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Rational design of non-resistant 
targeted cancer therapies
Francisco Martínez-Jiménez1,2,3, John P. Overington4, Bissan Al-Lazikani5 &  
Marc A. Marti-Renom1,2,3,6

Drug resistance is one of the major problems in targeted cancer therapy. A major cause of resistance 
is changes in the amino acids that form the drug-target binding site. Despite of the numerous efforts 
made to individually understand and overcome these mutations, there is a lack of comprehensive 
analysis of the mutational landscape that can prospectively estimate drug-resistance mutations. Here 
we describe and computationally validate a framework that combines the cancer-specific likelihood 
with the resistance impact to enable the detection of single point mutations with the highest chance 
to be responsible of resistance to a particular targeted cancer therapy. Moreover, for these treatment-
threatening mutations, the model proposes alternative therapies overcoming the resistance. We 
exemplified the applicability of the model using EGFR-gefitinib treatment for Lung Adenocarcinoma 
(LUAD) and Lung Squamous Cell Cancer (LSCC) and the ERK2-VTX11e treatment for melanoma and 
colorectal cancer. Our model correctly identified the phenotype known resistance mutations, including 
the classic EGFR-T790M and the ERK2-P58L/S/T mutations. Moreover, the model predicted new 
previously undescribed mutations as potentially responsible of drug resistance. Finally, we provided a 
map of the predicted sensitivity of alternative ERK2 and EGFR inhibitors, with a particular highlight of 
two molecules with a low predicted resistance impact.

Non-selective cytotoxic agents have traditionally dominated cancer treatment. However, the strong side effects 
and the limited effectiveness associated with drug resistance have led to the search of alternative treatments1. In 
the last decade, rationally designed ‘targeted’ therapies have been developed as less damaging and more accurate 
alternative to treat cancer2. In fact, targeted therapies have produced substantial clinical responses in the treat-
ment of chronic myeloid leukemia (CML)3, non-small cell lung cancer (NSCLC)4 and melanoma5. Unfortunately, 
after initial good response to targeted therapies, tumors develop resistance to these treatments causing disease 
relapse6,7. Many of these targeted therapies interfere with cell-signalling pathways, and in particular target mem-
bers of the protein kinase gene family8.

There are several mechanisms conferring drug resistance to targeted therapies9. Mechanisms such as activa-
tion of survival signaling pathways, or the inactivation of downstream death-signaling pathways10,11, increasing 
drug efflux or alterations in drug metabolism12,13. Epigenetic changes and their influence of in the tumor microen-
vironment have also been proposed to play a role in chemoresistance13,14. Moreover, secondary mutations of drug 
targets are frequently reported as a mechanism of drug resistance. In NSCLCs, patients initially responding to 
first generation EGFR inhibitors such as gefitinib and erlotinib, typically acquire resistance within 1 year. In 50% 
of such cases, a secondary T790M gatekeeper mutation has been identified15,16. Recently, a third generation EGFR 
inhibitors that specifically bind to T790M-EGFR, such as rociletinib17 or osimertinib18 have been designed to 
overcome resistance in EGFR-T790M positive patients19.

Unfortunately, EGFR-T790M is a single example, we still are far from completely overcoming the clinical 
challenge of resistance due to mutations in oncogenic kinases. Many studies have been carried out to both sys-
tematically analyze resistance to kinase inhibitors20 and to propose alternatives to standard kinase inhibitor treat-
ments21. Nevertheless, these studies do not cover the whole spectrum of possible mutations of the target, being 
usually limited to a small, and clinically reported, number of kinase mutations. Moreover, the nature and in situ 
evolution of tumors is complex and heterogeneous22. Estimates of the number of coding mutations in the entire 
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cell population of a tumor are of the order of thousands or even millions of mutations depending of the tumor 
type and size23. Standard NGS sequencing of solid biopsies only enables the detection of mutations present in 
> 5% of tumor cells24. The low sensitivity of standard NGS technologies alongside the heterogeneous nature of 
solid tumors, may lead to a significant loss of low-frequency mutations present in small cell number populations. 
Remarkably, low-frequency mutations can confer resistance to targeted therapies and therefore, become clonal 
drivers once the cancer treatment begins7,25,26. There is a clear need for a method that can prospectively predict 
the likelihood of specific drug-resistance mutants arising to enable the pre-emptive screening for these mutants 
in patients and the design of drugs that can overcome them.

The invasive nature and the technical limitations associated with sequencing methods of solid biopsies high-
light the importance of computational models in cancer evolution and drug resistance. The advent of the massive 
cancer genomic data has prompted the development of several mathematical and computational models27. Some 
of these models focus on characterizing tumor evolutionary processes28–30 while others, study tumor response 
to single targeted treatment31–34 or combinational therapy35. However, none of these models, which are usually 
applied to known drug-resistant mutations, specifically predict which are the causative mutations leading to drug 
resistance.

Here we present a general computational framework for the de-novo prediction of coding mutations with the 
potential to confer specific resistance to small molecule targeted therapies. Additionally, the model provides a 
list of alternative compounds/drugs ranked by their predicted sensitivity to these resistance-like mutations. The 
framework connects the tumor type-specific mutational landscape of tumors with the drug-resistance phenotype 
generated by spontaneous mutations in drug targets. We exemplified the applicability of the framework in two 
protein kinases, EGFR and ERK2 (also known as MAPK1). EGFR is well-studied model in resistance to targeted 
cancer therapy, and consequently, is a good system to validate the full scope of the framework. We computation-
ally predict the likelihood and the resistance impact of specific EGFR residues involved in the binding of gefitinib 
in LUAD and LSCC. Additionally, using the mutational signatures previously defined36, we also analyzed the 
possible aetiology (or aetiologies) associated to each of the most critical and possible to occur EGFR mutations. 
Our model correctly predicts the phenotype of the EGFR-T790M mutation, with the added value of the identi-
fication of new previously undescribed mutations that may confer resistance to gefitinib treatment. ERK2, on 
the other hand, is a promising target in the treatment of melanoma37,38 and colorectal cancer39. We predict the 
VTX11e-resistance potential of 424 potential ERK2 mutations. These predictions include the correct identifica-
tion of eight mutations alongside new unseen ERK2 mutations predicted to confer resistance to VTX11 treat-
ment in melanoma and colorectal cancer. Moreover, the structural nature of the predictions helped to elucidate 
the specific mechanism of resistance of each mutation. Finally, for both EGFR and ERK2 treatment-threatening 
mutations, the model proposed alternative inhibitors that might overcome resistance.

Methods
The likelihood model. We developed a model to estimate cancer-associated likelihoods of spontaneous 
mutation in arbitrary drug targets (Fig. 1). First, using published mutational signatures36,40, we annotated the con-
tribution of each of the 30 signatures to the 36 different classes of cancer present in the study. Second, for each sig-
nature, we extracted the probabilities of the 96 possible pyrimidine-based mutations (C >  A, C >  T, C >  G, T >  A, 
T >  C, T >  G) in their 5′  and 3′  contiguous bases context from the COSMIC database (from http://cancer.sanger.
ac.uk/cosmic/signatures). Next, for each signature without described strand-bias we extended the probabilities 
to the purine-based mutations (G >  A, G >  C, G >  T, A >  C, A >  T, A >  G). Signatures with strong mutational 
strand-bias towards a specific type of base pair were manually updated depending of their specific type of bias. 
For instance, signature 7 has a strong transcriptional strand-bias indicating that mutations occurs a pyrimidines 
base pairs, therefore the mutational probabilities of purines in signature 7 are set to 0. Signatures with strong 
mutational strand-bias are signatures 4, 7, 11, 22, 24 and 29. This approach resulted in a total of 192 mutational 
probabilities for each signature.

We compute the likelihood (Lm,c) of a specific mutation (m) in a particular type of cancer (c) as the sum the 
probabilities of that mutation in all the signatures involved in that cancer type, weighted by the specific contri-
bution of that signature to the cancer class. Since, several nucleotide mutations can lead to the same amino acid 
change (i.e. are synonymous), all these probabilities are eventually added to measure the amino acid mutation 
likelihood using the Eq. 1:
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where M is all possible nucleotide changes associated to an amino acid mutation m, S are the signatures associated 
to the studied cancer class c, Wc is the contribution of signature c to the studied cancer and Pm,c is the probability 
of a given mutation m in the signature c.

EGFR and ERK2 mutants and structural model generation. We applied the likelihood model to pre-
dict the probability of mutation of all the amino acids involved in the EGFR binding site to gefitinib (PDB code: 
4WKQ), and VTX11e binding to ERK2 (PDB code: 4QTE). We defined a drug binding-site in a protein structure 
as all the amino acids with at least one atom within 9.5 Å to the co-crystalized ligand.

Next, models of all the possible mutations of the drugs binding-sites were generated using the mutate_model 
function of the MODELLER software with default parameters41,42. Due to the fact that the produced 3D model is 
generated for single amino acid mutation, it is highly likely to be accurate43. Models for truncating mutations (i.e., 
introducing a stop codon) were not generated. The final number of three-dimensional (3D) models was 367 and 
424 for EGFR and ERK2, respectively.

http://cancer.sanger.ac.uk/cosmic/signatures
http://cancer.sanger.ac.uk/cosmic/signatures
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Enrichment analysis of the predicted nucleotide mutations likelihood. To measure whether a 
nucleotide mutation A >  B is enriched among the most likely target mutations in a particular cancer class, we 
calculated the odds ratio of the specific nucleotide mutation A >  B for the top 50 likely mutants. More specifically, 
the odds ratio of a particular nucleotide mutation A >  B at the ith position in the distribution is given by Eq. 2:
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where (A >  B)i denotes the number of A >  B mutations between the 0 and ith position. (A >  B)i+ represents the 
number of A >  B mutations between i +  1 and the Nth position, being N the total number of amino acid mutations.

Drug-response predictor. We developed two Random Forest Classifiers (RFC). The first classifier, called 
aa-RFC (amino acid based RFC) predicts the phenotypic effect of an amino acid mutation to the binding affinity 
between a drug and the target protein. The second classifier, called lig-RFC (ligand based RFC), aims to pre-
dict the sensitivity of a group of compounds to a particular mutation in their protein target. Both classifiers 
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Figure 1. Schematic representation of the developed framework. (A) For a particular targeted cancer 
therapy, the most likely mutations of the protein target are defined using the mutational signatures associated 
with that cancer class36. (B) 3D models of the mutations in the target structure are generated using the 
MODELLER package. (C) Structural and sequential information of the 3D-mutant models is used by a Random 
Forest Classifier (RFC) to predict the resistance potential of these mutations. (D) For the mutations classified as 
resistance-like, the model proposes alternative non-resistant compounds/drugs that may skip resistance.
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use structural and sequence information of the drug-protein interaction to perform the predictions (see below 
for detailed information about the specific features used for each classifier). The lig-RFC emphasizes in the 
ligand-target interaction while omitting some information relative to the amino acid characteristics, which makes 
it computationally faster to build. Both classifiers were built using the WEKA package44 with the following param-
eters: numTrees =  1,000; numFeatures =  20; maxDepth =  FALSE. Evaluation of the classifiers performance was 
done by 10-fold cross validation (CV). Additionally, the relative importance of each variable in the classifiers 
was calculated by the randomForest package of R45. Next, we describe all necessary steps to generate and test the 
classifiers.

Dataset generation. The aa-RFC and lig-RFC models were trained using the Platinum database46. Briefly, 
this database contains information about experimentally measured changes in drug binding affinity upon muta-
tions. Moreover, most the entries in the database contain crystal structures of the drug-protein complexes. When 
no crystal structure was available for either the wild-type or the mutated structure, a 3D model was generated 
using MODELLER with default parameters. The database originally included 1,008 instances. Since the aa-RFC 
classifier has been developed to individually assess the resistance potential of a single mutation, we removed 208 
instances containing double (155), triple (30) or more mutants. The final dataset contained 770 instances, includ-
ing 377 PDB entries and 584 3D models. Next, the database was split into four different classes corresponding to 
four different phenotypes: (i) “strong resistance” (SRES, 293 instances) with a 5-fold or greater drop in binding 
affinity, which disrupt the binding of the compound with the target protein; (ii) “resistance” (RES, 227 instances) 
with between a 5- and 1.2-fold drop in affinity; (iii) “neutral” (NEU, 70 instances) with between a 1.2-fold drop 
and 1.2-fold increase in affinity, which indicates not significant alteration of the binding affinity of the compound; 
and (iv) “increased sensitivity” (ISEN, 180 instances) with a 1.2-fold or greater increase in the affinity of the 
compound. Finally, the unbalanced nature of the dataset could have introduced bias in the classifier predictions 
towards SRES and RES classes because of the higher number of instances. Therefore, we randomly removed 
instances of the SRES and RES classes to reduce the number of data points used in model training to 180. The 
final dataset was therefore composed by 180 instances of the SRES, RES and ISEN classes and 70 of the NEU class.

Sequence and structure features calculated from the 3D models/structures. For each instance 
in the dataset we calculated a set of features to describe the structural and sequential changes introduced by the 
mutation. The complete list of features alongside their description and information about their inclusion in the 
two classifiers are next detailed:

1. Molecular surface area of the drug binding-site (aa-RFC, lig-RFC). Total molecular surface area of wild 
type (WT) and mutated (MT) drug binding-site. Additionally, the absolute numerical difference between 
the two values was included. The get_area function of PyMol 1.8 Version47 was used for their calculation.

2. Solvent accessibility of the WT and MT amino acid (aa-RFC, lig-RFC). Additionally, the absolute nu-
merical difference between the two values was included. The get_area function of PyMol 1.8 Version47 was 
used for their calculation.

3. Relative solvent accessibility (RSA) of the WT/MT residue (aa-RFC, lig-RFC). Ratio between the solvent 
accessibility area and the general residue surface area calculated using DSSP with default parameters48. 
Additionally, the absolute numerical difference between the two values was included

4. Half sphere exposure of the WT/MT amino acid (aa-RFC)49. The HSExposure class from the Biopython  
library50 was used for its calculation. Additionally, the absolute numerical difference between the two 
values was included.

5. Type of amino-acid change (aa-RFC, lig-RFC). A vector of 20 positions representing the 20 amino acids. 
In the vector, a − 1 represents the wild type amino acid, a 1 represents the new residue introduced by the 
mutation, and 0 represents no change.

6. Hydrogen bonding (aa-RFC, lig-RFC). We calculated whether there is a hydrogen bond between the  
WT/MT residue and the drug bound molecule. Information about the hydrogen bond type and distance 
were also included. The upper bound to assess the presence of a hydrogen bond was 3.2 Å.

7. Structural environment of the amino acid (aa-RFC, lig-RFC). We represented the structural environ-
ment with concentric spheres surrounding the mutated amino acid. Each of the spheres has different 
radius ranging from 0 Å to 6 Å in steps of 1 Å. The spheres were represented using 6 vectors of 20 positions 
indicating the presence or absence of an amino acid. A number one in a vector implied that the amino acid 
representing that position was within that radius.

8. Sequence environment (aa-RFC, lig-RFC). We defined the amino acid sequence environment as the 
composition of all 10 contiguous amino acids in sequence (5 amino acids preceding and 5 amino acids 
following the mutated amino acid). Each position was represented by a vector of 20 amino acids where 1 
indicated presence and 0 absence of the given amino acid in the sequence environment.

9. Secondary structure of the amino acid (aa-RFC, lig-RFC). We calculated the secondary structure of the 
WT/MT amino acid using DSSP with default parameters48.

10. Protein stability change (aa-RFC, lig-RFC). We calculated the change in the stability of the protein caused 
by the mutation using I-Mutant 2.051. We included two variables, the first one describes the numerical 
change in stability measured in kcal/mol and the second was a categorical variable representing the sign of 
stability change: UNSTABLE for negative values, STABLE for positive values and UNKNWON for muta-
tions where I-Mutant 2.0 could not compute a score (that is, in 19% of cases).

11. Residue conservation (aa-RFC, lig-RFC). To calculate the conservation score we first performed a BLAST 
search52 using as query the target sequence. The resulting multiple alignment was used as input to the Sub-
sMat function from Biopython library50 to obtain a residue conservation score based on the BLOSUM62 
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matrix53.
12. Structural alignment of the MT model to the WT structure (aa-RFC, lig-RFC). Root Mean Squared De-

viation (RMSD) of the structural alignment between the wild-type and the mutated protein structures. Two 
different RMSD were calculated, the first resulted from the original structural alignment and the second 
from the refined one. The Super function from PyMol 1.8 Version47 was used to perform both structural 
alignments.

13. Distance to the ligand (aa-RFC, lig-RFC). We measured the distances between the alpha carbon of the 
WT/MT amino acid to all the atoms of the ligand. Next, we calculate the minimum, maximum and average 
distances to the ligand. For all of these distances the absolute numerical difference between the WT and 
MT value was included. PyMol 1.8 Version47 was used for their calculation.

14. Charge of the WT and MT amino acids (aa-RFC, lig-RFC). A vector of 20 positions was generated with 
− 1 for negatively charged amino acids (ASP, GLU), a +  1 for positively charged amino acids (LYS, ARG) 
and 0 for the remainders.

15. Change in the hydrophobicity (aa-RFC, lig-RFC). We calculate the difference between WT and the MT 
amino acids using a pre-calculated hydrophobicity scale54.

16. Drug affinity of the ligand with the WT protein (aa-RFC, lig-RFC). We retrieved the binding affini-
ty using BindingDB55. Depending of the availability on the BindingDB record, the binding affinity was 
measured by the inhibitory constant (Ki), the dissociation constant (Kd) or the half maximal inhibitory 
concentration (IC50) measures.

17. Salt bridge between WT/MT amino acid with other residues (aa-RFC). Number of salt bridges between 
the GLU and ASP amino acids of the WT/MT protein surface were calculated. Additionally, the absolute 
numerical difference between the two values was included. An upper bound cu-off of 4.0 Å distance be-
tween the anionic group of GLU/ASP and the cationic group of LYS/ARG was used.

18. Salt bridge between WT/MT amino acid with the ligand (aa-RFC, lig-RFC). We used the PLIP56 soft-
ware with default parameters (v1.2.0) to calculate salt bridges between ASP or GLU residues of the protein 
and the query drug. Information about the distance measured in Å, type of acceptor and donor groups 
(Phosphate, Carboxylate, Guanidine, Tertamine or Quartamine) was also included in the lig-RFC.

19. Disulphide bonds (aa-RFC). If the mutated residue is a cysteine, we identified putative intra-cysteine 
disulphide bonds. The expected SG–SG distance for disulfide bond is around 2 Å but more generous defini-
tion accounts for inaccuracies in experimental data. Therefore we used disulphide bond distances between 
1.8 Å and 2.2 Å.

20. Halogen bonds (lig-RFC). The presence of halogen bonds between the WT/MT amino acid and the li-
gand. It also included information about the type of donor and acceptor atoms. This feature was calculated 
using PLIP56 with default parameters (v1.2.0). Features 21 to 24 were also obtained using PILP.

21. π-stacking interactions (lig-RFC). The presence of π -stacking interactions between the ligand and the 
WT/MT residue including information about the distance and group of interactions.

22. π-cation interactions (lig-RFC). The presence of π -cation interactions between the ligand and the WT/
MT residue including information about the distance and atoms group involved in the interactions.

23. Water bridges (lig-RFC). The presence of water bridges between the WT/MT amino acid and crystallized 
waters molecules including the type of donor and acceptor atoms.

24. Hydrophobic interactions (lig-RFC). The presence of hydrophobic interactions between the ligand and 
the WT/MT amino acid including information about the distance of the interaction.

In summary, a total of 58 features were used for the aa-RFC and a total of 89 were used for the lig-RFC. The 
complete list of features and values for the training set is available as supplementary file.

Predictions and resistance score. We applied the aa-RFC to individually predict the phenotype of each 
of the EGFR and ERK2 mutations defined by the likelihood model. For each compound-protein-mutant, the 
aa-RFC assigns a confidence score for each the four possible phenotypes (SRES, RES, NEU and ISEN classes). The 
class-confidence scores addition is equal to 1. The highest class-confidence score corresponds to the predicted 
class. Next, we defined a global Resistance Score (RS) as the sum of the SRES and RES scores minus the ISEN and 
NEU weighted by the precision of each class in the aa-RFC training. The normalized RS measure aims at assessing 
the resistance impact of a mutation in a target for the studied drug. The RS score is defined as (Eq. 3):

∑ ∑= ∗ − ∗
= =

RS S P S P
(3)R RES SRES

R R
S NEU ISEN

S S
, ,

where R are the two classes of resistance (i.e., SRES and RES) and S are the two classes of non-resistance (i.e., NEU 
and ISEN), Sx is the aa-RFC confidence score for the class x and Px is the global aa-RFC accuracy for the class x 
after a 10-fold cross validation. Finally, a normalized RS (NRS) was calculated by scaling all RS values within an 
experiment between 1.0 (that is, the highest RS) and 0.0 (that is, the lowest RS).

Creating a dataset of insensitive molecules. To identify compounds that may result insensitive to a par-
ticular mutation, and thus be alternative to a given treatment, we first manually extracted all compounds reported 
the Food and Drug Administration (FDA, http://www.fda.gov) and the National Cancer Institute (NCI; http://
www.cancer.gov) web sites that modulate the studied protein target. Second, we collected all co-crystallized mol-
ecules with the protein target. Next, molecules with no experimentally measured binding affinity in BindingDB55 
were discarded. Due to the limited number of small molecules co-crystallized with ERK2, we extended the search 
to small-molecule ERK2 inhibitors with IC50 better than (or equal to) 100 nM from the ChEMBL database57. 

http://www.fda.gov
http://www.cancer.gov
http://www.cancer.gov
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Finally, we manually included other compounds of interest into the final dataset, which resulted in a total of 19 
and 75 possible non-resistant molecules to EGFR and ERK2 respectively.

Predicting molecules likely to be insensitive to a binding site mutation in the protein target.  
Once the dataset was built, we used it to identify molecules whose affinity may not decrease by a mutation in the 
protein target. Depending of the source of the molecule, the methodology to assess the sensitivity was different: 
(i) for the two first subsets (i.e., those co-crystallized with the target) we defined the potential of the mutation to 
confer resistance using the crystal structure of the drug bound to the target; (ii) for those molecules extracted 
from ChEMBL and those manually included, we selected the top-ranked pose by Autodock Vina58 by performing 
docking between the compounds and the target binding pocket. In both cases, each compound-target-mutation 
prediction was further scored by the normalized RS.

Predicting changes in affinity using AutoDock Vina. Finally, to assess the base-line accuracy when 
no additional information is given, a new classifier was trained using only the calculated binding affinity change 
by AutoDock Vina. For each wild-type and mutated complex in the aa-RFC training set, we first calculated the 
predicted affinity of the top ranked pose by AutoDock Vina. Next, the two affinities were passed to a RFC classi-
fier that predicted the phenotypic class of the instance. The classifier parameters and the subsequent validation 
were performed using the same parameters than in the aa-RFC training. For each instance in the training set the 
fold change in the predicted affinity was calculated as the ratio between the wild type and the mutated predicted 
affinities.

Results
Prediction of the drug binding affinity change upon single mutation. We tested the performance 
of the aa-RFC classifier using the Platinum database46. The average AUC of the classifier (0.77) together with a 
Kappa statistic of 0.40 59 indicated an overall high accuracy of the classifier, especially considering that this is a 
four-class classifier (Fig. 2A). The SRES class was the best predicted with a 0.81 AUC (0.63 precision and 0.62 
recall). The second best predicted class was the ISEN class with a 0.79 AUC (0.59 precision and 0.55 recall). 
Despite the fact that these two classes performed similarly, the lower recall of the IS class indicated that this 
class had a higher number of false negatives (FN; i.e., instances of the ISEN class misassigned to another class). 
This suggested that the classifier might have some difficulties in correctly finding the ISEN true positives (TP; 
i.e., instances of the ISEN class correctly predicted). More specifically, of the total 180 ISEN instances, 43 were 
miss-classified as RES, 28 as SRES and 8 as NEU. Overall, the aa-RFC classified tended to over-assign instances 
to the RES class, which reflected to its performance metrics (0.74 AUC, 0.50 precision and 0.62 recall). Despite of 
this, it is notable that the aa-RFC resulted in a 0.50 precision for the RES class, which is twice the random value in 
a four-class classifier. Finally, the NEU class was the worst performing class (0.70 AUC, 0.48 precision, and 0.24 
of recall). The low recall value (only one out of four NEU instances were assigned to the class) could be explained 
by the under-representation of the NEU instances in the training set (only 80 available instances, versus 180 
instances of the other classes).

To our knowledge this is the first classifier that predicts the resistance-associated phenotype of a mutation for 
a drug or drug-like compound binding to a protein. However, there are multiple methods that predict the binding 
affinity of a drug-protein complex. These methods can be also applied to predict how a mutation can change the 
binding affinity of a particular binding compound. One of the most extensively used virtual screening methods 
is AutoDock Vina (ADV)58. Overall, the performance of the ADT classifier was worse, with an average AUC of 
0.64 (0.77 of the A-RFC) and a Kappa statistic of 0.19 (Fig. 2A). More specifically, the four phenotypic classes 
had considerably lower AUC values for the ADV predictions. The SRES class resulted in the greatest AUC drop 
compared to aa-RFC (0.81 to 0.65), followed by the NEU class (0.69 to 0.57), the ISEN class (0.79 to 0.68) and by 
the RES class (0.71 to 0.63). The individual values in change of affinity for each of the training cases showed that 
only 13 (1.7%) instances had fold changes greater than 1.2, which suggests that virtual docking methods may have 
difficulties detecting large changes in affinity upon single mutation.

To assess the contribution of each of the 58 input variables to the aa-RFC classified, we sorted them by their 
mean decrease Gini60, which describes how much each variable contributes to the homogeneity of the nodes and 
leaves in the resulting random forest. The most informative features were those associated with the change in the 
molecular surface area and solvent accessibility of the mutated amino acid (ranking positions 1st, 3rd, 4th, 8th–10th, 
Fig. 2B). Change in the protein stability measured by I-Mutant 2.051 was ranked in the second position. Multiple 
measures of the distance from the amino acid to the ligand were ranked from the 5th to the 7th, positions, while 
other features such as the affinity of the wild type complex (20th) or the type of secondary structure of the amino 
acid (21st and 22nd) occupied the following positions. Features based in biochemical properties of the mutated 
amino acid were clearly overrepresented within the top 25 set (18 out of 25). Only the distance to the ligand and 
the wild type experimentally measured affinity were included within the top 25 features. Overall, these results 
showed that the classifier weighted more features based on biochemical properties of the amino acid while gave 
less relevance to those extracted from specific interaction with the ligand.

EGFR predicted mutational landscape in LUAD and LSCC cancer types. We studied the mutational 
probability landscape of EGFR in two different non- NSCLC cancer types: LUAD and LSCC (Fig. 3A and B). 
The analysis of the mutational landscape indicated that each cancer type had their own underlying molecular 
mechanisms generating nucleotide changes. Only 20 mutations (that is, ~5% of all binding-site mutations) were 
ranked in the same position in both cancer types and none of them had the same predicted likelihood. The main 
discrepancy may be associated to the contribution of signatures 4 and 5 (Supplementary Material). On the one 
hand, signature 4 is mainly characterized by C >  A transversions caused by tobacco smoking61. LUAD has a 
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slightly higher contribution from signature 4, resulting in 1.6 times greater average likelihood of C >  A mutations 
in LUAD (0.0226 ±  0.0091 average estimated probability of mutation) than LSCC (0.0143 ±  0.0053). On the other 
hand, signature 5 has an unknown aetiology and it is associated with T >  C substitutions at ApTpN context. Since 
the signature 5 contribution to LSCC is higher than to LUAD, it resulted in a 2.7 higher average likelihood of the 
ApTpN mutations in LSCC (0.0057 ±  0.0025) compared to LUAD (0.0037 ±  0.0021).

Analysis of the type of nucleotide change of the top likely mutations revealed an enrichment of C >  A muta-
tions in both cancer classes. The highest odds ratio of C >  A mutations corresponded to position 21, with an 
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Figure 2. RFC accuracy. (A) Receiver operating characteristic (ROC) curves of the four phenotypic classes 
(that is, strong resistance “SRES”, resistance “RES”, neutral “NEU” and increased sensitivity “ISEN”) after 10-
fold cross validation. Solid lines correspond to the results of our RFC classifier; dashed lines correspond to the 
results of a non-trained approach based on the AutoDock Vina results. (B) Relative importance of the top 25 
most informative variables used by the aa-RFC. Features are ranked by the mean decreased Gini score based on 
the Gini impurity index60. The rest of aa-RFC features are not shown for clarity.
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Figure 3. (A) Predicted cancer associated-likelihood of mutations in the EGFR binding site for gefitinib for 
LUAD. Bar high indicates the likelihood of an amino acid mutation and its color the type of nucleotide change 
that leads to the amino acid mutation. When several nucleotide mutations lead to the same amino acid change, 
the probabilities were stacked. Inner sets show the top 10 likely mutations. (B) Predicted cancer associated-
likelihood of mutations in the EGFR binding site for gefitinib for LSCC. Representation as in panel A.  
(C) Predicted likelihood and normalized resistance score (NRS) for EGFR mutations in the binding site 
of gefitinib for the LUAD cancer type. Each mutation is represented by a dot, which color indicates the 
predicted class by the aa-RFC (SRES in dark red, RES in orange, NEU in blue and ISEN in green). The red 
area encompasses mutations with predicted likelihood higher than the median value of all mutations and NRS 
higher than 0.5. The green area encompasses mutations predicted likelihood lower than the median value of all 
mutations and NRS lower than 0.5. The top ten resistance mutations, along with other mutations mentioned 
in the text are listed ordered by their NRS. (D) LUAD mutation likelihood and normalized resistance score 
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odds ratio value of 16.2 and position 29th with an odds ratio value of 10.0 in LUAD and LSCC, respectively. 
Additionally, seven (P741H, P794H, S720Y, P741T, L798I, L799M and L777M) and four (S720Y, P741T, P741H 
and P794H) mutations within the top 10 were C >  A mutations in LUAD and LSCC, respectively (inner sets 
in Fig. 3A and B). An exception to this trend was the top likely mutation, that is E762K, caused by T[G >  A]A 
(T[C >  T]A in pyrimidine base pair) mutation. This mutation was associated to signature 2, which had a very 
high frequency of T[C >  T]A (41%) and attributed to activity of the AID/APOBEC family62. In fact, EGFR-E762K 
mutation has been observed in other cancer types associated with signature 263. The remaining of the top-10 
mutations were associated to either C >  T transitions (1 mutation in LUAD and 2 mutations in LSCC) or other 
nucleotide mutations (3 mutations in LSCC and 1 mutation in LUAD).

Next, EGFR mutations frequently observed in LUAD and LSCC patients were further analyzed. The T790M 
mutation, known to confer resistance to first-line targeted therapies in LUAD and LSCC, was ranked in posi-
tions 49th and 50th with a predicted likelihood of 0.015 and 0.011 in LUAD and LSCC, respectively. T790M is 
caused by a A[C >  T]G nucleotide change, strongly associated with signature 1, which in turn correlate with age 
of diagnosis40. G719S is another EGFR mutation frequently observed in LUAD and LSCC patients. This mutation, 
ranked 79th in LUAD with a predicted likelihood of 0.010 and 118th with 0.007 likelihood in LSCC, is the result 
of a G[G >  A]G nucleotide mutation, which has the highest probabilities in signatures 1, 6 and 16 (although the 
latest is not associated to LUAD). Therefore, we hypothesize that the emergence of this mutation can be associ-
ated to ageing (signature 1) and defective DNA mismatch repair (signature 6). Lack of association with signature 
4 suggests that it is not particularly linked to tobacco smoking. Another interesting mutation is the recurrently 
reported R776H mutation, which activates EGFR in the absence of the activating EGF ligand R776H64,65. This 
mutation was ranked 64th and 65th, with a predicted likelihood of 0.012 and 0.010 in LUAD and LSCC, respec-
tively. R776H is caused by a C[G >  A]C nucleotide mutation, strongly associated with signature 11. However, 
since this signature is not present in LUAD nor LSCC, the predicted probability value is the result of the sum of 
mild probabilities of C[G >  A]C in signatures 1, 2, 4 and 5. Consequently, this mutation is not particularly asso-
ciated with any specific mechanism of mutation. Other clinically reported mutations such as G719A or G857V 
appeared beyond the top 100 mutations and were not particularly associated with any signature significantly 
contributing to either LUAD or LSCC.

Prediction of likely resistant EGFR mutations in gefitinib binding-site. We applied the aa-RFC 
to predict the resistance score of the amino acid mutations for the binding of gefitinib (Fig. 3C). There was not 
observed correlation between the two predicted scores (Pearson correlation coefficient =  − 0.05). The red area 
gathered a total amount of 39 likely-and-resistant mutations (i.e., mutations that are very likely to arise and pre-
dicted to confer resistance). Examples of these mutations included M793L, G719S, H835Y, G796V, D855N, 
G796V or C775Y, among others. This representation allowed for the identification of those mutations with high 
likelihood and high resistance potential. The analysis the number of mutations and mean normalized resistance 
score (< NRS> ) values associated to each phenotypic class revealed similar predictive trends than the observed 
in the original training set. A total amount of 171 mutations (46%) were predicted to belong to the RES class  
(< NRS>  0.52 ±  0.13). The SRES class was the second in number of predicted mutations. It had 124 muta-
tions (35%) with an < NRS>  of 0.57 ±  0.13. The ISEN class had 72 instances (19%), with an < NRS>  score of 
0.28 ±  0.09. None of the mutations were predicted to belong to the NEU class.

Mapping of likelihood and resistance impact into the 3D structure of EGFR. Mapping of the 
amino acid accumulated resistance score and the resistance impact into the 3D structure of the EGFR kinase 
domain revealed the structural localization of the major players in gefitinib resistance (Fig. 3D). Residues with 
warmer colours represented amino acids whose mutation is more prone to decrease the gefitinib binding affinity 
(i.e., higher resistance score), while the thickness of the ribbons represented the accumulated likelihood of that 
particular amino acid. The D855, localized in the DFG motif, was the amino acid with highest accumulated 
resistance score. More specifically, the D855A mutation was ranked as the top gefitinib-resistant mutation (1.0 
NRS). D855 has been previously reported to play a major role in gefitinib binding66, and consequently, its muta-
tion will likely decrease binding affinity to gefitinib. Interestingly, another D855 mutant (D855N) was ranked also 
within the likely-and-resistant mutations in LUAD (Fig. 3C). Other gefitinib-binding key residues such as L792 or 
M793 (both in the hinge region), were also among the top predicted mutations conferring resistance (e.g., M793, 
which has an important main chain hydrogen bond to gefitinib) and its mutation can lead to a significant drop 
in gefitinib binding affinity67. Some M793 mutants were also included in the LUAD likely-and-resistant group, 

(NRS) in the 3D structure of EGFR-gefitinib complex (PDB: 4WKQ). The thickness of the ribbons indicates 
the accumulated mutational likelihood for that particular amino acid. The color represents the accumulated 
NRS score. Ligands are displayed as sticks. Mutations of amino acids beyond the binding site of the compounds 
were not considered. (E) Predicted sensitivity map for EGFR mutations in the binding site of gefitinib. Columns 
represents mutations, rows represent the screened compounds. The colour of the cells represents the predicted 
NRS by the lig-RFC. Name of the compounds are either the generic names for FDA approved drugs or drugs 
in clinical trials, the ChEMBL accession codes or the PDB accession code for those compounds lacking of an 
entry in ChEMBL. Compounds mentioned in the text are highlighted with a yellow background. (F) Structural 
mapping of the predicted resistance mutations in the wild type EGFR interaction with gefitinib (cyan) and 
CHEMBL1090356 (brown). PDB entries: 4WKQ and 3LZB for gefitinib and CHEMBL1090356 respectively. 
Side chains of the most important contributors to the binding are shown as sticks. The P-Loop is coloured in 
red, the hinge region in purple and A-Loop in blue.
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such as the cases of M793L or M793I (Fig. 3C). The L792P mutation in turn, will introduce the proline side 
chain into the hinge region of binding site. The distinctive cyclic structure of proline alongside its exceptional 
conformational rigidity can cause a steric clash between the proline side chain and gefitinib, with consequences 
for its binding. G719, localized in the phosphate-binding loop (P-loop), had several mutations among the top 
predicted mutants (G719V, 0.86 NRS SRES class; G719S, 0.83 NRS RES class) as well as mutations with lower 
predicted resistance potential (G719R 0.68 NRS, G719C 0.65, G719D 0.64 and G719A 0.63 all of them RES 
class) (Fig. 3C, inner panel). Specifically, to the G719S mutation, it has been previously shown that EGFR-G719S 
mutant, in fact, increases gefitinib binding affinity68. Therefore, it appears that the classification of the G719S as 
RES class corresponds to a false positive prediction. The factors leading to this miss-prediction could include a 
wrong structural modeling of the mutation, which may be unable to completely capture the important rearrange-
ment of the P-loop, and the fact that experimentally measured cases of glycine mutations are enriched in loss of 
affinity (in our training set: 3 ISEN, 2 NEU, 9 SRES and 18 RES). Other mutants such as G719A/C/D/R have been 
also associated to increased sensitivity to TKis69, although results are contradictory and further confirmation 
is needed70. No G719V data associated response to gefitinib treatment was found in the literature. T790M was 
predicted to increase the binding affinity of gefitinib (0.35 NRS, ISEN class). This prediction contradicts initial 
studies suggesting that the methionine substitution in T790M led to a bulkier side chain compared to threo-
nine and, subsequently, a greater steric hindrance to gefitinib and erlotinib binding. However, our result agrees 
with the mechanism of resistance proposed by Yun et al.71. They speculated that T790M causes an increment of 
both ATP and gefitinib binding affinity. Interestingly, the increment in affinity is not uniform for both ATP and 
gefitinib, which is ultimately reflected in a lower Kd/Km[ATP] ratio, an estimator of inhibitory potency71. Similarly, 
the R776H mutation was also predicted to belong to the ISEN class (0.24 NRS). Experimental evidence found in 
the literature suggests that this mutation increases the sensitivity for TKis EGFR inhibitors72,73. A summary of the 
predictions and the experimental data associated with each mutation can be found in Table 1. Altogether, these 
results show that the aa-RFC can predict the mutation-induced phenotype, although individual interpretation of 
each case is required to further validate the predictions.

EGFR-binders insensitive to the resistance-like mutations. To test whether our approach is able to 
systematically predict insensitive compounds to the EGFR’s likely-and-resistant mutations, we ran the lig-RFC 
predictor against all known EGFR reversible inhibitors with experimentally reported 3D structure (Fig. 3E). The 
gefitinib lig-RFC predictions were consistent with the predictions from the aa-RFC. The only exception found was 
the gefitinib-M793L, which had considerably lower value than for the aa-RFC (aa-RFC NRS 0.85, lig-RFC NRS 
0.41), yet being labelled as SRES. The NRS decrease can be explained by the fact that the lig-RFC weighted more 
the conservation of the hydrogen bonding by the mutant leucine. Erlotinib, another FDA approved EGFR TKi 
used in the treatment of NSCLC malignancies, resulted in a very similar mutational profile compared to gefitinib, 
which agrees with pervious published data74.

T790M, M793L and R776H resulted in a low predicted resistant profile indicating that those mutations would 
confer increased sensitivity to many of the tested compounds. Conversely, other mutations, such as C775Y, 
resulted in a mixed profile conferring resistance to several of the tested compounds (e.g. CHEMBL2347963 
or its structural analogue CHEMBL2347965) and increased sensitivity to others (e.g. CHEMBL2322330 and 
CHEMBL1229592). Finally, there were a total of six mutations with a highly drug-resistant profile (G796V, 
L792P, G719C/V, H835Y and D855A). These mutations were generally predicted as non-targetable, although a 
few exceptions were found. For instance, the CHEMBL1090356 compound had a NRS of 0.12, 0.20 and 0.14 for 

Mutation NMR Predicted class Gefitinib phenotype Reported in TCGA

L792P 0.88 SRES
Proposed resistant 

(Unconfirmed)

No

M793L 0.85 SRES No

D855N 1.0 SRES No

G719S 0.83 RES Increase Sensitivity to 
gefitinib and erlotinib LUAD

G719A 0.63 RES

Contradictory

LUAD

G719R 0.68 RES No

G719C 0.65 RES No

G719D 0.64 RES No

G719V 0.86 SRES No

T790M 0.34 ISEN Increase Sensitivity gefitinib 
and erlotinib LUAD

R776H 0.24 ISEN Increase Sensitivity gefitinib 
and erlotinib LUAD

C775Y 0.66 SRES

Unknown

No

H835Y 0.84 SRES No

G796V 0.85 SRES No

Table 1.  Summary of the EGFR mutations discussed in the manuscript alongside their aa-RFC predicted 
phenotype and, when available, the experimentally reported effect to gefitinib treatment found in 
literature.
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Figure 4. (A) Predicted cancer associated-likelihood of mutations in the ERK2 binding site for VTX11e for 
melanoma. Represented as in Fig. 3A. (B) Predicted cancer associated-likelihood of mutations in the ERK2 
binding site for VTX11e for colorectal cancer. Representation as in panel A. (C) Predicted likelihood and 
normalized resistance score (NRS) for ERK2 mutations in the binding site of VTX11e for the melanoma (left) 
and colorectal (right) cancer types. Represented as in Fig. 3C. (D) Melanoma (top) and colorectal (bottom) 
mutation likelihoods and normalized resistance scores (NRS) in the 3D structure of ERK2-VTX11e complex 
(PDB: 4QTE). Represented as in Fig. 3D. (E) Predicted sensitivity map for ERK2mutations in the binding site 
of VTX11e. Represented as in Fig. 3E. (F) Structural mapping of the predicted resistance mutations in the wild 
type ERK2interaction with VTX11e (cyan) and E75 (magenta). PDB entries: 4QTE and 4FUX for VTX11e and 
E75, respectively. Represented as in Fig. 3F.
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G796V, G719C/V mutations, respectively. In fact, this compound had the lowest resistance profile among all the 
screened set. Structural details revealed that CHEMBL1090356 has an imidazothiazole scaffold, with an amide 
group that lays deeply in the hydrophobic pocket and a morpholine tail that extends to a solved exposed region of 
the pocket75 (Fig. 3F). This mode of binding is significantly different to other reversible ATP-competitive inhibi-
tors of EGFR and explains its predicted distinctive profile. We propose that this compound might be an alterna-
tive EGFR inhibitor to patients resistant to gefitinib therapy.

ERK2 predicted mutational landscape in melanoma and colorectal cancer. The predicted ERK2 
mutational landscape revealed significant differences across the likelihood of mutations between melanoma and 
colorectal cancers. Indeed, the probabilities of mutations of amino acids involved in the binding site of VTX11e76, 
a compound with anti-proliferative activity, was different in melanoma77,78 and colorectal adenocarcinoma76 
(Fig. 4A and B). Such discrepancy was the result of completely different signatures contributing to the muta-
tional landscape. While melanomas mutations are mainly coming from C >  T transitions associated to signa-
ture 7, colorectal cancer mutations are the result of multiple mechanisms associated to signatures 1, 5, 6 and 
10. Melanomas predicted likelihood fitted into in a long tailed distribution, with enrichment in C >  T muta-
tions (Fig. 4A). More specifically, there were nine possible amino acid mutations originated from C/T[C >  T]N 
changes; and all of them were ranked within the top-10 likely mutations (S153F, P58L, P58S, S29L, L112F, S41F, 
P152L, L150F, L107F) (Fig. 4A. inner panel). The remaining C >  T mutations were also enriched among the 
top-50 most likely set (C >  T odd ratio =  15.4). Conversely, colorectal cancer resulted in a more heterogeneous 
predicted mutational landscape (Fig. 4B). The two most likely mutations (L112I and S41Y) were coming from 
T[C >  A]T mutations associated with signature 10, which has been proposed to be caused by altered activity of 
the error-prone polymerase POLE79. Furthermore, mutations resulting from C >  T transitions were also enriched 
among the top-50 likely mutations (C >  T odds ratio =  58.4). In fact, 7 out of the top-10 most likely mutations 
were the result C >  T transitions (M38I, M108L, G85R, G169S, S29L, G34S and G37S) (Fig. 4B, inner panel). 
Unlike melanoma, colorectal cancer C >  T mutations were associated to multiple signatures, including signatures 
1, 6 and 10.

Prediction of likely resistant mutations in ERK2-VTX11e binding-site. The resistance impact of all 
ERK2 amino acid mutations in the binding site of VTX11e was calculated using the aa-RFC classifier. The pre-
dictive pattern was consistent with the predictions in the training set and the EGFR case. There were 171 (40%) 
mutations classified as RES (0.48 NRS ±  0.15), 159 (38%) classified as SRES (0.43 NRS ±  0.14), 93 (21.9%) as 
ISEN (0.25 NRS ±  0.10) and 1 (0.1%) as NEU (0.17 NRS). Consistent with the observed for EGFR, the predicted 
likelihood and the NRS scores did no correlate (Fig. 4C, Pearson Correlation Score of 0.03 in melanoma and 0.01 
in colorectal). Variations in the mutational landscape between the two cancer types were also demonstrated in 
the differences in the set of top likely-and-resistant mutations. Melanomas resulted in 79 mutations, including 
P58S/L/T, L150F, L107F, P152S/L, L157F, L112P, I84N, F168Y or G37S among others, as likely for the cancer type 
and predicted to confer resistance to VTX11e. There were 86 mutations, including G34S, G37S, H147Y, P152S, 
E33K, L155P, P58L/S/T or K114R among others, as likely to appear in colorectal cancer and predicted to confer 
resistance to VTX11e. Only 29 of the mutations were shared between the two likely-and-resistant groups.

Mapping of likelihood and resistance impact into the 3D structure of ERK2. The significant dif-
ferences observed between the two cancer types were also observed in the 3D mapping of the mutations into the 
target structure of ERK2 (Fig. 4D). Specifically, the significantly higher median likelihood observed in colorectal 
cancer (11.5 fold increase, colorectal median likelihood 2.6e−3; melanoma median likelihood 0.2e−3) was repre-
sented into the 3D space as thicker ribbons along the binding site of VTX11e. Similar to the EGFR case, not a 
particular structural pattern was observed hosting the most likely mutations. Additionally, mapping of the amino 
acid accumulated resistance score into the ERK2 3D structure of the ERK2 kinase domain revealed the structural 
localization of those residues more prone to decrease VTX11e binding affinity (Fig. 4D). Residues in the hinge 
region of the ATP binding-site showed the highest resistance scores. This region hosts the M108 residue, which is 
equivalent to the EGFR-M793, and is the major responsible of the hydrogen bonding between ERK2 and VTX11e. 
Examples of likely mutations of this amino acid included M108L (0.89 NRS, SRES class) and M108I (0.55 NRS, 
SRES class), being the later also included in the top likely-and-resistant group in colorectal cancer. ERK2-L107 was 
also predicted as one of the major contributors to resistance. Mutations of these amino acids included the L107P 
(1.0 NRS, SRES class) or L107F (0.41 NRS, RES class), being the later included in the likely-and-resistant set in 
melanoma. The importance of D167, localized at the DFG motif and structurally equivalent to the EGFR-D855, 
explains the high resistance score of the D167A mutation (NRS 0.97, SRES class). These residues were localized 
in the ATP-binding site of ERK2 and their potential to confer resistance might be explained by their ATP-binding 
site structural similarity with EGFR.

Proline 58 mutations were also classified as highly resistance-like. More specifically, P58L/S/T (0.60 
NRS, 0.70 NRS and 0.67 NRS; SRES, SRES and RES class respectively) mutations were reported within the 
likely-and-resistant group in melanoma and colorectal cancer, suggesting these mutations are critical. These pre-
dictions agreed with the evidence of ERK2-P58L/S/T mutations found in VTX11e-resistant A375 melanoma cell 
line80. A complete summary of the VTX11e-resistant mutations previously described80 alongside their predicted 
likelihood and resistance-likeliness is shown in Table2 and Fig. 4C inner set. All the experimentally found resist-
ant mutations were predicted as either SRES or RES by our model. Moreover, 5 out of 8 (62%) of the mutations 
were correctly predicted to belong to melanoma likely-and-resistant group. Altogether, these results probed the 
ability of the method to detect resistance-like mutations to ERK2-VTX11e interaction. Interestingly, the 3D map-
ping of the mutations from ref. 80 revealed their clustering into an adjacent pocket to the ERK2 ATP binding site, 
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which highlights the presence of ATP had an essential role in the emergence of mutations conferring resistance 
in ATP-competitive inhibitors. Other mutations ranked in the top 10 resistance-like mutations and not present in 
ref. 80 included H147Y, I86M, L150P, G34V, F168I and E33D (Fig. 4C inner set). Unfortunately, no experimental 
data was available at the time to confirm the resistance potential of these mutants.

ERK2-binders insensitive to the resistance-like mutations. Next, the lig-RFC classifier was applied 
to existing ERK2 reversible inhibitors to identify insensitive compounds to the resistance-like mutations pre-
viously identified. In this case, the limited number of co-crystallized ERK2 inhibitors, prompted us to extend 
the search to any known ERK2 inhibitor (see methods Creating the dataset of candidate molecules). Similarly 
to the EGFR example, some mutations had a highly resistance-like profile with a very limited number of com-
pounds with low predicted sensitivity (Fig. 4E). Such were the cases of L107F/P, I86M or P58S/T/L; which had 
few compounds with NSR below the average (0.50 NRS ±  0.16). del22379 was one of the few compounds with 
low predicted sensitivity to highly resistant mutations. Interestingly, this compound resulted a highly insensitive 
profile among the all the screened mutations. DEL223790 unique sensitivity profile is explained by its completely 
different mode of action: it binds the ERK2 interface preventing its dimerization81. Other mutations resulted in 
low resistance impact profile, including Y36N/H or C65Y. The results of the C65Y mutation were consistent with 
the predictions from the aa-RFC, which scored this mutation with a low NRS (Table 2). However, the Y36N/H 
predictions generally resulted in lower NRS. For instance, the control compound VTX11e, resulted in a lig-RFC 
NRS of 0.41 (Y36N) and 0.35 (Y36H) while the aa-RFC scored them with 0.58 and 0.66. Despite of the decrease 
in the NRS, the predicted class was maintained in both classifiers as SRES. The differences between the two clas-
sifiers might be caused by the fact that the lig-RFC does not contain all the amino acid based features used in the 
aa-RFC. Finally, the G37S mutation, which had previously been identified as resistant80, was predicted to be in 
the likely-and-resistant group in both melanoma and colorectal cancer. G37 is localized in the ERK2 P-loop, and 
we hypothesize it may play an important role in the orientation of Y36 towards to the chlorobenzene group of 
VTX11e, which ultimately leads to the π -stacking interaction82. Remarkably, the lig-RFC provided several com-
pounds with low resistance impact to G37S/V/C mutations. The compound with the lowest resistance profile for 
these mutations was E75 (Fig. 4F, named as E75 due to their PDB accession code). The mutational profile of E75 
had a NRS of 0.11, 0.08 and 0.06 for G37S/V/C, respectively. Unlike VTX11e, E75 is located distantly to the G37 
residue, not interacting with the Y36 and mostly occupying the ERK2 hinge region (Fig. 4F). Hence, the E75 bind-
ing mode might be compatible with G37 mutations, proposing an interesting candidate for overcoming resistance 
in tumors harboring ERK2-G37S/V/C mutations.

Discussion
We have a novel computational framework that predicts the cancer-associated likelihood and the resistance 
impact of mutations in targets of small molecule targeted cancer therapies, applicable to cases where a model of 
the binding of the drug to the target protein is known. Our approach first defines the mutational likelihood of 
amino acids involved in the binding of a small molecule drug using a large set of empirically observed mutations. 
Our estimations rely on the tri-nucleotide mutational probabilities observed in the cancer-associated signatures 
previously described36,40. We have demonstrated the power of this framework to predict previously clinically 
described drug resistance mutants and identified novel potential mutants that can potentially infer drug resist-
ance. We have shown that the EGFR mutational profile was not significantly different between LUAD and LSCC 
cancer types. Conversely, the ERK2 analysis revealed major differences between melanoma and colorectal muta-
tional landscape. Melanoma mutations are mainly originated from C >  T transitions associated to ultraviolet light 
exposure. However, colorectal associated mutations are the result of more complex and heterogeneous processes. 
Interestingly, the discrepancies are also reflected in the global distribution of the probabilities. While melanoma 
seems to prioritize fewer ERK2-mutations with a very high likelihood, colorectal tumors, presents a larger num-
ber of lower likelihood mutations. The differences between the colorectal cancer and melanoma mutations are 
also reflected in the low overlapping between the likely-and-resistant groups of mutations. This result suggests 
that clinicians treating these two cancer types should adopt different pharmacological approaches to overcome 
resistance due to the emerging cancer-associated mutations in the drug targets.

Mutation NMR
Predicted 

class

Top Likely-
and-resistant 
Melanoma?

Top likely-and-
resistant Colorectal?

Reported in 
TCGA

P58L 0.60 SRES YES YES No

P58S 0.70 SRES YES YES No

P58T 0.67 RES YES YES No

G37S 0.74 RES YES YES No

Y64N 0.23 RES NO NO No

Y36H 0.66 SRES YES NO No

Y36N 0.58 SRES NO NO No

C65Y 0.38 RES NO NO No

Table 2.  Predicted aa-RFC phenotype of the ERK2-VTX11e resistant mutants reported in ref. 80. The top 
likely-and-resistant columns indicate their presence among the mutations included in the red area from Fig. 4B 
and C.
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The nature of our approach enables the tracking of the association between each mutation and their underly-
ing signatures, which ultimately can be translated into an individual mutation-mechanisms association. That is 
the case of the EGFR-T790M mutation, which we proposed to be mainly associated with ageing and not particu-
larly linked to tobacco smoking. It is important to mention that our model only considers the probability of emer-
gence of mutations in a cancer genomic context. Nevertheless, a significant number of mutations in a cancer cell 
can be also the result of germ-line variations or pre-malignant somatic mutations. For instance, it has been shown 
that the EGFR-T790M mutation can have both somatic and germ-line origin83–85. Another limitation of the likeli-
hood model is that its predictions are based on the average probabilities from hundreds of samples for each cancer 
type. Therefore, the predicted likelihood shows global cancer trends but it is currently unable to capture specific 
trends in each individual cancer case. Future work might thus focus on finding the mechanisms underlying each 
individual cancer case, which eventually would translate into the personalization of the likelihood predictions. 
Of course, this method only addresses site-specific coding differences, and not many other mechanisms that give 
rise to cancer drug resistance, however the observation of many such site specific mutations in clinical samples 
highlight the importance of this mechanism.

The structural mapping of the predicted likelihood did not reveal significant association between the likeli-
hood of an amino acid mutation occurring and its structural localization. Perhaps, constraining the mutational 
likelihood with evolutionary restrains would lead towards an increase in less evolutionary conserved regions of 
the structure. Hence, the unfavorable phenotype linked to evolutionary restraints can partially explain the fact 
that some of the predicted mutations have not been observed in the clinic. This problem is chiefly evident in 
cancer, where tumor cell population has a fitness advantage over the healthy tissue. Another explanation is linked 
to the technical limitations of standard NGS sequencing of solid biopsies, which only allows for the detection 
of mutations present > 5% of tumor cells7. In fact, despite of tumors can harbour millions of mutations23, only 
a small percentage of them are systematically reported. These low-frequency mutations may not have a critical 
effect during tumor progression, but the evolutionary pressure induced by a drug treatment regimen can trans-
form them into drug resistance drivers. Thus, it is essential to detect not only the frequent cancer drivers but 
also the low-frequent mutations that can lead towards drug resistance. Recent studies using circulating tumor 
DNA (ctDNA) have shown very promising results for this purpose86,87. However, there are many technological 
challenges to address prior to broader application of this technology. In the meantime, in-silico models can play a 
major role to comprehensively characterize the mutational burden of cancer samples.

We connected the mutational landscape of tumors with the drug-resistance phenotype due to spontaneously 
generated mutations in drug targets. To do so, the aa-RFC classifier predicts the effect of a single mutation to the 
drug binding affinity in a particular cancer target. The classifier was trained with the Platinum database46, whose 
instances were split into four phenotypic classes depending of their drug binding affinity fold change. In our 
opinion, reducing the number of possible classes from four to two (e.g. into loss-of-affinity and gain-of-affinity) 
would increase the classifier performance, but it would also over simplify the spectrum of possible phenotypes. 
Evaluation of the performance of the aa-RFC showed that classes representing severe changes (i.e., ISEN and 
SRES classes) outperformed those representing mild changes (i.e., RES and NEU classes). More specifically, the 
lower performance of these classes is the result of over prediction towards the RES class as well as under pre-
diction of the NEU class. This limitation may be explained by the fact that many RES cases are very close to the 
NEU frontier (i.e., cases with very small drop in affinity) and vice versa. In such cases, the classifier assigns the 
instances to the most populated class (i.e., the RES class) since that is the one with higher probability. To address 
this limitation, we calculated the NRS, which provides a smoother way to assess the resistance impact by combin-
ing the confidence score of the four classes and correcting for the over-assignment of the most populated classes. 
To our knowledge this is the first method specifically developed to classify changes in drug binding affinity upon 
mutation. Comparison with gold-standard methods for measuring drug-binding affinity revealed the difficulties 
of such methods in detecting large changes in affinity upon mutation. Rather, they are oriented to quantitatively 
estimate the drug binding affinity when the binding is known to occur.

Application of the aa-RFC to the EGFR and ERK2 cases showed its ability to identify the phenotype of pre-
viously reported mutations. Remarkably, the method correctly predicted the class of EGFR-T790M, conferring 
resistance by decreasing the Kd/Km[ATP] ratio; EGFR-R776H, ERK2-P58L/S/T or ERK2-G37S among others. 
However, it failed predicting the EGFR-G719S phenotype, which featured the problem that glycine mutations 
increasing the sensitivity of the drug are likely to be miss-classified. Additionally, our model proposed, in 
both cases, multiple new unseen mutations as candidates for conferring resistance to the studied treatments. 
Nevertheless, mutations negatively interfering with ATP might be non-functional. Mutations disrupting the 
ATP binding would lead to a non-functional protein kinase (i.e., loss of function mutations), which is usually 
incompatible with their role in cancer progression. This hypothesis is also supported by previous findings indi-
cating a cluster of ERK resistant mutations in an allosteric region next to the ATP binding site80. Moreover, our 
findings might explain why mutants of amino acids with an essential role in ATP binding, such as EGFR-L792 
(ERK2-L107) or EGFR-M793 (ERK2-M108), have not yet been reported in the clinics. Examination of public 
large-scale cancer genomic data does not reveal many of these mutations (Tables 1 and 2 and supplementary 
information). This is primarily because these data focus on primary untreated tumors, and resistance mutants are 
likely to be of extremely low tumor frequency in these datasets.

Importantly, this model only focuses on drug resistance arising from single point mutations affecting the bind-
ing of small molecule targeted cancer therapies. However, as mentioned in the introduction, there are numerous 
alternative mechanisms responsible of drug resistance. For instance, there is an emerging evidence of kinase 
mutations not directly interfering with the drug and yet having an impact in the drug response. These mutations 
may drive resistance by enhancing other non-enzymatic kinase functions that may be equally important for 
tumor progression. For instance, in melanoma and colorectal cancer, tumors harbouring K-RAS, H-RAS, N-RAS 
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or B-RAF constitutively active mutations may be insensitive to ERK1/2 inhibitors. In such cases, combinatorial 
regimes (e.g. B-RAF and ERK inhibitors88) might be an alternative to overcome resistance.

The last step of the model application consisted on the search for non-resistant molecules to the muta-
tions detected by the aa-RFC. To do so, we used a lighter and more ligand centric version of the aa-RFC called 
lig-RFC. The performance of both classifiers is also illustrated by the consistency of the EGFR-gefitinib and 
ERK2-VTX11e predictions. However, small discrepancies in the NRS score were observed for the ERK2-Y36H/N 
and EGFR-M793L mutations. In both cases the differences respond to the fact that the lig-RFC weights more the 
ligand-based features (e.g., hydrogen bonding conservation) that changes in the amino acid biochemical proper-
ties. An important limitation is that the model only applies to non-covalent reversible inhibitors, and so wouldn’t 
cover resistance to say, for example third generation irreversible EGFR inhibitors, however, in these cases simple 
rule-based systems will be highly predictive.

In both, ERK2 and EGFR cases, we observed three groups of mutations. The first group, named as hardly targ-
etable, was composed by those mutations with very limited or no compounds with low resistance score. That is, it 
encompasses mutations that are generally predicted as non-targetable by our method. However, some exceptions 
were found within this group. Exceptions included the dimerization inhibitor del22379 predicted to be insensitive 
to the majority of the ERK2-mutations and CHEMBL1090356, which was predicted as insensitive to most of the 
non-targetable mutations of EGFR. These two cases were the result of very distinctive mode of actions, which 
ultimately was reflected in their resistance profile. The second group of mutations, named as easily targetable, was 
composed by those mutations predicted to increase the affinity of most of the screened compounds. Interestingly, 
despite of EGFR-T790M being known to confer resistance to most of EGFR reversible inhibitors, it was classified 
into this group of mutations. This is because this mutation confers resistance by decreasing the Kd/Km[ATP] ratio. 
The third group of mutations, named as targetable, was composed by mutations predicted to have heterogeneous 
resistance profile across the screened compounds. This group is probably the most interesting from a resistance 
perspective, since they allowed the study of the structural differences that might be driving the emergence of 
resistance. For instance, in the ERK2-G37S example, we observed how the low occupancy of the allosteric pocket 
posited E75 as an interesting candidate to overcome resistance due to mutations occurring in this region.

Future applications of the model would benefit from the inclusion of both new candidate molecules and infor-
mation about resistant mutants. Moreover, further application in other systems would ultimately lead towards a 
comprehensive characterization of the resistant mutational landscape of targeted cancer therapies. To achieve this 
goal, it is also important that the scientific community validates some of our predictions. Despite of screenings 
of low-frequency mutations may be not cost-effective due to the limited amount of patients benefiting from such 
stratification, advances in screening technologies, patient-derived tumor xenograph and computational models 
may help to mitigate the expenses associated to these screenings. All these advances would eventually get closer 
the desired goal of tailored design of non-resistant cancer therapies.
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