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A B S T R A C T   

Aging manifests as many phenotypes, among which age-related changes in brain vessels are 
important, but underexplored. Thus, in the present study, we constructed a model to predict age 
using cerebrovascular morphological features, further assessing their clinical relevance using a 
novel pipeline. 

Age prediction models were first developed using data from a normal cohort (n = 1181), after 
which their relevance was tested in two stroke cohorts (n = 564 and n = 455). Our novel pipeline 
adapted an existing framework to compute generic vessel features for brain vessels, resulting in 
126 morphological features. We further built various machine learning models to predict age 
using only clinical factors, only brain vessel features, and a combination of both. We further 
assessed deviation from healthy aging using the age gap and explored its clinical relevance by 
correlating the predicted age and age gap with various risk factors. 

The models constructed using only brain vessel features and those combining clinical factors 
with vessel features were better predictors of age than the clinical factor-only model (r = 0.37, 
0.48, and 0.26, respectively). Predicted age was associated with many known clinical factors, and 
the associations were stronger for the age gap in the normal cohort. The age gap was also 
associated with important factors in the pooled cohort atherosclerotic cardiovascular disease risk 
score and white matter hyperintensity measurements. 

Cerebrovascular age, computed using the morphological features of brain vessels, could serve 
as a potential individualized marker for the early detection of various cerebrovascular diseases.   
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1. Introduction 

Aging of the brain can present as multifaceted phenotypes, including shrinkage of brain volume, destructive changes in the 
subcortical network, decreased cognitive function, and an increased risk of stroke [1]. Owing to the overarching clinical and economic 
impacts of brain aging, researchers have striven to find ways to assess this phenomenon. Growing evidence suggests that predicted age 
(i.e., brain age) is clinically relevant; thus, increased brain age is generally considered a risk factor for various neurological diseases 
[2–5]. In particular, this feature is widely adopted not only to predict chronological age, but also to evaluate the association of bio-
logical or clinical factors with the age gap (i.e., the difference between predicted and chronological age) [2,6]. This is because the age 
gap can reflect the degree of abnormality, and thus might serve as a surrogate marker of brain health [6–8]. 

Age-related changes in brain vessels, known as cerebrovascular aging, occur as part of the normal brain aging process. Cerebro-
vascular aging is characterized by increased inflammation, endothelial dysfunction, stiffening of cerebral arteries, and narrowing of 
the vascular lumen [9]. These changes in the brain vessels are associated with stroke, vascular cognitive dysfunction, and 

Fig. 1. (a) The overall workflow of the study. (b) The procedures followed to compute the cerebrovascular geometrical features.  
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neurodegenerative diseases [10]. Therefore, age prediction based on brain imaging data, particularly cerebrovascular age, is an 
important topic in neuroimaging research [7,8]. In previous studies, regression-based machine learning using structural neuroimaging, 
such as T1-weighted magnetic resonance imaging, has been used to estimate brain age in healthy controls, and the model has been 
applied to diseased cohorts to assess abnormalities [8]. However, quantitative approaches using vascular structural images, such as 
magnetic resonance angiography (MRA), are relatively rare, because standardized pipelines for cerebrovascular imaging analysis are 
limited. 

The Vascular Modeling Toolkit (VMTK), which was originally developed to model aortic hemodynamics and assess various 
geometrical vessel features, is a representative method for computing generic vessel features from routine medical imaging data 
[11–13]. The VMTK is an open-source Python library that provides various low-level image-processing functions tailored for the 
quantification of tubular structures using medical images. As such, it is useful for building pipelines for cerebrovascular analysis. The 
framework cannot be directly applied to brain vessels because of the difference in vessel size, but serves as a starting point for further 
development. 

In this study, we aimed to predict age using cerebrovascular morphological features and assess their clinical relevance in both 
normal and stroke cohorts (Fig. 1a). To this end, we constructed a pipeline to extract the morphological features of brain vessels based 
on VMTK [11], and subsequently used it to predict age. To explore the clinical relevance of this model, the association between 
predicted age and various risk factors, including the pooled atherosclerotic cardiovascular disease (ASCVD) risk score [14] and white 
matter hyperintensity measurements [15], was evaluated. 

2. Methods 

2.1. Data 

This retrospective multicenter study included health screening data from a healthy control cohort, as well as the medical records of 
two cohorts from stroke registries. Data from the healthy control cohort were obtained from a previously constructed digitalized 
cerebrovascular atlas database. For this database, we selected patients who underwent health screening tests at the Health Promotion 
Center of the Samsung Medical Center between 2014 and 2016. Among those who visited the center, we selected subjects who fulfilled 

Table 1 
Demographic data of the normal cohort.  

Clinical variables Level Training (n = 827) Test (n = 354) p-value 

Age  53.378 (9.038) 54.223 (9.939) 0.154 
Sex    0.398  

Female 389 (0.470) 176 (0.497)   
Male 438 (0.530) 178 (0.503)  

Weight  65.077 (11.653) 65.531 (12.217) 0.545 
Height  165.478 (7.857) 165.175 (8.295) 0.550 
ASCVD risk  5.330 (5.945) 5.974 (7.077) 0.148 
WMHV  2.303 (4.530) 1.948 (3.662) 0.266 
WMHC  11.977 (6.978) 11.778 (7.512) 0.707 
SBP  118.456 (15.725) 119.836 (16.974) 0.178 
DBP  73.177 (10.412) 72.065 (10.861) 0.097 
HTN    0.686  

No 624 (0.755) 271 (0.766)   
Yes 203 (0.245) 83 (0.234)  

Cholesterol  192.940 (36.533) 194.514 (34.492) 0.490 
HDLC  59.814 (16.037) 60.647 (16.455) 0.417 
LDLC  122.530 (32.959) 125.215 (32.591) 0.198 
HL    0.068  

No 598 (0.723) 274 (0.774)   
Yes 229 (0.277) 80 (0.226)  

DM    0.132  
No 746 (0.902) 329 (0.929)   
Yes 81 (0.098) 25 (0.071)  

Smoker    0.493  
No experience 519 (0.628) 214 (0.605)   
Ex-smoker 184 (0.223) 90 (0.254)   
Current smoker 124 (0.150) 50 (0.141)  

Alcohol    0.120  
No 329 (0.398) 133 (0.376)   
1~2 cups per week 107 (0.129) 61 (0.172)   
Half bottle 137 (0.166) 53 (0.150)   
One bottle 194 (0.235) 91 (0.257)   
Over on bottle 60 (0.073) 16 (0.045)  

Note. ASCVD atherosclerotic cardiovascular disease; WMHV white matter hyperintensity volume; WMHC white matter hyperintensity lesion count; 
SBP systolic blood pressure; DBP diastolic blood pressure; HTN hypertension; HDLC high-density lipoprotein cholesterol; LDLC low-density lipo-
protein cholesterol; HL hyperlipidemia; DM diabetes mellitus. Numbers in parentheses represent standard deviations for continuous variables. 
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the following criteria: (1) available cerebrovascular time-of-flight (TOF) and fluid attenuation recovery inverted (FLAIR) images; (2) 
available clinical information, including sex, age, ASCVD risk score, blood pressure, lipid profile, smoking status, hypertension, 
diabetes mellitus, height, and weight; and (3) no evidence of a previous stroke, aneurysm of the intracranial vessel, or neoplasm on 
brain imaging. We selected 1181 cases for whom brain MRA intracranial TOF images were available, spanning an age range of 16–88 
years. The ASCVD risk score is a quantitative estimation of the ten-year calculated risk of atherosclerotic cardiovascular disease [14]. 
FLAIR images were used to calculate white matter hyperintensity measurements using the lesion segmentation tool (LST) in the SPM 
12 pipeline [16]. 

To assess the clinical relevance of the predicted cerebrovascular age, two datasets for acute stroke registries from the Samsung 
Medical Center (SMC) (n = 564) and Korea University Guro Hospital (KUMC) (n = 455) were considered. Each stroke registry enrolled 
patients with acute stroke or transient ischemic attack within seven days of symptom onset. A diagnosis of stroke was made in patients 
who presented with focal neurological symptoms or signs, in whom relevant brain lesions were found on brain images, especially 
diffusion-weighted images. The age ranges of the two disease cohorts were 26–92 years for the KUMC and 20–95 for the SMC. 

This study was approved by the Institutional Review Boards (IRBs) of Samsung Medical Center (SMC-2021-04-072) and Korea 
University Guro Hospital (KUMC- 2019GR0300). The requirement for informed consent for healthy controls was waived by the IRB 
owing to the retrospective nature of the study and the anonymization of personal information. Written informed consent was obtained 
from all the patients who participated in the stroke registry. The demographic information of the normal cohort is given in Table 1, 
while that of the diseased cohort is given in Supplementary Table S1. 

2.2. Imaging acquisition 

The intracranial arteries were imaged using a 3.0 T Philips Achieva magnetic resonance imaging scanner (Philips Medical Systems), 
equipped with a 32-element phased-array receiver head coil for the SMC normal and stroke registries, and a 1.5 T S Magnetom Sonata 
MRI scanner (Siemens Medical Solutions) equipped with a 16-channel phased-array head coil for external validation images of patients 
in the KUMC stroke registry. This study used whole-brain three-dimensional (3D) MRA images collected from each participant using 
the TOF protocol. With an isotropic voxel size configured to 0.284 × 0.284 × 0.284 mm3, the parameters were as follows: echo time, 
4.59 ms; repetition time, 22 ms; flip angle, 23◦; RBW, 130 Hz/pixel; GRAPPA factor, 3; 32 reference lines for SMC registry images and 
echo time, 4.97 ms; repetition time, 37 ms; flip angle, 25◦; RBW, 65 Hz/pixel; 16 reference lines for KUMC stroke registry images. The 
acquisition parameters for the FLAIR images were as follows: The SMC registry images had an echo time of 125 ms, a repetition time of 
11000 ms, an inversion time of 2800 ms, a pixel spacing of 0.469 × 0.469 mm, a slice thickness of 5 mm, and a Magnetic Field Strength 
of 3 T. The KUMC stroke registry images had an echo time of 95 ms, repetition time of 10000 ms, inversion time of 2605 ms, pixel 
spacing of 0.599 × 0.599 mm, slice thickness of 5 mm, and Magnetic Field Strength of 3 T. An expert neurologist (SWK) compared the 
image quality between healthy and diseased cohorts using the SMC data, finding no differences. However, the image quality of the 

Fig. 2. The brain vessel mask, centerlines extracted from the vessel mask, and branch splitting results.  
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KUMC data was inferior to that of the SMC data because of the difference in the magnet strength. 

2.3. Calculation of the cerebrovascular features 

Fig. 1b shows the overall procedure for calculating cerebrovascular geometric features. We built our pipeline based on VMTK and 
made the following adaptations for brain vessel quantification: Non-contrast-enhanced MRA was used to extract vessel features for all 
cohorts. First, we extract a candidate brain vessel mask using a region-growing algorithm [17]. Three seed points were set on the 
internal carotid artery (ICA) and basilar artery (BA) in the TOF image, and the threshold was manually adjusted to improve the vessel 
mask. Brain vessel segmentation covers the segmental level of major cerebrovascular structures (e.g., M1-M4 segments of the ICA). A 
full list of extracted vessel names is provided in Supplementary Table S2. The segmented binary vessel masks were reviewed by a single 
investigator (SHN), and confirmed by a board-certified vascular neurologist (SWK). The reliability of the vessel segmentation was 
evaluated by comparing the features from the binary vessel mask with manual segmentation labels of a large vessel (i.e., the intra-
cranial artery), created by one of the investigators (J-UC). Our investigations confirmed that the feature values, which are described 
below, from the manual and semiautomatic segmentation results were significantly correlated, with a p-value of less than 0.001. 

The surface nodes and edges of the binary vessel mask were calculated using a marching-cube algorithm, and adjusted to isotropic 
triangles by applying spatial interpolation to the coordinates of each surface node [18]. The edges of each plane obtained by calcu-
lating a 3D Voronoi diagram that evenly divided the volume space between each surface node were used as centerline candidates [19]. 
Subsequently, centerline tracking was performed using the edges of the Voronoi diagram from the bottom part of the ICA or BA as the 
starting point and the termination of each brain vessel as the endpoint. To obtain the start and end points, 3D skeletonization was 
applied to a binary vessel mask [20]. The skeleton points were joined using a tree structure. All the leaf nodes of the tree were defined 
as endpoints, and the first node of the ICA or BA was defined as the starting point. The obtained centerlines were further merged and 
resampled at intervals of 0.2841 mm to match the MRA resolution, and divided into various branches based on bifurcation (Fig. 2). 

Various morphological characteristics of the brain vessels were calculated using the obtained centerline. From all the centerline 
points, the sectional area, sectional perimeter, minimum diameter, maximum diameter, and circularity in the section perpendicular to 
the centerline direction were calculated. In addition, the curvature and torsion, which are structural characteristics of the centerline, 
were calculated. Subsequently, the diameter of the maximum inscribed sphere was obtained using the centerline and vessel mask 
surfaces. Finally, after assigning all the center points to the various vessel branches, the bifurcation angle of the bifurcation point was 
calculated. A full list of the computed geometrical features is provided in Supplementary Table S3. 

All of the above processes were carried out using the open-source Python library VMTK (http://www.vmtk.org) [11–13], simple 
insight toolkit (SITK, https://sitk.org) [21,22], and sci-kit image (skimage, https://scikit-image.org) [23]. We built a wrapper software 
encompassing the entire procedure with a graphical user interface using pyQt5 for enhanced usability (https://github.com/Hwan-ho/ 
BrainVesselFeatureExtractor). 

2.4. Prediction of age using brain vessel features 

To build age prediction models using vessel features, we computed 126 (=14 × 9) features that were first-order statistics (n = 14) of 
each feature (n = 9) from all the centerline points. The control cohort data were divided into training (examinees who visited the SMC 
between 2014 and 2015, n = 827) and test (examinees who visited the SMC in 2016, n = 354) sets according to the time of visit for the 
health checkup. The features were not normalized to preserve the physical units of the structural measurements of the brain vessels. 
Feature selection was performed in two steps using only training data. In the first step, L1-normal regularization (i.e., the least absolute 
shrinkage and selection operator [LASSO]) was adopted [24]. To address the multicollinearity problem among the selected features in 
the first step, we applied recursive feature elimination based on the variance inflation factor (VIF). Among the features with a VIF 
greater than five, the feature with the largest VIF was removed until all features in the selected feature set had a VIF of less than five 
[25]. 

Our age prediction models were built using a random forest (RF) regressor [26] comprising 256 decision trees trained using a 
tree-bagging algorithm, an RF regressor comprising 256 trees trained using the least-squares boosting (LSBoost) algorithm for 1024 
epochs with a learning rate of 0.01, a linear regressor, and an ensemble of the three previous models using the selected vessel features. 
The random forest model inherently possesses ensemble characteristics by utilizing multiple decision trees to introduce randomness. It 
is known for its ability to reduce overfitting and stabilize predictions. The linear regression model predicts the target variable as a 
linear combination of features and is the simplest and most commonly used model for regression tasks. In our ensemble approach, we 
set the predicted age as the average output of the three models. The prediction model was further refined using a linear transform. 
Additional linear transformation does not affect the performance metrics based on informational measures, such as correlation, but can 
improve the absolute error of the prediction. To evaluate the model performance, the correlation, adjusted R-squared, mean squared 
error (MSE), and mean absolute error (MAE) between the predicted and chronological ages were calculated. 

We denoted the predicted age from the model as “cerebrovascular age,” because it is based on vessel measures. Our designation was 
partly motivated by the “brain age” terminology proposed in other studies, where brain age is computed using brain imaging features. 
Several age-prediction models have previously been developed. Our baseline model (model 1) included sex, weight, and height. 
However, these factors are often referred to as potential sources of bias in age prediction [8]. We subsequently built four models 
(models 2–5); an RF regression model trained by a typical tree-bagging algorithm), an RF regression model trained by the LSBoost 
algorithm, a linear regression model, and an ensemble model averaging the prediction results of the three models. We built additional 
models (models 6–9) by combining the first four models (models 2–5) with sex, weight, and height information to probe the 
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incremental effects of the three factors. Nine models were constructed and compared. 
To demonstrate the stability of the proposed models, we conducted a nested 5-fold cross-validation on the training set (n = 827), in 

which the training set was divided into two subsets, inner training (n = 662) and inner validation (n = 165), each time leaving a 
different validation set five different times. All of our models were constructed using the inner training set, and their performance was 
evaluated using the inner validation sets. The mean and standard deviation of the cross-validation were further reported. 

2.5. Exploring the clinical relevance of predicted age 

We employed two strategies to explore the clinical relevance of these models. First, the correlations between predicted age (i.e., 
cerebrovascular age) and the ten-year primary risk of ASCVD and conventional vascular risk factors were evaluated [14]. Second, the 
volume and number of cerebral white matter hyperintensity lesions measured from FLAIR images for the control group were correlated 
with chronological age and cerebrovascular age. White matter hyperintensity lesions were segmented by the lesion growth algorithm 
as implemented in the LST toolbox version 2.0.15 (www.statisticalmodelling.de/lst.html) for SPM [27]. Measurements of white matter 
hyperintensity can reflect an increased risk of cerebrovascular events such as stroke, dementia, and death [15]. Thus, they were 
considered for correlation analysis. 

We also evaluated the association between the clinical parameters and the age gap, defined as the difference between predicted and 
chronological age (i.e., predicted age – chronological age), to explore the degree of abnormality. Existing age prediction studies have 
reported results that are biased toward the mean age of the training set, leading to underestimation in older adults and overestimation 
in younger adults [6]. To partially mitigate this effect, we applied a bias correction based on regressing chronological age before 
associating the age gap with clinical parameters [7]. 

We further applied our age prediction models to diseased cohorts from two medical centers to explore the diagnostic value of our 
model. Existing studies on predicting brain age have shown decreased performance when applied to diseased cohorts, owing to the 
shift in cohort characteristics [6,8]. Even with degraded performance, the application in the diseased cohort provides important in-
sights, particularly with respect to the age gap. To apply our models to stroke cohorts, the brain vessel masks of stroke patients from 
two independent centers were used as inputs. The same brain vessel features were also calculated. All the parameters of each model 
were fixed and applied to the vessel features computed from the diseased cohorts. The clinical relevance was explored in the same 
manner as in the normal cohort. 

2.6. Statistical analysis 

We used two-sample Student’s t-tests to compare continuous-valued information, and chi-square tests to compare categorized 
information in the demographic table. To compare model performance, bootstrapping was performed 100 times using a 0.2 hold-out 
ratio to construct the distribution of performance metrics, while a paired t-test was applied after normality was confirmed using the 
Shapiro-Wilk test. Statistical significance was set at p < 0.05. Bonferroni correction was further applied to associate model predictions 
with risk scores. RF modeling and all statistical analyses were conducted using the Statistics and Machine Learning Toolbox in 

Table 2 
Age prediction results in the normal cohort.  

Training 

Model No. Features Model R Adj R2 p-value MSE MAE 

1 Baseline  0.696 0.483 <0.001 42.212 5.082 
2 Vessel features only RF 0.901 0.812 <0.001 15.360 2.957 
3 LSBoost 0.903 0.815 <0.001 15.079 3.022 
4 Linear 0.405 0.163 <0.001 68.398 6.293 
5 Ensemble 0.864 0.747 < 0.001 20.667 3.669 
6 Vessel features combined with sex, height, and weight RF 0.912 0.832 <0.001 13.711 2.835 
7 LSBoost 0.908 0.823 <0.001 14.422 2.975 
8 Linear 0.501 0.250 <0.001 61.241 6.053 
9 Ensemble 0.871 0.758 < 0.001 19.773 3.616 

Test 
Model No. Features Model R Adj R2 p-value MSE MAE 

1 Baseline  0.285 0.079 <0.001 90.998 7.712 
2 Vessel features only RF 0.329 0.106 <0.001 88.353 8.019 
3 LSBoost 0.339 0.112 <0.001 87.684 7.957 
4 Linear 0.368 0.133 <0.001 85.657 7.179 
5 Ensemble 0.356 0.124 < 0.001 86.496 7.543 
6 Vessel features combined with sex, height, and weight RF 0.436 0.188 <0.001 80.204 7.271 
7 LSBoost 0.442 0.193 <0.001 79.678 7.257 
8 Linear 0.507 0.255 <0.001 73.584 6.664 
9 Ensenble 0.481 0.229 < 0.001 76.154 6.818 

Note. RF random forest regressor trained by tree bagging; LSBoost random forest regressor trained by least-squares boosting; R correlation; Adj R2 
adjusted R-squared; MSE mean squared error; MAE mean absolute error. 
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MATLAB (MathWorks, Natick, MA, USA). 

3. Results 

3.1. Modeling of cerebrovascular age in the normal cohort 

Table 2 shows the training and test results for age prediction in the normal cohort. Fig. 3a-d shows a plot of the predicted and 
chronological ages of the representative model (model 5, ensemble model). Plots from the other models are provided in the Sup-
plementary Materials (Figs. S1–S8). The baseline model (model 1: age prediction using sex, weight, and height) showed a significant 
association with chronological age in both the training (correlation 0.696, p-value 1.3430× 10− 120) and test sets (correlation 0.285, p- 
value 2.854× 10− 8), owing to the natural bias of height and weight according to sex and age, as reported in other studies [8]. 

Age prediction improved for the models using vessel features (models 2–5) for the training and test sets compared with the baseline. 
In the test set, the correlation coefficient of the ensemble model (Model 5) using vessel feature information was 0.356, compared to 
0.285 for the baseline model (p < 0.001). The MSE of the ensemble model was 86.496, compared with 90.998 for the baseline model in 
the test set (p < 0.001). 

When the vessel features and other clinical factors such as sex, height, and weight were used together (models 6–9), the prediction 
was further improved in the test set. The correlation coefficient of the combined ensemble model (Model 9) was 0.481, compared with 

Fig. 3. Plots of the predicted vs. chronological age of the ensemble model that considered brain vessel features (model 5) for the (a) training set, (b) 
test set, (c) diseased SMC cohort, and (d) diseased KUMC cohort. Red lines are the regression lines for prediction. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of this article.) 
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Table 3 
Correlation coefficient between the predicted age and clinical parameters in the normal cohort.  

Training 

Model 
No. 

Features Model ASCVD 
risk 

WMHV WMHC SBP DBP HTN Cholesterol HDLC LDLC HL DM Smoke Alcohol 

1 Baseline  0.358 0.126 0.143 0.067 0.017 0.108 − 0.055 − 0.133 0.005 0.140 0.087 − 0.058 − 0.099 
2 Vessel features 

only 
RF 0.606 0.291 0.368 0.091 0.058 0.177 − 0.072 − 0.141 − 0.014 0.154 0.164 − 0.025 − 0.119 

3 LSBoost 0.611 0.285 0.342 0.071 0.027 0.164 − 0.080 − 0.118 − 0.025 0.131 0.157 − 0.029 − 0.138 
4 Linear 0.352 0.243 0.319 0.088 0.178 0.168 − 0.091 − 0.149 − 0.051 0.096 0.094 0.159 0.060 
5 Ensemble 0.595 0.298 0.372 0.087 0.072 0.181 ¡0.084 ¡0.142 ¡0.027 0.143 0.158 0.008 ¡0.100 
6 Vessel features combined with sex, 

height, and weight 
RF 0.553 0.267 0.323 0.066 0.013 0.154 − 0.058 − 0.098 − 0.008 0.151 0.142 − 0.098 − 0.177 

7 LSBoost 0.558 0.254 0.306 0.060 0.000 0.152 − 0.066 − 0.092 − 0.013 0.130 0.134 − 0.092 − 0.166 
8 Linear 0.289 0.201 0.213 0.064 0.086 0.123 − 0.069 − 0.072 − 0.044 0.100 0.080 0.004 − 0.064 
9 Ensenble 0.524 0.263 0.310 0.067 0.025 0.155 ¡0.068 ¡0.095 ¡0.019 0.139 0.133 ¡0.078 ¡0.157 

Test 
Model 

No. 
Features Model ASCVD 

risk 
WMHV WMHC SBP DBP HTN Cholesterol HDLC LDLC HL DM Smoke Alcohol 

1 Baseline  0.132 0.051 0.012 0.081 0.114 0.156 0.034 − 0.079 0.052 0.101 0.115 0.057 0.043 
2 Vessel features 

only 
RF 0.381 0.198 0.246 0.137 0.164 0.181 − 0.073 − 0.285 0.013 0.114 0.127 0.270 0.151 

3 LSBoost 0.368 0.188 0.225 0.116 0.127 0.176 − 0.100 − 0.260 − 0.021 0.135 0.149 0.239 0.119 
4 Linear 0.415 0.279 0.311 0.117 0.179 0.129 − 0.033 − 0.273 0.052 0.123 0.185 0.264 0.097 
5 Ensemble 0.400 0.221 0.263 0.130 0.159 0.175 ¡0.079 ¡0.284 0.008 0.130 0.155 0.267 0.133 
6 Vessel features combined with sex, 

height, and weight 
RF 0.381 0.222 0.193 0.126 0.101 0.158 − 0.028 − 0.217 0.039 0.102 0.155 0.106 − 0.014 

7 LSBoost 0.295 0.201 0.196 0.112 0.105 0.193 − 0.028 − 0.211 0.040 0.126 0.147 0.098 0.005 
8 Linear 0.344 0.300 0.234 0.123 0.084 0.153 − 0.019 − 0.156 0.039 0.160 0.209 0.054 − 0.122 
9 Ensemble 0.334 0.246 0.216 0.126 0.104 0.180 ¡0.027 ¡0.210 0.042 0.133 0.174 0.095 ¡0.036 

Note. RF random forest regressor trained by tree bagging; LSBoost random forest regressor trained by least-squares boosting; ASCVD atherosclerotic cardiovascular disease; WMHV white matter 
hyperintensity volume; WMHC white matter hyperintensity lesion count; SBP systolic blood pressure; DBP diastolic blood pressure; HTN hypertension; HDLC high-density lipoprotein cholesterol; LDLC 
low-density lipoprotein cholesterol; HL hyperlipidemia; DM diabetes mellitus; Underline represent a significant association. 
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Table 4 
Correlation coefficient between the corrected age gap and clinical parameters in the normal cohort.  

Training 

Model 
No. 

Features Model ASCVD 
risk 

WMHV WMHC SBP DBP HTN Cholesterol HDLC LDLC HL DM Smoke Alcohol 

1 Baseline  − 0.138 − 0.054 − 0.095 0.032 0.047 0.005 − 0.003 − 0.089 0.026 0.068 − 0.034 0.024 0.047 
2 Vessel features 

only 
RF 0.126 0.173 0.208 0.077 0.185 0.097 − 0.006 − 0.118 0.008 0.083 0.046 0.167 0.132 

3 LSBoost 0.036 0.133 0.120 0.030 0.113 0.065 − 0.025 − 0.066 − 0.016 0.028 0.028 0.159 0.082 
4 Linear 0.149 0.173 0.228 0.068 0.206 0.117 − 0.065 − 0.119 − 0.047 0.047 0.032 0.222 0.156 
5 Ensemble 0.115 0.175 0.202 0.064 0.184 0.102 ¡0.035 ¡0.111 ¡0.020 0.058 0.039 0.201 0.135 
6 Vessel features combined with sex, 

height, and weight 
RF − 0.001 0.127 0.115 0.020 0.086 0.042 0.029 − 0.018 0.023 0.075 − 0.011 0.002 0.005 

7 LSBoost − 0.089 0.074 0.047 0.005 0.052 0.038 0.009 − 0.005 0.011 0.025 − 0.028 0.014 0.032 
8 Linear 0.024 0.108 0.086 0.037 0.113 0.055 − 0.035 − 0.026 − 0.039 0.040 0.000 0.067 0.042 
9 Ensemble ¡0.020 0.113 0.091 0.024 0.094 0.050 ¡0.001 ¡0.018 ¡0.004 0.051 ¡0.014 0.032 0.030 

Test 
Model 

No. 
Features Model ASCVD 

risk 
WMHV WMHC SBP DBP HTN Cholesterol HDLC LDLC HL DM Smoke Alcohol 

1 Baseline  − 0.009 − 0.060 − 0.092 0.052 0.120 0.084 0.063 − 0.056 0.073 0.058 0.060 0.096 0.096 
2 Vessel features 

only 
RF 0.234 0.084 0.146 0.107 0.175 0.100 − 0.045 − 0.271 0.036 0.065 0.065 0.328 0.219 

3 LSBoost 0.210 0.069 0.121 0.085 0.137 0.092 − 0.073 − 0.244 0.001 0.085 0.086 0.297 0.190 
4 Linear 0.255 0.161 0.207 0.083 0.194 0.034 0.001 − 0.258 0.081 0.069 0.120 0.332 0.173 
5 Ensemble 0.240 0.100 0.157 0.097 0.172 0.086 ¡0.049 ¡0.270 0.033 0.077 0.089 0.332 0.207 
6 Vessel features combined with sex, 

height, and weight 
RF 0.111 0.066 0.048 0.088 0.115 0.048 0.014 − 0.198 0.074 0.035 0.076 0.177 0.069 

7 LSBoost 0.079 0.042 0.050 0.071 0.120 0.085 0.015 − 0.191 0.075 0.061 0.066 0.169 0.093 
8 Linear 0.108 0.129 0.069 0.080 0.100 0.022 0.032 − 0.127 0.082 0.091 0.125 0.134 − 0.036 
9 Ensemble 0.105 0.077 0.058 0.085 0.121 0.060 0.020 ¡0.190 0.082 0.063 0.090 0.175 0.056 

Note. RF random forest regressor trained by tree bagging; LSBoost random forest regressor trained by least-squares boosting; ASCVD atherosclerotic cardiovascular disease; WMHV white matter 
hyperintensity volume; WMHC white matter hyperintensity lesion count; SBP systolic blood pressure; DBP diastolic blood pressure; HTN hypertension; HDLC high-density lipoprotein cholesterol; LDLC 
low-density lipoprotein cholesterol; HL hyperlipidemia; DM diabetes mellitus; Underline represent a significant association. 
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0.285 for the baseline model (p < 0.001). The MSE of the combined ensemble model was 76.154, compared with 90.998 for the 
baseline model (p < 0.001). Taken together, these results confirmed the additive value of clinical factors for predicting age, in addition 
to vessel features. 

We further observed some decreases in the performance metrics between the training and test sets. Such occurrences are common 
in machine learning models. The results of 5-fold cross-validations are given in Supplementary Table S4 and are largely consistent with 
those shown in Table 2. 

3.2. Exploring the clinical relevance of cerebrovascular age 

Table 3 shows the correlation coefficients between cerebrovascular age and various clinical parameters in our models. Significant 
associations between cerebrovascular age and risk scores were observed in both the training and testing sets. These were stronger for 
the models that reflected vessel features than for the baseline model. Overall, a positive correlation was found between cerebrovascular 
age and ASCVD risk score, indicating that higher cerebrovascular age is associated with a higher risk of stroke within ten years. Both 
the volume of white matter hyperintensity (WMHV) and the count of white matter hyperintensity lesions (WMHC) also showed sig-
nificant positive associations with cerebrovascular age, indicating that higher cerebrovascular age is associated with a worse status of 
the hyperintense region. The results of both ASCVD and white matter hyperintensity measurements indicated that cerebrovascular age 
could reflect known risk factors for brain aging. 

Cerebrovascular age was significantly correlated with blood pressure status. In the test set, the cerebrovascular age using vessel 
features showed a significant positive correlation with hypertension (HTN), implying that higher cerebrovascular age is associated 
with a worse blood pressure status. In contrast, the correlation coefficient between chronological age and HTN was 0.064, which was 
not significant (p > 0.05). This indicates that signs of hypertension that cannot be captured by a simple chronological age can be 
detected by measuring the cerebrovascular age. Overall, the baseline model showed a lower correlation with HTN than models that 
reflected vessel features. 

Among the measures of cholesterol-related status, high-density lipoprotein (HDL) cholesterol levels showed a significant negative 
association with cerebrovascular age, indicating that HDL cholesterol levels tend to decrease with increasing cerebrovascular age. 
However, this trend was not observed to exist with chronological age (correlation coefficient − 0.09). Hyperlipidemia also showed a 
significant positive correlation with cerebrovascular age, indicating that individuals with hyperlipidemia tended to have a higher 
cerebrovascular age. The probability of diabetes was also significantly and positively correlated with cerebrovascular age. 

Incorporating clinical factors, such as sex, height, and weight, with vessel features enhances age prediction performance, but 
degrades the correlation between cerebrovascular age and certain clinical parameters. Specifically, the association between ASCVD 
risk, WMHC, and HDL cholesterol weakened in the test set when brain vessel features were combined with the aforementioned clinical 
factors. Therefore, using brain vessel features alone, without clinical factors, offers the advantage of capturing the clinical status of 
cerebrovascular health. 

Table 4 shows the correlation coefficients between the age gap of each model and various clinical parameters. The age gap was 
defined as the predicted age minus the chronological age following bias correction (see Methods). Thus, a positive age gap indicates 

Fig. 4. Relevance of age gaps in different chronological age groups. (a) Box plot of the ASCVD risk score according to chronological age. Blue boxes 
represent a negative age gap (i.e., younger cerebrovascular age than the chronological age), while red boxes represent a positive age gap (i.e., older 
cerebrovascular age than the chronological age). Asterisks indicate significant differences in ASCVD risk between negative and positive age gap 
groups in the same chronological age (*p-value <0.05, **p-value <0.001). (b) Box plot of the age gap according to chronological age. Blue boxes 
represent the low ASCVD risk group, while red boxes represent the high ASCVD risk group. Asterisks indicate significant differences in the age gap 
between the low and high ASCVD risk groups in the same chronological age (*p-value <0.05, **p-value <0.001). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of this article.) 
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that an individual’s cerebrovascular age is older than their chronological age. The correlation coefficient between chronological age 
and age gap was close to zero after bias correction, indicating that the age gap and chronological age were largely uncorrelated and 
that the age gap could provide complementary information. The clinical relevance of the age gap was primarily observed when sex, 
weight, and height were not considered. Age gaps from the models using vessel features (models 2–5) showed significant positive 
associations with the ASCVD risk score, DBP, smoking, and alcohol intake. These results indicate that a cerebrovascular age older than 
the chronological age results in higher risk scores and higher blood pressure. HDL cholesterol also showed a significant negative 
association with age gaps when using vessel features (models 2–5), implying that cerebrovascular age is younger than chronological 
age if the HDL cholesterol level is high. A peculiar aspect of our results is that when sex, weight, and height information were included 
in age prediction, the statistical significance of the clinical relevance of the age gap decreased, particularly that for ASCVD risk. This 
suggests that performing age prediction without potential bias factors (i.e., sex, weight, and height) is advantageous for evaluating the 
clinical relevance of the age gap. 

Our results showed that the age gap was significantly associated with the pooled ASCVD risk score. To explore the clinical relevance 
of the age gap in more detail, we investigated whether there was a difference in ASCVD risk scores according to age gap trends (i.e., 
positive age gap vs. negative age gap) within the same chronological age in the test cohort (Fig. 4a). In each chronological age group 
(40s, 50s, and 60s), individuals with a positive age gap had a significantly higher ASCVD risk score than those with a negative age gap 
in the same age group (p < 0.001, 0.004, and 0.005, respectively, for 40s, 50s, and 60s). In other words, individuals with a cere-
brovascular age higher than their chronological age are more likely to develop atherosclerotic cardiovascular diseases, including 
stroke, within ten years compared with individuals of the same chronological age. In addition, we investigated whether there was a 
difference in the age gap according to ASCVD risk within the same age group (Fig. 4b). ASCVD risk groups were stratified through the 
application of the median value of the training cohort as a threshold. For each age group (40s, 50s, and 60s), the age gaps of individuals 
in the low ASCVD risk group were significantly higher than those in the high ASCVD risk group in the same age group (p-values 0.010, 
<0.001, <0.001 respectively for 40s, 50s, and 60s). Furthermore, the age gap in the low ASCVD group was negative, meaning that 
individuals with negative age gaps were predicted to have a lower ASCVD risk than their chronological age. In summary, the difference 
between the cerebrovascular age predicted by our model and the chronological age can be used as a robust measure to reflect the 
relative risk of cerebrovascular disease. 

3.3. Application of models to diseased cohorts 

Table 5 shows the age prediction results for the two cohorts. As in the normal cohort, age predictions in the diseased cohort showed 
significant correlations with the chronological age; however, the prediction errors were higher than those of the normal cohort. When 
vessel features were involved, the MSE values of the ensemble model were 171.400 and 156.173 in the SMC and KUMC stroke cohorts, 
respectively, compared with the MSE of the ensemble model for the normal test set of 86.496 (p < 0.001). 

The cerebrovascular ages of individuals in their 40s–70s in the disease cohort are presented in Fig. 5. The cerebrovascular age was 
significantly greater than that of the normal cohort across all age ranges. Cerebrovascular age can indicate the structural health of 
brain vessels, while patients with stroke are more likely to have an abnormal vessel structure affected by the disease. As the disease 

Table 5 
Age prediction results in the diseased cohorts.  

Diseased cohort 1 (SMC) 

Model No. Features Model R Adj R2 p-value MSE MAE 

1 Baseline  0.358 0.126 <0.001 159.184 14.551 
2 Vessel features only RF 0.256 0.064 <0.001 170.575 14.228 
3 LSBoost 0.242 0.057 <0.001 171.825 14.435 
4 Linear 0.182 0.031 <0.001 176.465 14.527 
5 Ensemble 0.247 0.059 < 0.001 171.400 14.279 
6 Vessel features combined with sex, height, and weight RF 0.407 0.164 <0.001 152.361 13.304 
7 LSBoost 0.427 0.181 <0.001 149.172 13.048 
8 Linear 0.409 0.165 <0.001 152.065 12.941 
9 Ensemble 0.443 0.195 < 0.001 146.677 13.003 

Diseased cohort 2 (KUMC) 
Model No. Features Model R Adj R2 p-value MSE MAE 

1 Baseline  0.222 0.047 <0.001 156.164 13.350 
2 Vessel features only RF 0.181 0.030 <0.001 158.888 11.901 
3 LSBoost 0.156 0.022 <0.001 160.244 11.469 
4 Linear 0.274 0.073 <0.001 151.925 10.375 
5 Ensemble 0.222 0.047 < 0.001 156.173 10.943 
6 Vessel features combined with sex, height, and weight RF 0.318 0.099 <0.001 147.619 10.913 
7 LSBoost 0.276 0.074 <0.001 151.773 10.889 
8 Linear 0.331 0.107 <0.001 146.293 10.144 
9 Ensemble 0.350 0.121 < 0.001 144.087 10.173 

Note. RF random forest regressor trained by tree bagging; LSBoost random forest regressor trained by least-squares boosting; R correlation; Adj R2 
adjusted R-squared; MSE mean squared error; MAE mean absolute error. 
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cohort had a high incidence of ASCVD (Supplementary Tables S5 and S6), the cerebrovascular age was expected to be significantly 
higher than that of the normal cohort. Consequently, the association between chronological age and cerebrovascular age was weaker 
because of the increased prediction error in the diseased cohorts compared to that in the normal cohort, as shown in Table 5. 

Across all age ranges, the cerebrovascular age of the KUMC was higher than that of the SMC (Fig. 5). This could be due to the 
demographic differences between the two centers (Supplementary Table S1). Patients at KUMC are more likely to have hypertension 
and to exhibit higher cholesterol and lower HDL cholesterol levels, which can negatively affect their cerebrovascular health. These 
differences in clinical conditions may affect the structure of the brain vessels, leading to a higher predicted cerebrovascular age in 
patients at KUMC. 

Associations between cerebrovascular age, corrected age gap, and various clinical parameters in the stroke cohorts have been 
reported (Tables S7 and S8). In contrast to the results obtained in the normal cohort, there was little to no association between ce-
rebrovascular age, age gap, and clinical parameters in the stroke cohort. Because our models were constructed based on the structural 
characteristics of the normal cohort, it may be challenging to associate clinical characteristics with cerebrovascular age in the disease 
cohort. This difficulty may arise because individuals with a disease may undergo treatment, resulting in the influence of external 
factors, such as medications, that can affect various clinical conditions. 

To evaluate the contribution of each vessel feature to age prediction, we dissected our linear model (Model 4), which was included 
in the ensemble model. Table 6 presents the selected vessel features and their multivariate linear coefficients against cerebrovascular 
age in the linear model (Model 4). Fig. 6 provides a visual representation of the contributions of different features to the various 
categories. All features had a VIF of less than 5, indicating that they were relatively independent. Of the 12 selected features, six were 
thickness features (50 %), one was a sectional shape feature (8 %), four were tortuosity features (33 %), and one was a sectional 
thickness feature (8 %) (Fig. 6a). The standard deviations of the minimum-maximum axis length ratio (p = 0.003), 25th percentile of 
curvature (p = 0.049), and maximum perimeter (p = 0.013) were significant. Fig. 6b presents a visualization of this data considering 
the p-value and sign of the coefficient of each feature (i.e., the length and direction of the bar denote the sign of the coefficient 

Fig. 5. Predicted age according to chronological age. Asterisks indicate significant differences in the predicted age between the normal and disease 
cohorts in the same chronological age range (*p-value <0.05, **p-value <0.001). 

Table 6 
Contribution of various vessel features to the age prediction model (model 4; Linear). Bold text denotes significant features with a p-value less than 
0.05.  

Feature name Coefficients p-value VIF Category Interpretation 

(Intercept) − 17.182 0.176 – – – 
MIS_Percentile 5 29.754 0.126 2.497 Thickness Least Thickness 
MIS_Percentile 75 3.973 0.342 3.167 Thickness Greatest Thickness 
MinD_Min 2.235 0.498 1.983 Thickness Least minor axis 
MinD_Max 2.000 0.218 4.473 Thickness Greatest minor axis 
MaxD_Percentile 25 11.251 0.070 3.228 Thickness Least major axis 
MaxD_Percentile 95 0.939 0.357 3.154 Thickness Greatest major axis 
MMR_STD ¡207.895 0.003 3.211 Sectional Shape Sectional shape variation 
Curvature_Min 30.587 0.259 2.011 Tortuosity Least Tortuosity 
Curvature_Percentile 25 80.303 0.049 2.243 Tortuosity Least Tortuosity 
Torsion_Min 417.514 0.569 1.024 Tortuosity Least Tortuosity 
Torsion_IQR − 6.671 0.062 1.26 Tortuosity Tortuosity variation 
Perimeter_Max 0.840 0.013 3.133 Surface Greatest Perimeter 

Note. MIS maximum inscribed sphere; MinD minimum diameter; MaxD maximum diameter; MMR minimum-maximum axis length ratio; STD 
standard deviation; IQR interquartile range. 
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multiplied by-log (p-value)). Although there were many selected thickness features, none were significant. The standard deviation of 
the minimum-maximum axis length ratio represented the sectional shape variation, and had a negative coefficient, indicating that the 
diversity of the cerebrovascular sectional shape decreased with age. The 25th percentile of the curvature represents the lower 25th 
percentile value of the curvature distribution derived from the entire set of cerebrovascular nodes, and showed a positive coefficient, 
indicating that as people age, there is less chance of having a straight segment of the brain vessel, and the brain vessel becomes 
tortuous. The maximum perimeter had a positive coefficient, and was related to the greatest cross-sectional perimeter of the brain 
vessels, suggesting that an increase of 1 mm in the greatest cross-sectional perimeter would result in a 0.840 increase in age. Despite 
our exploration of multivariate coefficients in our linear model for clarity, our ensemble model incorporates nonlinear RF regressors. 
The contribution of each feature to the RF regressors can be evaluated based on the reduction in the error attributed to each feature. 
However, this method does not provide insight into the directionality of the contribution, which is crucial for interpreting machine 
learning models in medicine. Our assessment offers only a limited interpretation of the linear model; however, we believe that this 
partial information can provide a starting point for understanding the models. 

4. Discussion 

In the present study, we proposed a method to predict age using brain vessel features, and assessed its clinical relevance using 
various clinical parameters. Our pipeline for computing vessel features started with the brain vessel mask from TOF images obtained 
using the region-growing algorithm. The surface mesh of the vessel was subsequently obtained using the marching cube algorithm and 
refined to be close to the isosurface. The starting points of the BA or ICA and the endpoints of various vessels were automatically 
extracted from the 3D skeleton of the vessel mask. Based on the 3D Voronoi diagram, the centerlines of the blood vessels were tracked 
from every starting point to various endpoints. Various morphological features of the vessel were further computed along the 
centerline. The entire pipeline was constructed from in-house Python code and open-source Python software. 

To predict age using brain vessel features, feature selection was performed using LASSO feature selection and recursive feature 
elimination using VIF. Age prediction models were constructed using RF regression with two training strategies, linear regression, and 
an ensemble of the three models. The association between cerebrovascular age and chronological age or various clinical parameters 

Fig. 6. Contribution of various vessel features to the age prediction model (a) ratio of the different feature components colored by categories, and 
(b) contribution of various features whose weights were computed as the negative log of p-value multiplied by the sign of the coefficient. Asterisks 
indicate significant features. 
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was evaluated. The clinical relevance of this age gap was also explored. Before evaluating the clinical relevance of the age gap, bias 
correction was applied by removing the linear trend of the age effect. The models were then validated using data from normal and 
stroke cohorts extracted from two centers. 

Vascular aging is a complex process involving multiple mechanisms, including oxidative stress, mitochondrial damage, genomic 
instability, and epigenetic alterations [28]. When developing treatments for age-related vascular diseases, it is essential to diagnose 
and monitor vascular age using clinically available tests. Arterial stiffness is the most well-known surrogate for monitoring vascular 
age [29]. Past research has shown that aortic stiffness markedly increases with advancing age, and is associated with an increased risk 
of cardiovascular disease [30]. Several markers may be used to assess vascular aging, including intima-medial thickness, pulse wave 
velocity, augmentation index, and echo-tracking methods [31]. Among these, carotid-femoral pulse wave velocity (cfPWV) is 
considered the gold standard for testing arterial stiffness. Indeed, in one population-based cohort study, increased cfPWV was iden-
tified as an independent predictor of coronary heart disease and stroke [32]. However, arterial stiffness measured by aortic pulse wave 
velocity lacks representativeness of cerebrovascular age, because the cerebral vasculature has distinctive histological and hemody-
namic properties of the systemic vasculature. To date, no specific test has been introduced in clinical practice to directly assess cerebral 
arterial aging or stiffness. 

We presented an ensemble model combining three models using vessel features (Model 5) as a representative model, considering 
both prediction performance and clinical relevance. When sex, height, and weight information were combined, age prediction 
improved, but the clinical relevance of cerebrovascular age and age gap weakened. One reason for this could be overfitting owing to 
known bias factors (i.e., sex, height, and weight). As such, among the models using vessel features, we chose Model 5 as the repre-
sentative model, as it had the best age prediction performance and the strongest clinical relevance. The age prediction of Model 5 
showed a correlation coefficient of 0.356 (p < 0.001) for the chronological age of the normal test set, and significant correlations with 
correlation coefficients of 0.247 (p < 0.001) and 0.222 (p < 0.001) in the SMC and KUMC cohorts, respectively. The model showed 
significant associations not only with the risk score, but also with blood pressure-related measures, such as SBP, DBP, and HTN, as well 
as with cholesterol-related risk factors, such as HDL cholesterol and hyperlipidemia. The age gap calculated from this model was also 
correlated with a variety of risk factors, including ASCVD, WHMC, DBP, and HDL cholesterol. 

We further observed a drop in performance for the test set compared to the training set for our healthy cohort. Although this 
phenomenon is common in many cases, we believe that it could be attributed to the nature of the two RF-based models. By design, RF 
tends to fit closely to the training data; thus, the drop in performance in the test set could be aggravated compared to the linear 
regression model. 

In our results for the disease cohort, discrepancies in MRI scanners and imaging protocols between the SMC and KUMC should be 
considered a limitation. Specifically, the differing magnetic field strengths at these centers (3 T at SMC and 1.5 T at KUMC) are likely to 
have influenced our vascular segmentation outcomes, due to an impact on the visualization of smaller arterial structures. As such, we 
conducted an additional analysis to assess the minimum arterial diameter in the two cohorts. Our findings revealed that the average 
minimum diameter was 0.1275 mm (SD = 0.0372 mm) at SMC and 0.1517 mm (SD = 0.0509 mm) at KUMC, with a statistically 
significant difference (p < 0.001). This significant variation suggests that a higher magnetic field strength can enhance the detection of 
finer vascular features. 

The gap between the chronological and cerebrovascular ages can be used as an indicator of the extent to which a specific person is 
outside the normal range of health. Therefore, it can be used to measure the risk of aging or disease compared with a healthy aging 
group. In one study, Smith et al. showed that a strong correlation between predicted brain age and chronological age was not an 
optimal estimator of the age gap [6,7]. This is because the cerebrovascular age is biased toward the mean of the training cohort, owing 
to the nature of the optimization algorithm. We further corrected the age gap by removing the chronological age component from the 
cerebrovascular age. This analysis further showed significant associations between the corrected age gap and several non-imaging or 
imaging features using larger-scale (>10,000 participants) UK Biobank data. Similar to our study, the authors reported significant 
associations between age gap and blood pressure-related factors such as SBP and DBP, smoking, alcohol intake, diabetes, and cognitive 
status. In our results, the correlation between the age gap and cerebrovascular age was very high before chronological age was 
regressed out. Therefore, we removed the age effect to avoid biased results when exploring the clinical association with age gap. 

In one prior cross-sectional study, Williamson et al. investigated the correlation between MRI-based cerebrovascular structure 
measures and modifiable cardiovascular risk factors in young adults aged 18–40 years with no clinical evidence of brain vascular 
disease [33]. The authors utilized TOF MRI to calculate cerebrovascular density, caliber, and tortuosity and assessed white matter 
hyperintensity and volume using FLAIR images. Through their analysis, various clinical parameters were found to be significantly 
associated with cerebrovascular caliber, tortuosity, and white matter hyperintensity. Similarly, our ensemble model (Model 5) 
demonstrated significant associations with all risk factors except cholesterol and LDL cholesterol levels. Specifically, the identified age 
gap was significantly associated with ASCVD, WMHC, DBP, HDL cholesterol, smoking, and alcohol intake. The association between 
cerebrovascular age and the clinical parameters identified in our study replicated these findings. We further observed that the 
vessel-only models had stronger correlations with cardiovascular risk factors than the combined models. The stronger correlation in 
the vessel-only model could be attributed to the intrinsic correlation between demographics and risk factors. However, it is generally 
observed that height and weight tend to decrease with age for both sexes in the Korean population [34,35]. As such, the effects of 
intrinsic correlation could be lower than expected. 

This study has several limitations. First, our age prediction models were built using regular health checkup data from one hospital. 
It was difficult to obtain an independent normal cohort owing to privacy concerns. Therefore, the models were not validated in a 
normal external cohort. Second, our cohorts, both control and diseased, were concentrated in the age range of 40–70 years, leading to 
the underrepresentation of those outside the age range. However, the majority of the participants in the normal cohort also fell within 
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this age range (88.823 %). Third, the accuracy of the brain vessel feature extraction pipeline relies entirely on the quality of brain 
vessel mask segmentation. Consequently, if the brain vessel mask is not segmented appropriately, the subsequent vessel features may 
be inadequate. Fourth, there was a mismatch in age distributions between the healthy and diseased cohorts; thus, prediction in the out- 
of-range older patients in the diseased cohort could be biased. Therefore, the results in older patients should be interpreted with 
caution. Future studies should match the age distribution between the training and test cohorts to allow for an unbiased prediction. 
Fifth, TOF MRI is susceptible to various artifacts, including bias field inhomogeneity and ringing artifacts. The extended acquisition 
time required for TOF imaging makes it particularly vulnerable to motion artifacts. Signal dropouts can also occur in regions with 
turbulent blood flow, potentially affecting the results. These factors can lead to either over- or under-estimation of the vessel mask, 
ultimately affecting the extracted vessel features. Finally, the structural information of brain vessels can only reflect certain aspects of 
brain aging, and the physiological properties related to vascular aging still need to be validated. Unfortunately, physiological infor-
mation on the brain vessels was not available in the present study. Despite these limitations, our method has the potential to be applied 
in clinics to aid diagnosis and risk assessment. However, careful validation of the proposed methods needs to be performed before they 
can be applied in the clinic. 

In this study, we predicted age using the morphological features of major vessels at the segmental level and further demonstrated 
their clinical relevance. Our prediction models showed significant associations with known risk factors for cerebrovascular disease. 
Cerebrovascular age based on vessel features has clinical relevance as it reflects the degree of abnormality from healthy aging. This 
makes it a potential individualized marker for early detection of various cerebrovascular diseases. Future studies should assess 
improved cerebrovascular aging by combining structural and functional brain imaging. Combining structural insights from cerebro-
vascular morphology with perfusion MRI analysis would provide a comprehensive physiological understanding of brain vessel im-
aging. Use of contrast-enhanced MRA (CE-MRA) instead of regular non-contrast-enhanced MRA, may further improve vessel 
segmentation, and hence, the prediction results. However, in future work, we need to develop additional image preprocessing for CE- 
MRA to use the proposed pipeline. The plaque information can also be used to provide health information. However, it is difficult to 
extract plaque information because TOF images do not accurately reflect vessel wall information. We plan to incorporate plaque 
information into future studies. 
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