevant.

None of the studies in the literature utilizes the causal framework. In this work, we choose

to adopt this framework since it naturally allows to answer the central question of whether the

age of a patient causes its viral load and infectivity. It also leads to additional advantages that

we will present in the following sections. The problem of deducing causal directions (in partic-

ular for the bivariate x! y, y! x and x? y case) from observational data coming from a

joint distribution has been introduced by the works of J. Pearl [32] and P. Spirtes et al. [33],

further developed by Mooij, J. et al. [34] and is now a central and non-trivial problem in data

analysis. For additional details and motivations behind causal inference theory and techniques

we refer to their works.

Model design

In Sec. Related work we described the state of the art of statistical analyses performed in order

to investigate the age dependence of the viral load. These analyses mostly rely on variance tests

or correlation assessments. In the following, we motivate the need for a causal model of the

viral load distribution. In fact, in order to explain the age and viral load data collected by Jones

et al. [9], a well-behaved model should incorporate basic knowledge about the causal relation
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between age and viral load. It should furthermore allow questioning whether the viral load dis-

tribution depends on the patients’ age and quantify the strength of such dependence, if it

exists. We consequently develop a non-parametric causal model and apply it to data.

Motivation

In order to make statements about the factors that contribute to the spread of a disease, we

need to rely on data to ground these claims. More importantly, we need to find a model that is

capable of identifying and explaining the relationships that underlie the data. Indeed, this

should be a minimal requirement for any data-analysis task. The choice of an incorrect model

can lead to wrong or misleading conclusions. This is clearly an issue regardless the nature of

the data at hand. However, in the case of data describing the pandemic spread the choice of an

incorrect model can lead to ineffective or even potentially harmful decisions. It is therefore of

vital importance to be able to capture—at least up to a certain level of uncertainty—the inter-

dependences underlying the data.

As discussed in the previous section Sec. Related work, the problem of identifying the rela-

tion between age and viral load has been tackled making use of many different techniques.

While categorical data analysis and linear correlation analysis struggle to pick up all possible

dependences, non-parametric approaches have the drawback of possibly being too (or too lit-

tle) complicated to account for the actual functional dependence that is inherent to the data.

For this reason we want to build a model that is flexible in the sense that it can simply recon-

struct independent densities with few degrees of freedom while also being capable of inferring

more complex distributions, when needed to describe the data. Moreover, we would like the

model to automatically be able to adjust its complexity. This way, the choice of the model is

independent from the data analyst’s choices and the results are more consistent and

reproducible.

This is another benefit of adopting the causal framework. The concepts of “simple” inde-

pendence and “more complicated” dependence between variables are natural to this frame-

work and are described by the causal graph and the structural causal model of choice [34].

Furthermore, claiming causal dependence is much stronger than simple linear correlation,

which also can arise from a confounder or by mere coincidence. Causal dependence is direc-

tional. This is a particularly interesting feature as it allows to test for bias in the data-collection

process when a unnatural causal direction is detected from the data analysis, as we will discuss

in Sec. Results.

Causal structure

The analyzed dataset d ¼ fði; xi; yiÞg
N
i¼1

consists of indexed pairs of age xi = agei/years and log-

viral load yi = log10(viral RNA copiesi/ml) values for each of the N infected patients, extracted

from Fig. 6 in [9]. The dataset is shown in Fig 1. For simplicity, we refer to y as the “viral load”,

where 10y are the number of viral RNA copies per milliliter of sample or entire swab specimen.

We assume that the data points are Poisson process counts drawn from an underlying station-

ary density distribution %(x, y). Using the causal model shown in Fig 2 we reconstruct the den-

sity %(x, y). Our final density reconstructions are displayed in Figs 3 and 4. To model this

density, we express it in terms of the underlying age distribution %(x) of the patients times the

conditional PDF p(y|x) of the viral load y given the patient’s age x,

%ðx; yÞ ¼ %ðxÞ pðyjxÞ: ð1Þ
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Fig 1. The cobas (left) and the LC 480 (right) datasets. The lower thresholds ymin and y0min with which the data has

been filtered are shown in red and orange, respectively. The number of data counts is color coded with a logarithmic

color scheme (see colorbar).

https://doi.org/10.1371/journal.pone.0275011.g001

Fig 2. Graph structure of the causal model of age x and viral load y. F denotes the Fourier transform operator. Starting from the top, standard-

normally distributed excitations ξ are drawn from the latent priors for f, g, and h. They are then transformed into the non-parametric signal ρ(x, y) (Eq

9) by taking the inverse Fourier transform of the Matérn kernel parametrization described in Eq 5. Finally, the signal ρ(x, y) is compared to the data d
through a Poissonian likelihood (Eq 12).

https://doi.org/10.1371/journal.pone.0275011.g002
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In Eq 1 the causal direction x! y (age influences viral load) is implicitly introduced. Even

though x! y might appear to be the most intuitive causal direction, since the immune system

reaction depends on age and thus age should affect the viral load, we note that selection effects

could introduce different apparent causal structures in the data. If the data had been collected

in such a way that the viral load (y) was the deciding factor for whether a patient would enter

the data sample, with an age (x) dependent threshold, the viral load would impact the age dis-

tribution in the sample, leading to an apparent y! x causal structure.

As a practical example, one could imagine physicians to request a PCR test for a child only

if their symptoms were worse compared to those of an adult for which they would have

requested a PCR test. Since this and similar selection effects cannot be fully excluded for the

analyzed data (see discussion in [9]), we will calculate the Bayesian evidence for the possible

causal relations x! y, y! x, and x? y (i.e. x and y are independent, p(y|x) = p(y)). As a final

remark, we note that other effects such as, e.g., delays in data reporting, could in principle also

be confounding the simple x⇆ y causal direction. Li and White [35] have for instance shown

how reporting delays can have an effect on the pandemic-spread models. Effectively, a con-

founding variable z would influence both x and y, namely x z! y. Although we cannot

completely exclude the presence of such a confounding variable, the randomization tests that

we describe in Subsec. Outline support our implicit assumption of absence of any leading con-

founding variable.

Fig 3. Cobas dataset analysis. Left: The cobas dataset. Middle: the reconstructed density distribution %(x, y) as a function of the age (x) and the viral

load (y) in a logarithmic coloring scheme. Right: The 2D conditional probability distribution p(y|x) of the viral load (Eq 9) obtained by fitting the

model. The data and the results of the analysis are shown for two different data-filtering thresholds ymin (top) and y0min (bottom).

https://doi.org/10.1371/journal.pone.0275011.g003

PLOS ONE SARS-CoV-2 viral load distribution vs. patient’s age

PLOS ONE | https://doi.org/10.1371/journal.pone.0275011 October 5, 2022 6 / 21

https://doi.org/10.1371/journal.pone.0275011.g003
https://doi.org/10.1371/journal.pone.0275011


To model the x! y causal direction, we need to model the age distribution %(x) of the

infected patients according to the causal structure introduced in Eq 1. Lacking knowledge on

the exact details of the patient selection process, we assume %(x) to be a log-normally distrib-

uted random variable. The log-normal distribution is a natural choice since an age density is

by definition a strictly positive and continuous quantity. Another natural assumption is the

absence of abrupt changes, since no sharp age-selecting processes are expected to have shaped

it. We fulfill these assumptions with the choice

%ðxÞ ¼ %0ef ðxÞ; ð2Þ

where % 0 = N/100 is a reference density and f : ½0; 100� 7!R a smooth function centered

around zero. We accordingly assume f to be drawn from a zero centered Gaussian process

with a prior covariance F

Pðf Þ ¼ Gðf ; FÞ≔
1
ffiffiffiffiffiffiffiffi
2pF
p exp �

1

2
f yF� 1f

� �

: ð3Þ

The covariance

Fxx0 ¼ hf ðxÞ f ðx0Þiðf Þ≔
Z

Df Pðf Þ f ðxÞ f ðx0Þ ð4Þ

determines the degree of smoothness of the logarithmic distribution function, as well as the

Fig 4. LC 480 dataset analysis. The same as in Fig 3, but for the LC 480 dataset.

https://doi.org/10.1371/journal.pone.0275011.g004
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characteristic length scale and the amplitude of its variations. We assume this correlation

structure to be translation invariant Fxx0 = F(x − x0), since we only expect it to depend on age

differences—and not on a particular age value—and parametrize it with a Matérn kernel.

Invoking the Wiener-Khinchin theorem, we can represent such a translation-invariant corre-

lation function in Fourier space with a spectral density of

Pf kð Þ ¼
a2
f

1þ k=kf
� �2

� �gf =2 ; ð5Þ

with af specifying the amplitude of the variations in f, 1/kf the characteristic length-scale above

which the variations become uncorrelated, and γf the spectral index, which determines the

smoothness of the variations. We infer all three covariance parameters pf≔ (af, kf, γf) from the

data. In order to ensure that the model is flexible enough to fit the data, we set mildly informa-

tive priors on the covariance parameters. We denote by Pðf jpf Þ the probability of a specific

realization of f given the Matérn kernel parameters pf, as described by Eqs 3 to 5.

Next, we have to specify the distribution of the viral load given the age, p(y|x). To do so, we

note that we can directly model an independent distribution for which p(y|x) = p(y) in the

same way as we modeled ρ(x), i.e. by choosing p(y|x)/ eg(y). Of course, p(y|x) can in general

exhibit an arbitrary complicated dependence on x. We model any additional complicated

entanglement between the age x and the viral load y with a new function h(x, y). By doing so,

we introduce a degeneracy between g(y) and h(x, y), since they can both model y-only depen-

dent structures. In principle, the function h(x, y) can in fact model any function p(y|x) without

the necessity of introducing g(y). To solve this problem, we choose

pðyjxÞ /
egðyÞþhðx;yÞ
R
ehð~x ;yÞd~x

: ð6Þ

To ensure that only g(y) models strictly y-dependent features and that all possibly compli-

cated x−dependent features are captured by h(x, y), we have to prevent h(x, y) from modeling

any strictly y-dependent structure that has been already captured by g(y). We do this with the

denominator
R
ehð~x ;yÞd~x in Eq 6, that removes from p(y|x) any y-only structure contained in h

(x, y), hence eliminating the degeneracy between g(y) and h(x, y).

We can verify that h(x, y) indeed satisfies the desired property of not encoding any structure

that could be represented by g(y) by simply substituting h(x, y) 7! h0(x, y)≔ h(x, y) + g0(y) in

Eq 6, where g0(y) depends only on y. This results in h and h0 leading to the same conditional

PDF

p0ðyjxÞ /
eg yð Þþh0 x;yð Þ

R
eh0 ~x ;yð Þd~x

¼
eg yð Þþh x;yð Þþ g0 yð Þ

eg0 yð Þ
R
eh ~x ;yð Þd~x

¼
eg yð Þþh x;yð Þ

R
eh ~x ;yð Þd~x

/ pðyjxÞ

ð7Þ

and we can therefore conclude that only g(y) can model strictly y-dependent features.

As desired, for vanishing h it still holds

pðyjxÞ
�
�
hðx;yÞ¼0

/ egðyÞ / pðyÞ; ð8Þ

which implies independence, y? x. Thus, a non-trivial h(x, y) models the x! y causal influ-

ence while a trivial h(x, y)�0 represents causal independence. We now want to make sure that
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the more complicated x−dependence modeled by h(x, y) is only introduced if it is strictly

needed to explain the data. This way, we can clearly distinguish the causal scenarios x! y or

y! x from the independent x? y scenario. In fact, the distinction between g and h would be

meaningless without a prior choice that favors independence between x and y. Hence, we

assume g and h to be drawn from zero-centered Gaussian processes. In this way, without any

information coming from the data, the most likely realizations of both of these functions are

the identically-zero functions g(y) = h(x, y)� 0. However, if the data exhibits strictly y-depen-

dent features, meaning that the marginal distribution p(y) is non-trivial, these features can

only be represented by a non-zero g(y).

Strictly y-dependent features are indeed clearly visible in the data. For example, we notice

that in Fig 3 higher viral loads are by far more rare than lower viral loads. In this case, the data-

inferred g(y) is non-zero and shows this decreasing feature. Following the same reasoning, the

most likely distribution for h(x, y) in absence of data is identically-zero everywhere. Again,

h(x, y) will only be non-zero in case that the data triggers some coupling between x and y.

Thus, the model favors independence of x and y (by favoring h� 0) and the inferred density

will be entangled in x and y only in the case the data exhibits this feature. This shows how the

level of complexity of the model is adapted to the data automatically, without having to make

any additional explicit model choice.

We again assume a Matérn-kernel-shaped correlation structure for the Gaussian process g,

with covariance parameters pg≔ (ag, kg, γg). We set the priors on pg as for pf and learn these

parameters from the data as well. Since the typical length scales and amplitudes of the varia-

tions of h(x, y) in x and y directions are not in principle a priori similar, we assume the

covariance for h to be shaped by a direct product of individual Matérn kernels in the x and y
directions. For their corresponding prior parameters, ph ¼ ðp

ðxÞ
h ; p

ðyÞ
h Þ with pðiÞh ¼ ða

ðiÞ
h ; k

ðiÞ
h ; g

ðiÞ
h Þ

and i 2 {x, y}, we use similar hyper-priors as before, i.e. as for pf and pg, respectively. For more

details on the prior choices we refer to the S1 Appendix. We call the ensemble of all these ker-

nel parameters p≔ (pf, pg, ph). The details on how the Gaussian process for h with a Matérn

kernel product covariance structure is set up is described in the S1 Appendix, where we

describe a multi-dimensional density estimator that is agnostic to causal directions.

Lastly, we normalize the conditional PDF

pðyjxÞ ¼
egðyÞþhðx;yÞ
R
ehð~x ;yÞd~x

Z
egð~yÞþhðx;~yÞ
R
ehð~x ;~yÞd~x

d~y
� �� 1

ð9Þ

such that the full model density reads

%ðx; yÞ ¼ %0ef ðxÞ
egðyÞþhðx;yÞ
R
ehð~x ;yÞd~x

Z
egð~yÞþhðx;~yÞ
R
ehð~x ;~yÞd~x

d~y
� �� 1

: ð10Þ

A schematic representation of the forward causal model is shown in Fig 2. The assumed

causal structure x! y is introduced in the model by the asymmetry between the roles of the x
and y coordinates and the zero-centered Gaussian process priors on f, g, and h. Interchanging

x and y leads to a model that follows the opposite causal direction y! x. This allows to empiri-

cally distinguish these causal directions by calculating the model evidences for the two oppo-

site scenarios, namely x! y and y! x, as well as to test for x? y by enforcing h = 0.

The evidence already inherenty penalizes more complicated models (see [36]), i.e. models

that require a higher number of degrees of freedom. Using the ELBO as a criterion for model

selection has therefore the additional benefit of regularizing the solutions. In other words, the

evidence further helps the data analyst to univocally pick the lowest complexity model which
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can best explain the data, in addition to the already self-adjusting level of complexity provided

within the model itself.

Finally, we note that the choice of x and y is up to now completely arbitrary. Therefore, the

method described in this work can be used to assess the causal direction of any continuous

two-dimensional data distributions, given the data and some loose (prior) information about

the correlation structure. the proposed method is thus very general and can be used for differ-

ent datasets and analysis schemes with respect to those described in this paper. For example, it

could be used to test the causal relation between the concentration of greenhouse gasses in the

atmosphere and the average global temperature rise in Celsius degrees.

Likelihood

In order to construct the likelihood Pðdj%ð�; �ÞÞ, we bin the data into a fine two dimensional

grid over the x and y coordinates with 90 × 128 pixels, such that

nijðdÞ ¼
XN

m¼1

Z ðiþ1ÞDx

iDx
dx
Z ðjþ1ÞDy

jDy
dðx � xmÞdðy � ymÞdy

contains the number of cases within the (i, j)th pixel of size Δx = 1 yr and Δy’ 0.04 log10(viral

RNA copiesi)/ml. These counts nij are then compared with the model’s expectations

lij ≔ lijð%Þ ¼

Z ðiþ1ÞDx

iDx
dx
Z ðjþ1ÞDy

jDy
%ðx; yÞdy

� DxDy % iþ
1

2

� �

Dx; jþ
1

2

� �

Dy
� � ð11Þ

via a Poisson likelihood

Pðdj%Þ ¼
Y

i;j

l
nij
ij

nij!
e� lij : ð12Þ

Inference

The full model involving the data d as well as all the unknown quantities, which compose the

signal vector s≔ (f, g, h, p), reads

Pðd; sÞ ¼ PðdjsÞPðsÞ; where

PðdjsÞ ¼ Pðdj%½f ; g; h�Þ and

PðsÞ ¼ Pðf jpf ÞPðgjpgÞPðhjphÞPðpf ÞPðpgÞPðphÞ:

ð13Þ

At this stage, we need to convert our causal model into an inference machine for the signal

vector s. We do this conversion by reformulating the model in the language of information

field theory [10, 11], transforming the coordinates of the signal vector s = s(ξ) such that the

prior on the new ξ coordinates becomes an uncorrelated Gaussian PðxÞ ¼ Gðx; 1Þ as described

by Knollmüller and Enßlin [37]. We then implement the resulting model using the Python

package Numerical Information Field Theory (NIFTy) [38–40] and finally use NIFTy’s

implementation of Metric Gaussian Variational Inference (MGVI) [41] to approximate the
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posterior distribution in the new coordinates

PðxjdÞ ¼
PðdjxÞPðxÞ

PðdÞ
� Gðx � �xd;XdÞ

with a Gaussian which has posterior mean �xd and covariance Xd, where the d suffix indicates

the dataset used in the inference. This Gaussian posterior encodes the approximate result of

the inference in the new coordinates. In order to translate this into the signal coordinates, we

have to transform PðxjdÞ to PðsjdÞ using the relation s = s(ξ). This relation is non-linear and

the resulting PDF is neither Gaussian nor practical to obtain analytically. In order to evaluate

moments from the posterior distributions of the desired quantities, MGVI provides ξ-samples

drawn from the approximate Gaussian posterior x -Gðx � �xd;XdÞ. These ξ-samples can be

converted via the coordinate transformation s = s(ξ) into the signal space, where they represent

(approximate) signal posterior samples. Making use of these posterior samples it is possible to

calculate the posterior expectation values and model uncertainties of any desired quantity q(s):

�q ≔ hqðsÞiðsjdÞ �
1

Ns

XNs

i¼1

qðsðxiÞÞ

s2
q ¼ hðqðsÞ � �qÞ2i

ðsjdÞ:

ð14Þ

Here, ξi denotes the ith of the Ns drawn samples. In particular, the posterior mean of the

conditional PDF p(y|x) and of any quantity which can be calculated from p(y|x) can thereby be

obtained, as well as the resulting uncertainties characterized via their uncertainty dispersion.

In general, these posterior signal samples will not follow Gaussian statistics because the trans-

formation is typically non-linear. Furthermore, since MGVI is a variational inference

approach, the calculated uncertainties will be slightly smaller compared to the ones given from

the accurate posterior. However given the complexity and size of the model, we need to use an

approximate inference method as MGVI. For details about this methodology, as well as exten-

sive performance and accuracy tests, we refer to Knollmüller and Enßlin [41].

Identifying causal directions with the Evidence Lower Bound

We now focus on understanding the causal relations given by the interplay between the vari-

ables. The proposed causal model should allow to discriminate between all possible causal

structures, namely x! y, y! x, and x? y. Since we have a different model for each of these

causal directions, we can use the Bayesian evidence to select the model that is better suited to

the data. We do this once again by exploiting our variational inference scheme. It has been

shown that the evidence is indeed a consistent and robust criterion for model selection [42,

43].

First, we need to define the independent model, i.e. a model for which age and viral load

are regarded as statistically independent variables. Such a model is built by setting a very tight

zero-centered prior on h, hence removing it from the model for all practical purposes. We can

then estimate the Bayesian evidence both for the causal–hence dependent—models (x! y and

y! x) and compare it with the evidence of the independent model (x? y). More precisely, we

calculate the so called Evidence Lower Bound (ELBO) as a proxy for an evidence. Using the

posterior uncertainty covariance X as well as the posterior samples provided by MGVI, we can

compute the ELBO [36] for each model. This is lower than the exact logarithm of the evidence

by the information difference (as measured in nits) between the exact and approximated poste-

rior of a model. If too much information is not lost during MGVI, the ELBO should be a good
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approximation of the exact log evidence. Furthermore, we can assume that deviations from the

exact log evidence should be similar among different models, thereby reducing the effect of the

MGVI approximations on differences between log-evidences. Thus, we can use the ELBO as a

good proxy for the log model evidence ratios of similar models. The stochastic sampling steps

performed in order to estimate the ELBO introduce a sampling uncertainty. This uncertainty

can be in principle reduced by taking more samples, at the expense of larger computational

costs. We state this numerical one-sigma uncertainty for all MGVI and ELBO based log-evi-

dences. The y! x model is obtained by swapping the coordinates of the x! y model. The

quantity of interest is then the logarithm of the evidence ratio of each causal model with the

independent one,

DEx⇆y ¼ log
pðdjx⇆ yÞ
pðdjx ? yÞ

; ð15Þ

where x⇆ y denotes either x! y or y! x. ΔEx!y indicates the log evidence in favor of

the causal model x! y with respect to the independent one and similarly ΔEy!x the one for

y! x. Comparing ΔEx!y with ΔEy!x also allows to discriminate between the two possible

causal directions in the dataset. We identify the preferred causal direction underlying the data

in subsec. Causal directions and bias, where we also discuss its implications.

Data

We make use of RT-PCR viral load data collected from the Charité Institute of Virology and

Labor in Berlin, Fig. 6 in Jones et al. [9]. The data was acquired with two different PCR instru-

ments, Roche cobas 6800/8800 (cobas dataset, which we denote by dC and is comprised of

�2200 data points) and Roche LightCycler 480 II (LC 480 dataset, which we denote by dL com-

prised of�1350 data points). In the following, we will show the difference between the two

datasets. As can be seen from the count difference in the raw data plots as of Fig. 6 of [9] and

in the histogramed data in Figs 3 and 4, for low viral loads (y≲ 5 in units of log10(RNA copies/

ml)), the LC 480 dataset shows a roughly uniform count distribution in the whole viral load

domain. In contrast, the cobas dataset exhibits an increasing number of counts in the y 2 [2.0,

3.8] viral load domain followed by a descending trend in counts in the y 2 [3.8, 5.0] region.

For this reason and in order to better understand the possible shortcomings of both instru-

ments, we analyzed the data in two different ways.

Since the major differences between the datasets arise for viral load values y 2 [3.8, 5.0] we

define two lower thresholds for the viral load (ymin ≔ 3.8 and y0min≔ 5:4 ’ log
10
ð250000Þ in

units of log10(viral RNA copies/ml)) and discard any data point for which the viral load is

lower than ymin and y0min, respectively. We set the lower threshold ymin at the value for which

the number of counts of the cobas dataset is maximum (see Fig 1). Below this threshold, the

counts’ density lowers dramatically. As for y0min, the value of 250000 in units of viral RNA cop-

ies/ml indicates the threshold for the isolation of infectious virus in cell cultures at more than

5% probability as described by Wörfel et al. [44]. We then analyze the cobas and LC 480 data-

sets first neglecting the data below ymin threshold and then below y0min. For the sake of simplic-

ity, we will denote the cobas and LC 480 datasets with ymin and y0min as a lower threshold as dC,

d0C, dL, and d0L, respectively. This way we can highlight the differences between the two datasets

and investigate possible sources of systematic errors in the viral load measurement instru-

ments or different selection effects in the data collection process.

The datasets are not explicitly provided by the authors. Therefore, we acquired the data by

means of a plot digitizer algorithm from Fig. 6 of [9]. Since the age coordinates are not labeled

precisely, but only a rough interval Δage� 0 − 100 yr is provided, we do not expect the acquired
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data points to be accurate—especially in the age domain. For this reason the obtained age axis

could be affected by a global shift up to 5 − 10 years in any direction. But, since our model is

translation invariant, this kind of systematic bias in the data extraction process (an overall shift

in the age values for all data points) does not affect the causal inference machinery. Nonethe-

less, the reader should keep this in mind when interpreting the results concerning the condi-

tional PDF of the viral load given the age. Concerning the viral load coordinates, for which

more precise units were given, the data should be regarded as more reliable. For our aim of

building a method to analyze age and viral load data in a non-parametric and causal fashion

providing uncertainty estimates, this level of accuracy is sufficient. The results we present from

here on are given for the measured coordinate values without considering any uncertainty

with respect to the real quantities (age, viral load). Nevertheless, we do not believe systematic

or random error contributions in the data extraction procedure to significantly affect our

results since the shapes of the learned distributions are translation invariant.

Results

In the following, we discuss the main results and their relevance for the infectivity of different

age groups.

Age dependence of the viral load

For both lower thresholds and datasets dC, dL, we estimate the model parameters s by means of

the MGVI algorithm implemented in NIFTy. In Figs 3 and 4 we show the data (left panel)

and the correspondent reconstructed underlying densities %(x, y) (central panel).

A multi-modal age distribution is clearly visible as well as an overall decrease for growing

viral loads in all of the reconstructed densities. The conditional PDF p(y|x) of the viral load y
given the age x is shown in Fig 5. In the conditional probability, the multi-modal age structure

displayed by the density is not visible since it has been absorbed by %(x). What this effectively

means is that age-only selection effects—e.g., testing one or many specific age groups more

than others or demographics in general—have been modeled, and the resulting conditional

probability distribution does not depend on such effects.

For all datasets and ages, a general descending trend in the viral load probability distribu-

tion is clearly visible. The reconstruction based on the dC dataset exhibits significant differ-

ences in the viral load for different ages (Fig 5, first panel). For infected patients approximately

above the age of 60, the distribution exhibits a distinct maximum for viral loads of y’ 8 (in

units of log10(RNA copies/ml)). Furthermore, we show that this feature is indeed triggered by

the data, and is not just the result of an over-fit of sample noise. To do so, we apply a random

permutation r to the viral load values in the dC dataset, the only one that exhibits a possible

x! y causal structure. We then analyze the randomized dataset dr
C ¼ fði; xi; yrðiÞÞg

N
i¼1

in the

same way as seen for dC ¼ fði; xi; yiÞg
N
i¼1

. The resulting conditional PDF pr(y|x) reconstructed

from the randomized dataset (Fig 5) does not exhibit any clear age-dependent structure in the

viral load, indicating that the differences seen in the real data are not just a shot noise effect.

Causal directions and bias

As discussed in Subsec. Causal structure, we can use ELBO ratios to identify causal relations.

In our analysis, this corresponds to choosing between the x! y, y! x, and x? y models.

Identifying the causal direction underlying the data will allow to show that selection effects dis-

torting the expected causal relation x! y are subdominant and that for the cobas dataset dC

we indeed see evidence for an age dependence of the viral load distribution, p(y|x) 6¼ p(y).

PLOS ONE SARS-CoV-2 viral load distribution vs. patient’s age

PLOS ONE | https://doi.org/10.1371/journal.pone.0275011 October 5, 2022 13 / 21

https://doi.org/10.1371/journal.pone.0275011


As a matter of fact, the log-evidence ratio for the dC dataset is ΔEC,x!y = 4.6 ± 1.0 for dC,

which clearly favors the dependent model, but this value decreases to DE0C;x!y ¼ � 1:5� 1:0

when considering d0C, hence y0min as a lower threshold. We highlight that a log-evidence differ-

ence between the two compared models of 1 unit corresponds to a factor of e� 2.7 for the

Bayesian odds ratio between the two. Thus, ΔEC,x!y = 4.6 ± 1.0 implies given equal model pri-

ors, p(x! y) = p(x? y), a posterior model odds ratio of pðx! yjdÞ : pðx ? yjdÞ ¼ e3:5�0:7 �

99:5
½270:4�

½36:6� in favor of a causal dependence between viral load and age for the cobas dataset with

the lower threshold ymin.

For the opposite causal direction we get ΔEC,y!x = −0.2 ± 1.1, which shows that there is no

strong y! x structure in the data. For the LC dataset dL these evidence differences with respect

to the independent model become ΔEL,x!y = −4.6 ± 1.0 and DE0L;x!y ¼ � 3:4� 1:0 respectively

for the two thresholds. Therefore the independent model is favored in both cases. This shows

that the cobas (d0C) and LC 480 (d0L) datasets are in agreement for viral loads which are higher

Fig 5. Viral-load probabilities for specific ages. Viral load conditional PDF p(y|x) for specific ages x 2 {10, 50, 80}.

Panel one and two (top) display the results for the cobas dataset dC and for the randomized cobas dataset dC

respectively. The latter serves as a null test, since the randomization erases any (causal) relation between the age (x) and

the viral load (y) other than shot noise. Panel three and four (bottom) show p(y|x) for the cobas dataset d0C and for the

LC 480 dataset d0L respectively, both with the higher viral load threshold y0min. The shaded regions represent 1σ and 2σ
uncertainty contours of the approximate posterior.

https://doi.org/10.1371/journal.pone.0275011.g005
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than y0min, but in case we include the data lying in the viral load region y 2 ½ymin; y0min�, the causal

age-dependent structure becomes visible in dC and is not negligible anymore.

It is known that model evidences can vary strongly with different data realizations. More-

over, in order to calculate the evidences, we invoked approximations and stochastic calculation

steps. Thus, proper null-tests are required in order to validate and calibrate the evidence ratio

calculation. We provide such null-tests by repeating the data randomization step described

above several times, thereby producing many randomized datasets. By construction, these

dataset should not exhibit any causal structure. Indeed, for the 10 randomized-dataset realiza-

tions performed, we find much lower log-evidence ratios between dependent (causal) and

independent models with respect to the ones found for the original cobas dataset dC. The aver-

age difference between these tests is hΔErandom,x!yirandomizations = −6.0 ± 1.0. Since none of the

randomized dataset realizations reaches comparably high log-evidence ratios with respect to

the independent model, all these findings support robustly the argument that the dependent

model is a more suited description of the dC dataset. As previously discussed, this result also

supports the assumption that no additional variable z is confounding x z! y the bivariate

causal direction x⇄ y. Had there been a strong confounder z, we would have expected a more

complicated data distribution that could have possibly been detected when comparing the

actual data with the randomized datasets. Even if this did not appear to be the case, we cannot

completely rule out the presence of a weak confounder.

The results of the evidence calculations are displayed in Fig 6. This figure also indicates that

the independent model interpretation of the data is favored for all other datasets and threshold

combinations (except for dC), since the evidence for the independent model is always higher.

These contradicting results for the two datasets (or thresholds) dC and d0C might have sev-

eral possible explanations. First, they could be caused by a potential accuracy loss of the PCR

devices below certain viral load values, as suggested for the cobas dataset dC below y0min in [9],

hence for the Roche cobas 6600/8800 PCR system. It could also mean that the opposite is hap-

pening and the Roche LC 480 PCR device is less sensitive than the Roche cobas 6600/8800 in

the y 2 [3.8, 5.0] region. This possibility would be supported by the fact that the cobas dataset

exhibits a clear age dependent structure in such viral load region, but the (swab) data processed

Fig 6. Evidence results. Natural logarithm of the evidence ratio with respect to the correspondent independent model

for the x! y cobas datasets dC and d0C, for the y! x causal model dinv
C and d0 invC (left panel). The log-evidence ratios

labeled with dr
C display the (y-)randomized datasets (for 10 different realizations). The same is also shown for the LC

480 dataset (right). The error bars represent the numerical uncertainty associated to the stochastic estimate of the

ELBO. A positive logarithm of the evidence ratio denotes a preference for the given causal model with respect to the

correspondent independent model and vice versa. The strength of this preference can be determined by taking the

exponential of the log-evidence ratio between the causal model and the correspondent independent one. For example,

a log-evidence ratio of 5 corresponds to a e5� 141-fold preference for the examined causal model.

https://doi.org/10.1371/journal.pone.0275011.g006
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by the cobas PCR device contains no information on the patients’ ages. Hence it would be sur-

prising that a systematic effect in the measurements could introduce an age dependence on

the viral load distribution. Furthermore, this pattern–that older patients exhibit higher viral

loads—is plausible from a medical perspective.

Nevertheless, we cannot exclude the possibility that selection effects have been introduced

in the data. We have already shown that “viral load causing age” effects (y! x) are subdomi-

nant. Nevertheless, selection effects could still have been introduced for instance by collecting

age and viral load subsamples from a “viral-load biased” population sample. This could hap-

pen, e.g., if symptomatic patients had been predominantly tested. Since children are less likely

to show symptoms than adults, the sample would then include mainly those children with

higher viral loads.

And finally, a combination of such competing effects could have affected the results and

thereby imprinted a spurious age dependence to the viral-load distribution. Given only the sta-

tistical data in our possession, this possibility cannot be ruled out completely.

Impact on infectivity

After having established a potential age difference in the viral load distribution for dC, we

investigate whether this difference—if real—would be relevant for the infection dynamics. For

this purpose, we need to link the viral load to the infectivity I(y) of the virus, i.e. the probability

of transmitting the infection. Infectivity can be measured in different ways. In our analysis, we

choose the projected virus isolation success based on probit distribution described in [44] as a

proxy for infectivity. This represents the infection success rate for cell cultures exposed to

saliva with different viral load y and can be seen as the blue curve in Fig 7, labeled with “Origi-

nal”. We will from now on refer to this parameter as “infectivity proxy” and indicate it with

I(y).

The projected infectivity as a function of the age is then given by the expectation value of

the infectivity parameter over the conditional PDF p(y|x)

IðxÞ≔ hIðyÞipðyjxÞ ¼
Z

Ið~yÞpð~yjxÞd~y: ð16Þ

The result, together with the uncertainties resulting from our PDF modeling are shown in

Fig 7. No relative differences larger than 0.18 for the (projected) infectivity of the different age

groups is found, with typical values of I(x)� 0.3 for all datasets. This means that at most a 50%

difference in infectivity due to different viral load between different age groups—but more

likely a smaller one—should be expected.

In order to characterize the uncertainty resulting from our I(y) modeling, due to the uncer-

tainty of the original determination of this function and due to the uncertainty in the identifi-

cation of viral loads with different instruments, we repeat the analysis while shifting the

original I(y) curve by one order of magnitude upwards and downwards in y. The resulting

maximal relative difference in the infectivity of the different age groups is’ 0.3. Thus, even

though our model allows us to show that infectivity exhibits an age dependence if the dC data-

set with ymin provides a valid picture, the viral load differences between different age groups

though are not strong enough to impact on the infection dynamics at a level that justifies

regarding any age group as noninfectious or even significantly less infectious.

Conclusions

In order to investigate the controversial results reported in the literature, we developed a causal

model to assess the dependence of viral loads of patients infected with COVID-19 on age. The
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developed model is capable of reconstructing two-dimensional density distributions from data

counts and to learn causal directions. The model complexity is set in a user-independent fash-

ion making the results more robust and consistent. Furthermore, its causal nature allows to

make predictions about non-directly measured quantities (e.g. the infectivity assessment in

Sec. Results and Fig 7) and to additionally test for bias in the data-collection process.

Although the benefits of a causal analysis were already discussed in Pearl’s original work

[32] and are usually well recognized, causal inference is not so commonly applied to real-

world data science, often because it requires the implementation of complicated ad-hoc mod-

els. With the hope of making it useful for a wide range of data-science applications we make

our causal model freely available. This model is very flexible and generic (as it only requires a

set of x and y data pairs and mild priors on their correlation structures) and it can therefore be

used in future epidemiological studies as well as in completely different fields. We provide the

source code under an open source license for usage in further studies and applications at

https://gitlab.mpcdf.mpg.de/ift/public/causal_age_viral_load_model. As a side product, we

Fig 7. Infectivity proxy vs. age. I(y) obtained from Fig. 1g in [44] and fit with a probit function (top left, Original),

then projected for different patients’ ages for the cobas dataset dC (top right), d0C (bottom left) and for the LC 480

dataset dL (bottom right). The upper and lower curves are obtained by translating I(y) of one unit in viral load as in

I(y − 1) and I(y + 1) in order to give upper and lower bounds similar as those shown in Fig. 1g in [44]. The shaded

regions show 1σ and 2σ uncertainty contours of the approximate posterior.

https://doi.org/10.1371/journal.pone.0275011.g007
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also developed a causal-direction-agnostic density estimator, which is described in more detail

in the S1 Appendix.

Using our novel method to model causal relations non-parametrically, we have reanalyzed

the SARS-CoV-2 age and viral load data presented in [9]. In doing so, we have found statisti-

cally significant differences in the viral load distribution of different age groups when regard-

ing the cobas dataset dC for viral loads within the interval of 103.8 to 105.0 in units of viral RNA

copies/ml of sample or entire swab specimen as reliable. These differences become irrelevant if

this region is ignored in the analysis.

We cannot completely exclude that selection effects in the data-collection process may have

introduced an apparent causal relation between viral load and age, but the observed trend—a

statistically-significant increase in the viral load with age—fits with the generally accepted

notion that the immune system response gets weaker with age. Assuming this trend to be real,

we showed, however, that its expected impact on the infectivity of different age groups is at

most moderate. For this reason we cannot exclude any age group from being considered as a

potentially significant source of infection.

The region of the cobas dataset relevant for this trend is described in [9] as containing an

artifact, suggesting that the correct interpretation of the data is that viral load, hence infectivity,

is predominantly age independent. Here, we want to point out that other studies on the age

dependence of the viral load present in the literature [15, 18] make the opposite claim. More-

over, in their most recent publication, Jones et al. [31] acknowledge an age dependence of the

viral load. This dependence is quantitatively similar to the one we have detected with our

method. Furthermore, the causal evidence tests presented in Sec. Results favor considering the

age dependence of the viral load as a real effect and not just as an artifact. These tests also disfa-

vor the reverse-causal-direction model (here: that the viral load of a patient “causes” its age),

which would indicate that strong selection effects have affected the data-collection process. We

introduced these tests as a new tool to detect potential systematic effects in similar datasets.

In conclusion, the results of our analysis ultimately confirm some of the findings in the lit-

erature—i.e. that the viral load is only modestly dependent on the age—but with a much

higher sensitivity and robustness. Of central importance are the methods here developed.

While being tailored to describe the Covid-19 pandemic data, they can be easily adapted for

more general purposes and can prove very useful also for future pandemics or for new—and

possibly more infective—mutations of SARS-CoV-2.

Supporting information

S1 Appendix. Matérn-kernel density reconstruction.

(PDF)

Acknowledgments

We thank Dr. Matthia Sabatelli (Montefiore Institute, University of Liège) for feedback on pre-

liminary versions of this work and the Information Field Theory group at the Max Planck

Institute for Astrophysics for the fruitful discussions.

Author Contributions

Conceptualization: Matteo Guardiani, Philipp Frank, Andrija Kostić, Torsten Enßlin.

Data curation: Matteo Guardiani.

Formal analysis: Matteo Guardiani, Philipp Frank, Andrija Kostić, Torsten Enßlin.

PLOS ONE SARS-CoV-2 viral load distribution vs. patient’s age

PLOS ONE | https://doi.org/10.1371/journal.pone.0275011 October 5, 2022 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275011.s001
https://doi.org/10.1371/journal.pone.0275011


Investigation: Matteo Guardiani.

Methodology: Matteo Guardiani, Gordian Edenhofer, Jakob Roth, Torsten Enßlin.

Project administration: Matteo Guardiani.

Software: Matteo Guardiani, Andrija Kostić, Gordian Edenhofer, Jakob Roth.

Supervision: Philipp Frank, Torsten Enßlin.

Writing – original draft: Matteo Guardiani, Berit Uhlmann, Torsten Enßlin.

Writing – review & editing: Matteo Guardiani, Philipp Frank, Andrija Kostić,

Gordian Edenhofer, Jakob Roth, Berit Uhlmann, Torsten Enßlin.

References
1. Colson P, Tissot-Dupont H, Morand A, Boschi C, Ninove L, Esteves-Vieira V, et al. Children account for

a small proportion of diagnoses of SARS-CoV-2 infection and do not exhibit greater viral loads than

adults. European Journal of Clinical Microbiology & Infectious Diseases. 2020; 39(10):1983–1987.

https://doi.org/10.1007/s10096-020-03900-0

2. Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients

infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort

study. Bmj. 2020; 369. https://doi.org/10.1136/bmj.m1443 PMID: 32317267

3. Pujadas E, Chaudhry F, McBride R, Richter F, Zhao S, Wajnberg A, et al. SARS-CoV-2 viral load pre-

dicts COVID-19 mortality. The Lancet Respiratory Medicine. 2020; 8(9):831–934. https://doi.org/10.

1016/S2213-2600(20)30354-4 PMID: 32771081

4. Fajnzylber J, Regan J, Coxen K, Corry H, Wong C, Rosenthal A, et al. SARS-CoV-2 viral load is associ-

ated with increased disease severity and mortality. Nature Communications. 2020; 11(1):5493. https://

doi.org/10.1038/s41467-020-19057-5 PMID: 33127906

5. Maltezou HC, Raftopoulos V, Vorou R, Papadima K, Mellou K, Spanakis N, et al. Association Between

Upper Respiratory Tract Viral Load, Comorbidities, Disease Severity, and Outcome of Patients With

SARS-CoV-2 Infection. The Journal of Infectious Diseases. 2021; https://doi.org/10.1093/infdis/jiaa804

PMID: 33388780

6. Yonker LM, Neilan AM, Bartsch Y, Patel AB, Regan J, Arya P, et al. Pediatric severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2): clinical presentation, infectivity, and immune responses. The

Journal of pediatrics. 2020; 227:45–52. https://doi.org/10.1016/j.jpeds.2020.08.037 PMID: 32827525

7. Jefferson T, Spencer E, Brassey J, Heneghan C. Viral cultures for COVID-19 infectivity assessment.

Systematic review. medRxiv. 2020;.

8. Kawasuji H, Takegoshi Y, Kaneda M, Ueno A, Miyajima Y, Kawago K, et al. Transmissibility of COVID-

19 depends on the viral load around onset in adult and symptomatic patients. PLoS ONE. 2020; 15(12).

https://doi.org/10.1371/journal.pone.0243597 PMID: 33296437

9. Jones TC, Mühlemann B, Veith T, Biele G, Zuchowski M, Hoffmann J, et al. An analysis of SARS-CoV-

2 viral load by patient age. https://virologie-ccm.charite.de/fileadmin/user_upload/microsites/m_cc05/

virologie-ccm/dateien_upload/Weitere_Dateien/Charite_SARS-CoV-2_viral_load_2020-06-02.pdf

10. Enßlin TA, Frommert M, Kitaura FS. Information field theory for cosmological perturbation reconstruc-

tion and nonlinear signal analysis. Physical Review D. 2009; 80(10):105005. https://doi.org/10.1103/

PhysRevD.80.105005

11. Enßlin TA. Information theory for fields. Annalen der Physik. 2018; p. 1800127.

12. Leike RH, Glatzle M, Enßlin TA. Resolving nearby dust clouds. Astronomy & Astrophysics. 2020; 639:

A138. https://doi.org/10.1051/0004-6361/202038169

13. Arras P, Frank P, Haim P, Knollmüller J, Leike R, Reinecke M, et al. The variable shadow of M87. arXiv

preprint arXiv:200205218. 2020;.

14. Kurthen M, Enßlin T. A Bayesian Model for Bivariate Causal Inference. Entropy. 2020; 22(1):46. https://

doi.org/10.3390/e22010046

15. Mahallawi WH, Alsamiri AD, Dabbour AF, Alsaeedi H, Al-Zalabani AH. Association of Viral Load in

SARS-CoV-2 Patients With Age and Gender. Frontiers in Medicine. 2021; 8:39. https://doi.org/10.3389/

fmed.2021.608215 PMID: 33585523

PLOS ONE SARS-CoV-2 viral load distribution vs. patient’s age

PLOS ONE | https://doi.org/10.1371/journal.pone.0275011 October 5, 2022 19 / 21

https://doi.org/10.1007/s10096-020-03900-0
https://doi.org/10.1136/bmj.m1443
http://www.ncbi.nlm.nih.gov/pubmed/32317267
https://doi.org/10.1016/S2213-2600(20)30354-4
https://doi.org/10.1016/S2213-2600(20)30354-4
http://www.ncbi.nlm.nih.gov/pubmed/32771081
https://doi.org/10.1038/s41467-020-19057-5
https://doi.org/10.1038/s41467-020-19057-5
http://www.ncbi.nlm.nih.gov/pubmed/33127906
https://doi.org/10.1093/infdis/jiaa804
http://www.ncbi.nlm.nih.gov/pubmed/33388780
https://doi.org/10.1016/j.jpeds.2020.08.037
http://www.ncbi.nlm.nih.gov/pubmed/32827525
https://doi.org/10.1371/journal.pone.0243597
http://www.ncbi.nlm.nih.gov/pubmed/33296437
https://virologie-ccm.charite.de/fileadmin/user_upload/microsites/m_cc05/virologie-ccm/dateien_upload/Weitere_Dateien/Charite_SARS-CoV-2_viral_load_2020-06-02.pdf
https://virologie-ccm.charite.de/fileadmin/user_upload/microsites/m_cc05/virologie-ccm/dateien_upload/Weitere_Dateien/Charite_SARS-CoV-2_viral_load_2020-06-02.pdf
https://doi.org/10.1103/PhysRevD.80.105005
https://doi.org/10.1103/PhysRevD.80.105005
https://doi.org/10.1051/0004-6361/202038169
https://doi.org/10.3390/e22010046
https://doi.org/10.3390/e22010046
https://doi.org/10.3389/fmed.2021.608215
https://doi.org/10.3389/fmed.2021.608215
http://www.ncbi.nlm.nih.gov/pubmed/33585523
https://doi.org/10.1371/journal.pone.0275011


16. Jacot D, Greub G, Jaton K, Opota O. Viral load of SARS-CoV-2 across patients and compared to other

respiratory viruses. Microbes and infection. 2020; 22(10):617–621. https://doi.org/10.1016/j.micinf.

2020.08.004 PMID: 32911086

17. Kleiboeker S, Cowden S, Grantham J, Nutt J, Tyler A, Berg A, et al. SARS-CoV-2 viral load assessment

in respiratory samples. Journal of Clinical Virology. 2020; 129:104439. https://doi.org/10.1016/j.jcv.

2020.104439 PMID: 32674034

18. Euser S, Aronson S, Manders I, van Lelyveld S, Herpers B, Jansen R, et al. SARS-CoV-2 viral load dis-

tribution in different patient populations and age groups reveals that viral loads increase with age.

medRxiv. 2021; https://doi.org/10.1093/ije/dyab145 PMID: 34999848

19. Costa R, Bueno F, Albert E, Torres I, Carbonell-Sahuquillo S, Barres-Fernandez A, et al. Upper respira-

tory tract SARS-CoV-2 RNA loads in symptomatic and asymptomatic children and adults. medRxiv.

2021;.

20. Heald-Sargent T, Muller WJ, Zheng X, Rippe J, Patel AB, Kociolek LK. Age-related differences in naso-

pharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in patients with mild

to moderate coronavirus disease 2019 (COVID-19). JAMA pediatrics. 2020; 174(9):902–903. https://

doi.org/10.1001/jamapediatrics.2020.3651 PMID: 32745201

21. Chung E., Chow E., Wilcox N., Burstein R., Brandstetter E., Han P., et al. Comparison of symptoms and

RNA levels in children and adults with SARS-CoV-2 infection in the community setting. JAMA Pediat-

rics. 175, e212025–e212025 (2021) https://doi.org/10.1001/jamapediatrics.2021.2025 PMID:

34115094

22. Baggio S., Arnaud G., Yerly S., Bellon M., Wagner N., Rohr M., et al. SARS-CoV-2 Viral Load in the

Upper Respiratory Tract of Children and Adults With Early Acute COVID-19. Clinical infectious dis-

eases: an official publication of the Infectious Diseases Society of America, 73(1), 148–150.

23. Polese-Bonatto M., Sartor I., Varela F., Giannini G., Azevedo T., Kern L., et al. Children Have Similar

Reverse Transcription Polymerase Chain Reaction Cycle Threshold for Severe Acute Respiratory Syn-

drome Coronavirus 2 in Comparison With Adults. The Pediatric Infectious Disease Journal. 40, e413

(2021) https://doi.org/10.1097/INF.0000000000003300 PMID: 34596626
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