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Abstract: Type 2 diabetes (T2D) is considered one of the largest global public-health concerns,
affecting approximately more than 400 million individuals worldwide. The pathogenesis of T2D
is very complex and, among the modifiable risk factors, selenium (Se) has recently emerged as a
determinant of T2D pathogenesis and progression. Selenium is considered an essential element
with antioxidant properties, and is incorporated into the selenoproteins involved in the antioxidant
response. Furthermore, deiodinases, the enzymes responsible for homeostasis and for controlling the
activity of thyroid hormones (THs), contain Se. Given the crucial action of oxidative stress in the onset
of insulin resistance (IR) and T2D, and the close connection between THs and glucose metabolism, Se
may be involved in these fundamental relationships; it may cover a dual role, both as a protective
factor and as a risk factor of T2D, depending on its basal plasma concentration and the individual’s
diet intake. In this review we discuss the current evidence (from experimental, observational and
randomized clinical studies) on how Se is associated with the occurrence of T2D and its influence on
the relationship between thyroid pathophysiology, IR and T2D.
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1. Introduction

Diabetes is a serious and chronic condition characterized by high blood-glucose levels
and is considered one of the largest global public-health concerns; it has a heavy impact
on the quality of life of individuals and their families, as well as on social, financial and
development issues [1,2]. According to the latest data from the Global Burden of Disease,
in 2017, approximately 462 million individuals were affected by type 2 diabetes (T2D) at
the global level, which equates to 6.28% of the world’s population, with the majority living
in low-and middle-income countries [2,3]. The estimated global prevalence recorded a four-
fold increase between 1980 and 2014 [4], and although incidence has started to decrease
in some countries, the worldwide incidence of cases of T2D has increased by 104.6% from
1990 to 2017 [5,6]. Therefore, the number of people living with T2D, which accounts for
more than 95% of total cases, is projected to rise by 25% in 2030 and 51% in 2045 if effective
preventive interventions are not adopted [7,8]. In 2019, diabetes was the ninth leading
cause of mortality, with an estimated 1.5 million deaths per year directly caused by T2D
and 48% of all T2D-related deaths occurring before age 70 [2,8]. Importantly, half of the
people with T2D are unaware of this condition [7].

T2D arises from pancreatic (3-cell dysfunction and peripheral insulin resistance (IR) [9],
and its pathogenesis, although very complex and yet to be fully elucidated, is mainly the
result of modifiable risk factors [6,10]. Indeed, if the observed rise in prevalence is likely the
result of longer survival because of early diagnosis and improved T2D treatment [7], the
growing incidence of T2D in young people and adults is primarily due to obesity, increased
consumption of unhealthy diets, and sedentary lifestyles; these are, overall, related to
economic development [5]. Recent data indicate that imbalances in serum trace elements
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such as selenium (Se), magnesium, copper, chromium and zinc, may contribute to the
pathogenesis and progression of T2D through the collapse of antioxidant defense [10,11]. In
particular, a number of experimental and epidemiological studies have explored the contro-
versial relationship between Se and T2D [12,13]. Selenium is an essential micronutrient for
human health, as it is a structural amino acid (as selenocysteine, Sec) of both selenoproteins
such as glutathione peroxidase 1 (GPx1)—a key antioxidant enzyme that protects cells from
the harmful accumulation of hydrogen peroxide (H,O,) [14]—and thyroid deiodinases
(DIOs), which are implicated in maintaining the homeostasis of thyroid hormones and
their activity [15]. Thyroid diseases such as overt and subclinical hypothyroidism and
autoimmune thyroiditis, have been linked to low Se status [16] but, due to the narrow range
of adequate blood-Se concentrations, adverse effects to human health may occur below and
above these thresholds [15]. Furthermore, abnormal levels of thyroid hormones (THs) have
been associated with increased risk of T2D, although with mixed evidence [9,17]. Hence, in
this review, we discussed both the role of Se in its relationship with T2D and, given the
close connection between Se levels and thyroid pathophysiology, how this trace element
may also influence the effects of THs on T2D.

References were identified by searching in Pubmed and Medline for original articles,
reviews, systematic reviews and meta-analyses published in English up to 31 March 2022
useing the MeSH terms “diabetes”, “type 2 diabetes”, “T2D” and “insulin resistance”
in combination with the term “selenium”. For the same period, an additional search
strategy was also performed using the MeSH terms “thyroid”, thyroid hormones”, “hy-
pothyroidism”, “hyperthyroidism” and “Graves” disease” in combination with the terms
“diabetes”, “type 2 diabetes”, “T2D” and “insulin resistance”, or in combination with the
term “selenium”. The articles and reviews cited in these references were also reviewed.

2. Role of Oxidative Stress in Insulin Resistance and Type 2 Diabetes

The term “oxidative stress” defines any persistent disturbance in the balance between
oxidants and antioxidants in favor of the oxidants [18]. In particular, oxidative stress is
characterized by an excess of reactive oxygen species (ROS) and reactive nitrogen species
(RNS), and reactive radical and non-radical derivatives of oxygen and nitrogen (e.g., HyO,,
superoxide, nitric oxide (NO), peroxynitrite), respectively, as a consequence of aging, infec-
tion, disease, toxicity or metabolic disorders [18,19]. Reactive species, especially ROS, are
mostly produced in mitochondria and peroxisomes at low physiological levels, where they
serve as signaling molecules to regulate biological processes such as transcription, cell cycle,
inflammation and aging [20-22]. High levels of ROS and RNS instead cause oxidative mod-
ifications in the main cellular macromolecules (carbohydrates, lipids, proteins and nucleic
acids), which can generate cellular and tissue damage [21]. Oxidative stress is involved
in a number of acute and chronic pathological processes including chronic obstructive
pulmonary disease, cardiovascular diseases, acute and chronic kidney disease, neurode-
generative diseases, macular degeneration, biliary diseases and cancer [23]. It has also been
recognized that pathogenesis of IR, as well as progression and macro- and microvascular
complications of T2D, are associated with mitochondrial oxidative stress [19,22]. Notably,
pancreatic islets exhibit greater susceptibility towards oxidative and nitrosative stress than
other tissues, as a result of their low protein and activity levels (from 1 to 30% of those in
the liver) of antioxidant enzymes such as GPx, superoxide dismutase (SOD), glutathione
peroxidase, and catalase [24,25].

Under hyperglycemic conditions, in islets and (3-cells, there is an overproduction
of ROS derived from electron leakage in the mitochondrial respiratory chain and from
membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs);
these catalyze the cytosolic NADPH-dependent reduction of molecular oxygen to superox-
ide, which is subsequently dismutated to HyO, by SODs [19,26]. Additionally, the dysregu-
lation of endothelial nitric oxide synthase (eNOS), an enzyme with vascular-protective and
anti-inflammatory properties due to the production of NO, is among the major sources of
ROS [27]. The oxidation of tetrahydrobiopterin, the cofactor of eNOS, is responsible for
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the increased formation of oxygen-derived radicals due to eNOS uncoupling, contributing
to vascular dysfunction associated with T2D [28]; meanwhile, the reaction of NO with
superoxide generates peroxynitrite, which is considered a mediator of cytokine-induced
islet B cell destruction [29] (Table 1).

The excess of reactive species due to glucose overload, in turn, induces the activation
of four important molecular pathways implicated in the aggravation of T2D [19,23,27,30]
(Figure 1): (1) the increased polyol pathway flux depletes NAD(P)H concentration, leading
to a reduction in the levels of the antioxidant glutathione (GSH) and in the synthesis of NO;
(2) the activation of the advanced glycation end-products (AGEs) pathway occurs through
the non-enzymatic reaction of glucose with free amino-acid groups of proteins; AGEs
bind to and activate AGE receptors, which then initiate the production of growth factors,
proinflammatory cytokines and ROS/RNS; (3) the increase in mitochondrial superoxide
concentration results in the enhancement of the hexosamine pathway, which is due the
increased levels of fructose-6-phosphate that are moved out from glycolysis, representing
an additional source of ROS/RNS; (4) the de novo synthesis of diacylglycerol from glucose,
and the greater number of AGEs and their cell receptors, are responsible for the augmented
activity of protein kinase C (PKC) isoforms, which is a crucial event in the progression of
T2D. In particular, PKC acts at multiple levels by activating eNOS, NOXs, lipoxygenase,
phospholipase A2, endothelin-1, vascular endothelial growth factor, transforming growth
factor-f3, and nuclear factor kappa B; this gives rise to vasoconstriction and the prolifera-
tion of vascular muscular cells, increased synthesis of extracellular matrix proteins, and
ROS/RNS production mediated by NOXs (reviewed in [23]).

OXIDATIVE STRESS PATHWAYS
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Figure 1. Key oxidative stress pathways in type 2 diabetes: Upper panel: some of these pathways
are interconnected and promote other mechanisms generating oxidative stress; Lower panel: arrows
represent an increase or a decrease in oxidative stress/inflammation-related biomarkers. Abbrevi-
ations: AGE—advanced glycation end product; NOX—NAPDH oxidase; PKC—protein kinase C;
RNS—reactive nitrogen species ROS—reactive oxygen species; T2D—type 2 diabetes.

In addition to the decrease in reduced glutathione (GSH) levels, the ratio between GSH
and oxidized glutathione, the activity of y-glutamylcysteine synthase (the rate-limiting
enzyme in the synthesis of GSH) [31], and total antioxidant status, an elevation of oxidative
markers of DNA damage (8-hydroxy-20-deoxyguanosine), lipid peroxidation (malondi-
aldehyde, 8-isoprostane) and protein oxidation (nitrotyrosine and protein carbonyl levels)
have been found in prediabetic and diabetic patients [19,32-34]. Furthermore, the Keapl
(Kelch-like ECH-associated protein 1) nuclear factor erythroid 2-related factor-2 (Nrf2) plays
important roles in the oxidative stress response [35]. Meanwhile, in non-stress conditions,
the transcription factor Nrf2, known as the “master regulator” of the antioxidant response,
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as it controls the expression of genes involved in the detoxification and elimination of reac-
tive oxidants, is retained in the cytoplasm by the negative regulator Keap1; in response to
oxidative stress, it moves to the nucleus where it enhances the expression of various genes
implicated in the antioxidant response [33,36,37]. In animal models, the induction of Nrf2
prevents reactive species damage [35], improves insulin sensitivity [38], and protects from
diabetes complications [39]. Conversely, low levels of Nrf2 were observed in prediabetic
and diabetic subjects, suggesting an impairment of Nrf2 response [27,33] (Table 1).

A pivotal feature of T2D is IR, which verifies when cells are unable to respond properly
to insulin [40]. Although low levels of reactive species, namely H,O,, function as a second
messenger in the early insulin-signaling cascade, an excess of HyO, results in the continued
downregulation of glucose transporter 4 (GLUT4)—the insulin-sensitive glucose transporter
that provides insulin-stimulated glucose uptake by adipose tissue and skeletal muscle—and
finally, in IR [41,42]. In the normal pathway, the insulin binding with the insulin tyrosine
kinase receptor triggers a consecutive phosphorylation of insulin receptor substrate-1
(IRS-1), phosphatidylinositol-3,4,5-triphosphate kinase (PI3K), phosphatidylinositol-4,5-
biphosphate kinase, and protein kinase B (Akt), resulting in GLUT4 translocation to the
plasma membrane to allow the extracellular glucose to enter peripheral cells [22]. Above the
optimal insulin concentration, a shift in the signaling pathway at PI3K induces IR through
the serine phosphorylation of IRS proteins, thereby transporting GLUT4 to lysosomes for
degradation; consequently, this leads to hyperglycemia, hyperinsulinemia, and increased
oxidative stress in tissues [43]. Furthermore, increased H,O, levels due to NOX 4-mediated
superoxide production stimulate nuclear factor kB (NF-«B), c-Jun N-terminal kinase and
P38 mitogen-activated protein kinases (MAPKSs), in turn, causing a mitochondria-induced
stress response [22]. ROS production is, therefore, crucial in the development of both
mitochondrial dysfunction and IR. Indeed, a high intake of glucose provides numerous
substrates used by mitochondria for the production of a large amount of ATP, making
the mitochondria hyperactive and leading to the overproduction of free radicals [23]. Ele-
vated free-radical species are also responsible for altered mitochondrial dynamics, further
contributing to mitochondrial dysfunction [44]. In particular, the increased mitochondrial
fission machinery in the skeletal muscle leads to IR and can be rescued through inhibiting
fission, which decreases the activity of p38 MAPK and increases IRS-1 and Akt activation,
finally resulting in improved muscle insulin signaling and systemic insulin sensitivity [44].
In addition, alterations in mitochondrial function have been shown to be directly involved
in the pathogenesis of IR, since primary defects in mitochondrial fatty-acid oxidation
capacity cause diacylglycerol accumulation, PKC-epsilon activation, and hepatic IR [45].

Table 1. List of main molecules involved in the onset of insulin resistance and type 2 diabetes.

Molecule Acronym Function Reference
Nicotinamide adenine dinucleotide phosphate Production of superoxide; mitochondria-induced stress
. NOXs [19,22]

oxidases response

Endothelial nitric oxide synthase eNOS Production of nitrix oxide [27]

Tetrahydrobiopterin - Formation of oxygen-derived radicals [28]

Nitric oxide NO Reac’non. Wlth superoxide which generates [29]
peroxynitrite

Kelch-like ECH-associated protein 1 Keapl Negative regulator of Nrf2 [33]

Nuclear factor erythroid 2-related factor-2 Nrf2 Control of antioxidant response [35-39]

. Downregulation of GLUT4; stimulation of NF-«B,

Hydrogen peroxide H0, c-Jun N-terminal kinase and p38 MAPKs 221

Glucose transporter 4 GLUT4 Insulin-stimulated glucose uptake by adipose tissue [42]
and skeletal muscle

Pancreatic and duodenal homeobox 1 PDX-1 (3-cell transcription factor [46]

MAF BZIP Transcription Factor A MAFA (3-cell transcription factor [46]

Abbreviations: GLUT4—glucose transporter 4, MAPKs—mitogen-activated protein kinases; NF-xkB—nuclear
factor kB.
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Chronic hyperglycemia and the subsequent induction of oxidative stress further
suppress nuclear expression of the key 3-cell transcription factors PDX-1 and MAFA,
leading to a decrease in insulin synthesis and secretion, a process known as {3-cell glucose
toxicity [46] (Table 1).

3. The Relationship between Selenium and Type 2 Diabetes

Selenium is acknowledged as one of the most antioxidant nutrients in humans [47].
Its biological role is principally mediated by Sec that is incorporated into 25 Se-containing
proteins including [48]: the ROS-detoxifying selenoenzyme GPx (types 1-7), thioredoxin
reductase (TrxR, types 1-3), and methionine sulfoxide reductase B, which take part in the
cellular mechanisms against oxidative stress [41,49]; iodothyronine deiodinases (DIO1,
DIO2 and DIO3), which maintain the metabolism of THs [50]; selenoprotein P (SELENOP),
a protein that primarily serves as a Se transporter to target tissues for the synthesis of
extracellular selenoproteins [51]; selenoprotein S (SELENOS), with roles in protein folding
and inflammation in the endoplasmic reticulum (ER) [52]; and selenophosphate synthetase,
involved in Sec synthesis [53]. GPx and TrxR can both reduce H,O, and organic hy-
droperoxides, while SELENOP, which is mostly secreted by the liver and expressed at
relatively high levels in pancreatic islets, also fulfills an antioxidant function in 3-cells,
displaying both phospholipid hydroperoxide GPx-like and peroxynitrite reductase-like
activities [41,54].

The main source of Se is the diet in which the element is mainly contained as Sec and
selenomethionine and, at a lower concentration, as the inorganic compounds selenate and
selenite [55]. Selenium amounts in plant and animal foods show great variability because
of geographical variations in Se content and bioavailability of species in soil and water, the
use of fertilizers, and Se supplementation [56,57]. In fact, while certain dry regions of the
United States, Canada, South America, China and Russia are characterized by so-called
seleniferous soils, other regions such as Finland, Sweden and Scotland are Se deficient [56].
As the extent of population intake is more variable for Se than for other nutrients, human
Se status reflects these wide differences [12].

The daily adequate intake for Se has been established at 70 pg by the European Food
Safety Authority in the European Union [55]. GPx activity is known to accurately reflect Se
status, although GPx1 activity achieves a plateau at a relatively low plasma- or serum-Se
concentration (90-100 pg/L) [58]. Therefore, platelet GPx activity is preferably used in
populations with a low Se status at baseline [59]. SELENOP accounts for 50% of Se in
the blood and is considered a more informative biomarker in populations with relatively
low-to-moderate Se intakes [59]. Unlike GPx1, the optimization of SELENOP requires a
relatively high Se intake of 100 to 120 ug/L; thus, its concentration reflects the saturation of
the functional Se body pool, in order to meet the Se requirement [55,60,61]. Notably, the
narrow range (90-120 pg/L) of adequate serum Se makes a key feature of Se status the
dependence on a subtle balance between meeting Se nutritional requirements and avoiding
excessive exposure [62] (Figure 2).

3.1. Experimental Studies

Experimental evidence suggested a direct influence of Se and selenoproteins on the
function of pancreatic p-cells [41]. Due to its antioxidant properties, Se has long been
believed to prevent T2D by counteracting oxidative stress [63]. Indeed, early studies indi-
cated that high Se doses acted as an insulin mimic, stimulating glucose uptake in isolated
rat adipocytes and improving glucose homeostasis in diabetic mice (reviewed in [64]).
In addition, selenoprotein deficiency in mice was shown to be associated with T2D and
metabolic syndrome (MetS) [64]. Following dietary Se restriction, mice lacking selenocys-
teine lyase (Scly), the enzyme that provides Se for selenoprotein biosynthesis, developed
hyperinsulinemia, glucose intolerance and hepatic steatosis, along with increased hepatic
oxidative stress, demonstrating a dependence of glucose and lipid homeostasis on Scly
activity [65].
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Figure 2. The range of adequate Se dietary intake and its relationship with serum Se levels, the
concentration of serum Se biomarkers and potential diabetogenic effects. Abbreviations: GPx-1—
glutathione peroxidase 1; Se—selenium; SELENOP—selenoprotein P.

More recently, inorganic and organic Se compounds were reported to stimulate insulin
biosynthesis and secretion, probably through upregulation of GPx1 which, on the one hand,
protects 3-cells from the adverse effects of chronic hyperglycemia (i.e., oxidative stress) [66];
on the other hand, it could lead to hyperinsulinemia and IR [67-69]. In particular, higher
GPx1 activity was associated with increased activity of protein tyrosine phosphatase 1B
that, by dephosphorylating the insulin receptor and the IRS-1, suppresses insulin-induced
signaling [70,71]. Conversely, the overproduction of SELENOP contributed to the develop-
ment of IR and hyperglycemia in liver and skeletal muscle, whereas SELENOP knock-out
mice fed a high-sucrose diet were protected against glucose intolerance and IR [72]. Com-
pared to previous studies, these experiments have been carried out in normal but not in
diabetic animals using Se levels not exceeding the maximum tolerated dose, and for a
longer treatment period [64] (Figure 2).

3.2. Epidemiological Studies

A series of non-experimental studies have explored the potential role of Se in the
development of T2D in humans, albeit with mixed results, probably as a consequence of
different Se status and intake in various world regions, as well as in discrepancies in the
absorption rates of different Se forms [47,63]. Various case—control studies, in particular,
revealed that serum Se levels were significantly lower in T2D patients than in healthy
individuals due to the effect of disease and its related inflammation [73-77].

Some systematic reviews and meta-analyses have also recently been published. Ray-
man and Stranges [12] reported that, among eleven studies evaluating this relationship,
five of them found a significantly positive association between serum/plasma Se and
T2D or fasting plasma-glucose; however, their cross-sectional design does not allow the
inference of causality, nor can it rule out reverse causation. On the other hand, longitudinal
cohort studies did not support this association [12]. A total of five observational studies
were included in a non-linear dose-response meta-analysis by Wang and co-authors [47];
it showed a significantly higher prevalence of T2D in the highest category of blood Se
compared with the lowest, with an odds ratio (OR) (95% confidence interval, CI) of 1.63
(1.04-2.56, P = 0.033). A substantial degree of heterogeneity across studies, but no evidence
of publication bias, was found. Additionally, an increased prevalence of T2D was seen at
serum Se concentrations above 132.5 pg/L and below 97.5 ug/L, but not at the middle level
(97.5-132.5), suggesting a U-shaped association between Se and T2D [47]. Vinceti et al. [78]
performed a dose-response meta-analysis including 50 observational studies (18 cross-
sectional, 25 case—control, and 7 cohort studies). They found an increase in the risk of
T2D for increasing serum or plasma-Se concentration, with an RR of 3.6 (95% CI = 1.4-9.4)
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when Se exposure at 140 ug/L was compared with the referent category at 45 ng/L. Ad-
ditionally, consistently with [47], in these studies, no significant evidence of publication
bias was detected. A subsequent systematic review and meta-analysis including a total
of thirteen studies (three longitudinal, five case-control and five cross-sectional) demon-
strated a significantly positive association between Se concentration and the prevalence
of T2D, with a pooled OR of 2.03 (95% CI = 1.51-2.72) [62]. Nevertheless, considerable
heterogeneity and a tendency towards publication bias was observed between studies. A
total of twenty studies (17 cross-sectional, 3 cohort) were included in the meta-analysis
by Kim et al. [13] who, in accordance with previous publications, showed a significantly
direct association between Se exposure and the prevalence of T2D (pooled OR = 1.88,
95% CI = 1.44-2.45). Such results were corroborated by subgroup analyses based on Se
measurements in blood, urine and diet (but not in nails), sensitivity analysis, and trim and
fill analysis for publication bias [13]. In 2021, Vinceti and co-workers conducted an update
of their precedent meta-analysis, and retrieved 34 observational studies (18 cross-sectional,
9 cohort, 7 case—control) that measured Se in serum, plasma, whole blood, nail and urine,
and from dietary assessment [79]. Compared with the reference blood-Se level category of
90 ng/L, levels of 120 and 160 pg/L were associated with RRs of 1.27 (95% CI = 1.10-1.47)
and 1.96 (95% CI = 1.27-3.03), respectively. As for Se from the diet, an intake of 80 ug/day
was associated with an RR of 1.23 (95% CI = 1.14-1.33) when compared to the reference
category of 55 ng/day, displaying a non-linear relationship in contrast to the J-shaped
curved observed for blood-Se levels [79] (Figure 3). The association between increasing
urinary Se concentration and T2D did not reach statistical significance, whereas studies
based on nail Se indicated an inverted U-shaped association with no significantly decreased
RRs at increasing Se concentrations, in contrast with the other results. Unlike other biologi-
cal matrices, nail Se is not considered a reliable biomarker, as it cannot adequately reflect
dietary intake; this positively correlates with organic Se species, mainly SELENOP and
Sec, and inversely with inorganic forms (selenate and selenite) [80]. On the other hand, the
meta-analysis based on dietary Se intake suggests a threshold of 60-80 pg/day at which the
diabetogenic activity of Se could occur [79]. This finding is consistent with both the study of
Gu et al. [81], which reported an association between dietary Se intake exceeding 60 pg/day
and IR, and the recommended adequate levels of dietary Se intake [55] (Figure 2).

3.3. Randomized Clinical Trials

Several randomized clinical trials (RCTs) have also investigated the effects of Se on
the risk of T2D development. In the five RCTs included in [12], T2D was considered as
a secondary outcome. Only in the NPC (Nutritional Prevention Cancer) trial, in which
1312 subjects with a history of nonmelanoma skin cancer were given 200 ng/day of Se
as high-Se yeast or placebo yeast, an increased risk of developing T2D was observed in
those patients in the top tertile of Se status at baseline (>122 nug/L) (hazard ratio, HR = 2.70,
95% CI = 1.30-5.61) [82]. This result was neither confirmed in the Selenium and Vitamin E
Cancer Prevention Trial (SELECT) nor in the other trials reviewed, despite the common
high Se status at baseline in some of them. Regarding the other trials, they were based on
a small sample size (Watchful Waiting Trial and Hypocaloric Diet Enriched in Legumes
(HDEL) and selenium trial [83,84]), enrolled only male participants (SELECT [85,86]), had
a short duration and a restricted age range of participants (PRECISE trial [87]), and did
not measure Se at baseline (HDEL and selenium trial [84]). In a subsequent meta-analysis
including three RCTs (NCP, SELECT and Sel/Cel trials), which provided participants
(a total of 20,290 subjects) with 200 ug/day of Se supplement as either selenized yeast
or selenomethionine, no statistically significant increased risk of T2D (pooled OR = 1.18,
95% CI = 0.95-1.47) was found by comparing those who received Se and placebo group [62].
As highlighted by Rayman and Stranges [12], SELECT used selenomethionine, which,
despite being the main Se species in food, must undergo catabolism before being used
for the synthesis of selenoproteins. Moreover, in the Sel/Cel trial, which administered
selenized yeast as in the NPC trial, there was an increased risk for T2D (HR = 2.21,



Antioxidants 2022, 11, 1188

8 of 22

Experimental studies

95% CI = 1.04-4.67) only in those individuals aged 63 years or older who had received
the supplement, but not on overall participants [88]. The meta-analysis by Vinceti and
co-authors [78] retrieved five RCT, all of which administered 200 ng/day to the intervention
group, as Se yeast (four studies) or selenomethionine (one study). The pooled relative
risk (RR) including all subjects (11,469 and 10,796 subjects in the treatment and placebo
group, respectively) was 1.11 (95% CI = 1.01-1.25). Limiting the analysis by sex, a summary
RR =1.10 (95% CI = 1.00-1.24, four studies) was obtained in men and a non-significant
estimate in women (RR = 1.43, 95% CI = 0.74-2.77, two studies) [78]. Hence, both age
and sex could act as modifiers in the relationship between Se and T2D occurrence [78]
(Figure 2).

> At high doses of Se improvement of glucose homeostasis in

_ At Se levels not exceeding the maximum tolerated dose

hyperinsulinemia and insuline resistance in non-diabetic animals

> In case-control studies serum Se levels lower in diabetic patients

_ than in healthy subjects
Epidemiological
studies :— In cross-sectional studies positive association between

- serum/plasma Se levels and T2D or fasting plasma glucose

In dose-response meta-analyses increased risk of T2D prevalence
with increasing serum/plasma/diet Se levels

>

Only in NPC trial increasing risk of T2D in patients in the upper
Randomized clinical _ percentile of Se supplementation

studies
no effect . . )
» | Inmeta-analyses not significant increased risk of T2D occurrence

between Se and placebo groups. Sex and age possible modifiers.

Figure 3. Summary of the current evidence derived from experimental, epidemiological and ran-
domized clinical studies on the association between selenium and occurrence of type 2 diabetes.
Abbreviations: NPC—Nutritional Prevention Cancer; T2D—type 2 diabetes.

Evidence from clinical trials does not exclude a potential role of Se supplementation
in T2D development, although risk estimates are lower than those from observational
studies [12,62]. In addition to the factors already considered, a further explanation for
this discrepancy lies in the non-linear association between Se exposure and T2D risk
for Se concentrations above 140 nug/L and, since plasma-Se levels (sum baseline plus
supplement) were higher in experimental human studies than those in non-experimental
studies, a lack of increase or even a decrease in the excess risk for T2D might occur
at high Se concentrations [78]. Indeed, most of the RCTs performed so far have been
from the United States, where the average dietary intake of Se ranges from 93 pg/day in
women to 134 ug/day in men, values substantially higher than those recorded in Europe
(40 pg/day) [89]. Furthermore, unlike observational studies that generally cover a longer-
term period, Se supplementation in RCTs has a median duration of 3-5 years among older
participants, which could be an insufficient period to detect an association of risk [62]. Of
note, none of the RCTs conducted employed inorganic Se forms, which are expected to
have more pronounced diabetogenic action, consistent with their greater toxicity [90].

3.4. Molecular Mechanisms Underlying the Association between Selenium Exposure and
Type 2 Diabetes

The relationship between Se and carbohydrate metabolism could be explained by
considering that the biosynthesis and secretion of SELENOP are increased under hyper-
glycemic conditions [71]. SELENOP transcription is controlled by a binding motif in
the promoter for FoxOla and HNF-4« transcription factors, which are co-activated by
PGC-1«; these are all known to be involved in the transcriptional regulation of funda-
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mental gluconeogenic enzymes such as glucose-6-phosphatase and phosphoenolpyruvate
carboxykinase [41,71]. This finding suggests that SELENOP may also be regulated in
hepatocytes such as a gluconeogenic enzyme, with insulin inhibiting gene expression via
Akt-mediated phosphorylation of FoxOla; meanwhile, high glucose stimulates the tran-
scription of gluconeogenic enzymes through post-translational modification of FoxOla and
increasing expression of PGC-1« [41]. Furthermore, the regulation of SELENOP expression
in hepatocytes relies on S-adenosylmethionine-dependent protein methylation in a manner
similar to that of the gluconeogenic enzymes [91]. Indeed, insulin-resistant individuals
with nonalcoholic steatohepatitis displayed a lower rate of transmethylation of methion-
ine [92], while both expression and serum SELENOP concentration were higher in patients
with dysregulation of glucose metabolism (T2D or pre-T2D) than those with normal glu-
cose tolerance [72,93,94]. It is important to note, however, that serum SELENOP levels
reach saturation with a high Se intake and, as Se deficiency has been reported in patients
with T2D, the elevation of SELENOP could be an effect of disease status, rather than the
cause [63]. The metabolic actions of SELENOP in the liver—impairment of insulin signaling
and dysregulation of glucose metabolism—are mediated, at least partly, by the inactivation
of adenosinemonophosphate-activated protein kinase (AMPK), a crucial enzyme that, in
physiological conditions, phosphorylates and activates the insulin receptor and promotes
activation of the insulin-signaling pathway [72,95]. Genetic variation in SELENOP has been
reported to be related to several metabolic phenotypes and, in particular, specific variants
were associated with fasting insulin levels and acute insulin response [96]. Finally, a recent
study showed that the elevation of circulating SELENOP, but not of circulating Se, was
connected to the future onset of hyperglycemia, probably due to the direct anti-oxidative
enzyme activity of SELENOP independent of its Se transport capacity [97].

4. Thyroid and Type 2 Diabetes

Thyroid diseases and T2D often coexist in the same patients, reinforcing the hypothesis
of a reciprocal relationship between these two disorders [9,98-100]. Indeed, THs exert a
series of effects on glucose metabolism, as suggested by the action of THs on the pancreas
in modulating the development and function of pancreatic 3-cells [101,102]. In particular,
experimental data suggest that triiodothyronine (T3) may induce pancreatic 3-cell prolifer-
ation in a time-dependent manner via the MAPK/ERK pathway [103]. THs may also affect
insulin secretion and glucose uptake in other organs, including the gastrointestinal system
(increased glucose absorption), liver (increase in gluconeogenesis and glycogenolysis),
skeletal muscle (increased glucose uptake), and adipose tissue (increased lipolysis) [104].
Furthermore, T3 can exert central effects through critical intrahypothalamic actions, with a
significant impact on hepatic glucose-production and insulin sensitivity [105]; moreover, it
regulates the expression of genes involved in hepatic metabolic responses such as gluco-
neogenesis, lipogenesis, insulin signaling, adenylate cyclase signaling, cell proliferation,
and apoptosis [106,107]. THs may also indirectly lead to T2D complications, as they are
positively associated with central adiposity and cardiometabolic risk factors, including
increased blood pressure and dyslipidemia [100,108].

Both hypothyroidism and hyperthyroidism have been linked with IR and T2D, with
a high prevalence of thyroid dysfunction—up to 29% in T2D patients—and with females
more affected than males [109,110]. In particular, the prevalence of thyroid disease ap-
peared to increase with age and in patients with poor glycemic control, while diabetic
subjects with thyroid dysfunction displayed dyslipidemia when compared to diabetic
patients with normal thyroid function [109]. Untreated hyperthyroid patients (Graves’
disease) exhibited typical signs of -cell dysfunction, namely the inability to adequately
increase the insulin response to hyperglycemia, as well as an augmentation of proinsulin
levels both in the fasting state and following a meal [111]. Additionally, the fasting glu-
cose and free fatty-acid levels, as well as insulin concentration and lipid oxidation, were
significantly higher in thyrotoxic patients than in controls [111]. In thyrotoxicosis, T3
levels were positively correlated with IR, with the glucagon-to-ghrelin ratio identified as a
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significant determinant in this relationship [112]. Although high levels of T3 may cause IR
in muscle and adipose tissue, only recently, a study documented that high T3 levels are
further capable of inducing IR in 3-cells by activating endoplasmic reticulum stress (ERS)
(increased expression of ERS-related proteins PERK, IRE1, ATF6 and GRP78) and the apop-
totic pathway (upregulation of the ERS apoptosis markers CHOP and caspase-12) [113]. An
increased degradation of insulin has also been described in hyperthyroidism, which also
determined an increased rate of gluconeogenesis and glycogenolysis, increased glucose
uptake in peripheral tissues (especially in skeletal muscle), and the production of proin-
flammatory cytokines (e.g., interleukin 6 and tumor necrosis factor alpha) from adipose
tissue [114].

Importantly, hypothyroidism, both overt and subclinical disease, was also associated
with a deterioration of glucose metabolism and elevated whole-body IR; moreover, it ap-
peared to be subject to an increased risk of hypoglycemia as a consequence of the mismatch
between insulin and glycemic levels [115,116]. Furthermore, insulin-stimulated glucose
transport was reported to decrease in patients with hypothyroidism due to disrupted
translocation of GLUT4 on the plasma membrane [117]. On the other hand, IR was corre-
lated with a higher prevalence and larger size of thyroid nodules and increased thyroid
volume [118,119].

An association between THs and diabetes has also been demonstrated in pregnant
women with gestational diabetes or pre-existing T2D, with possible adverse effects for both
maternal and fetal health [120,121]. The relationship between IR and/or T2D, obesity, and
thyroid cancer has been recently explored and, although the etiology of such an association
is unclear, it may involve high insulin levels, increased body fat, hyperglycemia, and anti-
diabetes medications including exogenous insulin use [122]. As for anti-diabetes drugs,
the role of metformin in thyroid cancer remains controversial due to its growth-inhibitory
effects, which are implicated in AMPK-related pathways, the mammalian target of NF-
kB, rapamycin and mitochondrial glycerophosphate dehydrogenase [123]. In contrast,
regular human insulin and insulin glargine, at high concentrations, significantly induced
thyroid cell proliferation and tumor cell migration in in vitro models [124]. The increase
in glucose uptake across the plasma membrane, which is necessary to support energy
needs for cancer development, was reported in thyroid cancer cells, in which an elevated
expression of GLUT1 and GLUT3 could be mainly involved in the oncogenesis process [125].
Additionally, hyperglycemia can affect cancer cellular growth and proliferation via many
other mechanisms, such as increasing oxidative stress and inflammatory cytokines, the
protection of cancer cells from apoptosis, the stimulation of cell motility, and adhesion [122].

5. Selenoprotein Effects in Thyroid Health and Type 2 Diabetes

Se content is the highest in the thyroid, when considering the amount of Se per
gram of tissue, and is necessary for antioxidant function and for the synthesis of THs.
Indeed, this element is essential for the production of DIOs—which are responsible for
the conversion of thyroxine (T4) to T3, the biologically active form of THs—as well as
the conversion of T4 to reverse T3 (rT3), the inactive metabolite of THs. Consequently, a
deficiency in Se results in reduced expression and activity of these enzymes, leading to an
increase in T4 and a decrease in T3 concentrations (Table 2). Selenoproteins such as those
belonging to the GPx and TrxR families—which are implicated in the antioxidant defense
system and in redox control in general—have a critical role in the thyroid gland, protecting
thyrocytes from harmful consequences due to HyO, and ROS, which are generated during
the normal synthesis of THs by the follicles. Additionally, they are significant for thyroid
homeostasis is SELENOP, the main transporter of Se in the blood (Table 2). Moreover,
other selenoproteins (S, K and V) have been identified whose functions are not yet fully
characterized, although they are involved in redox regulation processes and the ERS
response, inflammation, calcium (Ca) regulation, and the maintenance of membrane-
associated multiprotein complexes; moreover, they are also important for the functioning
of the thyroid [52,126-128].
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Table 2. Selenoproteins involved in thyroid health and type 2 diabetes.

Se(}:?r(:)]r)‘r;;e)m Isorg,\z;jr/les Main Functions Effects Linked to Thyroid Reference Effects Linked to T2D Reference
Iodothyronine DIO1 T4 to T3 conversion Conversion of TH [129] DIO1 polymorphism (rs7527713) associated with IR [130]
deiodinase DIO2 T4 to T3 conversion Conversion of TH [129] DIO2 polymorphism (Thr92Ala) associated with BMI and FBG [131]
(DIO) DIO3 T4 to rT3 conversion Deactivation of TH [129] Increased DIO3 associated with cardiac dysfunction in diabetic heart [132]
. - Thyrocyte protection from Overexpression of GPx1 associated with T2D-like phenotypes.
GPx1 Cytosolic antioxidant peroxidative damage [133,134] Human GPX1 polymorphism related to risks of diabetes and obesity [135]
Glutathione GPx2 Extracellular Thyrocyte protection from [133,136] GPx3 involved in MetS, IR and T2D complications [137-140]
peroxidase antioxidant peroxidative damage
(GPx) Membrane Antioxidant protecting the GPx4 levels associated with clinical outcomes and metabolic
GPx3 hospholipid membrane. reeulation of [141] abnormalities among patients with gestational diabetes mellitus. [142,143]
P antisxi da};lt cellul/a c ;gleath GPX4 involvement in high-glucose-induced ferroptosis (programmed ’
cell death dependent on iron)
Thioredoxin TrxR1 Redox state regulation Thyrocy.te protection from Improvement of survival and function of pancreatic 3-cells [145-147]
reductase & peroxidative damage [133,134,144] b P
X and antioxidant actions .. X2 polymorphisms associated wit complications ,
(TrxR) TrxR2 d antioxid i Antioxidant I TRx2 polymorphi iated with T2D plicati [148,149]
Selenobrotein P Selenium transport and
- storage, antioxidant elenium su to thyroi elationship wit an 51,
(SELENOP) ge, antioxid Seleni pply to thyroid [150] Relationship with IR and T2D [51,97]
defense
Selenoprotein S Protection against ERS and SELENOS levels associated with T2D and T2D macrovascular
- rotection against . 2. , complications. olymorphisms associated with the risk for 53-155
(SELENOS) P ion against ERS 0x1dat§ve iniur [151,152] plicati SELENOS polymorphi iated with the risk f [153-155]
jury developing T2D and macroangiopathy.
Silggﬁgﬁgllg K - Quality :}?:glgl within Pmtecot)lggaii:r;;;iis and [152] SELENOK expression downregulated by glucose [156]
Modulation of redox
. processes and ER . . SELENOV as modulator of body fat accumulation and energy
Selenoprotein V Protection against ERS and expenditure, and regulator of O-GlcNAcylation (protein associated [157]

(SELENOV)

calcium homeostasis,
cell adhesion and
angiogenesis

oxidative injury

[130]

with various metabolic diseases including T2D and obesity)

Abbreviations: BMI—body-mass index; ER—endoplasmic reticulum; ERS—endoplasmic reticulum stress; FBG—fasting blood-glucose; IR—insulin resistance; MetS—metabolic
syndrome; rT3—reverse triiodothyronine; T2D—type 2 diabetes; T3—triiodothyronine; T4—thyroxine; TH—thyroid hormone.
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Notably, these selenoproteins are involved in the onset of T2D and the risk of T2D-
associated complications (Table 2). While it is well established that THs are essential for
metabolic regulation, including basal metabolic rate [158], the relationship between TH
and T2D has been further supported by studies evaluating DIO1 and DIO2 polymorphisms
(Table 2). In particular, rs7527713 genetic variants in Diol were found to be associated
with IR [144], whilst polymorphisms in the Dio2 gene were related to greater IR in diabetic
subjects (i.e., 1s225017-T/A) and increased risk of T2D (i.e., Thr92Ala) [159,160]. On the
other hand, Dio2 is modulated by glucocorticoids and insulin in the brown adipocytes of
rats; thus, insulin depletion resulted in a general decrease in DIO2 activity, suggesting a
reciprocal crosstalk between glucose homeostasis and thyroid function [161]. Furthermore,
cardiac dysfunction in diabetic rats was associated with tissue hypothyroidism, evidenced
by an increase in DIO3 protein expression and a trend towards increased tissue Dio3 mRNA
expression in untreated diabetic hearts, as well as by improved cardiac pathology following
low-dose T3 replacement [132].

Excessive GPX1 activity may be detrimental to T2D and obesity, as demonstrated by
the positive association between the overexpression of GPx1 and the impaired glucose
clearance, hyperinsulinemia, hyperglycemia, and reduced insulin signaling in a mouse
model [162]. Conversely, mice lacking GPx1 showed hypotrophy of islet 3-cells, insulin
hyposecretion, decreased plasma-insulin concentration, and increased insulin sensitivity
due to enhanced insulin signaling [163,164]. A number of single-nucleotide polymorphisms
(SNPs) in the GPx1 gene have been associated with obesity, a higher prevalence of MetS, IR,
and susceptibility to T2D [135,165,166]. As it concerns GPx3, its serum levels were higher
in individuals with MetS compared to controls, and GPx3 gene polymorphism (rs8177409)
was related to cardiovascular risk in a Mexican population [137]. In contrast, serum GPx3
activity was significantly and inversely correlated to mean carotid intima-media thickness
and carotid plaque (indexes of atherosclerosis) in a cohort of patients with T2D, suggesting
that both excess and deficiency of GPx3 may cause deleterious effects [139]. SNPs of
Gpx3 (rs2230303 and rs8177413) were associated with an increased risk of diabetic kidney
disease, the most common T2D complication and the major cause of end-stage kidney
disease [138]. Gpx4 haploinsufficient (GPx4+/—) mice fed diet-induced obesity exhibited
glucose intolerance, dyslipidemia, cardiac hypertrophy and fibrosis as a consequence of
significant increases in lipid peroxide-derived aldehydes [167]. Furthermore, biochemical
analysis performed on samples of human atrial myocardium revealed that subjects with
T2D and hyperglycemia had significantly decreased GPx4 levels and a greater content of
4-hydroxynonenal (a product of lipid peroxidation) adducts in their heart compared to
age-matched non-diabetic patients [167]. Accordingly, lower GPx4 levels were reported
in Chinese patients with gestational diabetes than in control pregnant women, with GPx4
negatively correlated with the fasting 2 h plasma-glucose level and glycated albumin in
the second trimester [142]. GPX4 expression was also downregulated in high-glucose-
stimulated cells, whereas the upregulation of GPX4 expression inhibited ferroptosis (an
iron-dependent type of programmed cell death, characterized by iron accumulation and
lipid peroxidation), and was able to reduce complex hydroperoxides (e.g., phospholipid
hydroperoxides and cholesterol hydroperoxides), breaking the lipid peroxidation chain
reaction [143].

The Trx/TrxR system exerts crucial functions in adipocyte dysfunction and obesity, car-
bohydrate metabolism—including insulin production and sensitivity—f3-cell death, blood
pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis,
enough to be proposed as a new additive biomarker for the MetS, IR, and T2D, as well as
for the treatment of hypertension and atherosclerosis [147]. In vitro models showed that
Trx1 was released by MING6 insulinoma cells during hypoxic conditions and by pancreatic
islet grafts upon glucose stimulation, whereas exogenous supplementation of recombinant
Trx1 counteracted apoptosis induced by hypoxia and preserved insulin secretion; this
indicates that Trx1 activity supports 3-cell function and survival in response to oxidative
stressors [145,146]. Certain polymorphisms of the mitochondrial TrxR2 gene (i.e., rs4485648
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and rs1548357) were also identified as genetic risk factors of T2D complications such as
diabetic retinopathy and myocardial infarction [148,149].

SELENOP, which is also involved in antioxidative defense, has been rediscovered
as a “hepatokine” capable of leading to IR and hyperglycemia [168]. In fact, high levels
of this protein were found to be increased in T2D, adversely affecting pancreatic {3 cell
functionality and inhibiting insulin secretion, which, in turn, results in impaired insulin
signaling and promotion of IR [53]. In addition, elevated plasma-SELENOP levels may
predict the onset of glucose intolerance in healthy subjects [97].

Serum SELENOS, a protein principally secreted by hepatocytes, was associated with
T2D and its macrovascular complications (macroangiopathy, a specific form of accelerated
atherosclerosis) [153,154]. This protein retains antioxidant and anti-inflammatory prop-
erties, and contributes to the maintenance of the morphology and distribution of ER in
cells, as well as the regulation of ERS; this suggests its potential in the occurrence and
development of T2D [151]. Furthermore, several genetic polymorphisms in the SELENOS
gene were related to T2D (rs1384565), serum insulin levels (rs4965373), blood-glucose levels,
and homeostasis model assessment of IR (rs4965814) [154,155].

SELENOK is a transmembrane protein localized in the ER which protects cells from
ERS-induced apoptosis, and is fundamental for promoting Ca(2+) flux during immune cell
activation [169,170]. Of note, in vitro, the expression level of SELENOK, as well as that of
DIO2, was down-regulated by about 10% due to high levels glucose [149].

Recent experimental studies have highlighted a role for SELENOV in the regulation of
Se metabolism and in the functional expression of selenoproteins, as well as in protection
against ROS/RNS-mediated ERS oxidative damage [171,172].

6. Molecular Targets to Enhance the Antioxidant Defense against Type 2 Diabetes

A promising therapeutic target against T2D is represented by the Keap1-Nrf2 reg-
ulatory pathway, which has a central role in cellular protection against oxidative stress,
thus diminishing ROS/RNS levels, which contribute to the deterioration of pancreatic
[3-cells and the consequent reduced release of insulin [173]. Berberine is an alkaloid with a
wide range of pharmacological properties, including the suppression of oxidative stress
mediated by the Nrf2 pathway; it ultimately promotes an increase in the cellular level of
GSH and SOD and a reduction in ROS species [174].

As for selenoproteins, the body of evidence suggests that the suppression of SELENOP
may provide a valuable therapeutic approach to improving glucose metabolism and treating
T2D and its vascular complications [175]. As reported in Section 3.4, SELENOP is downreg-
ulated by insulin and positively regulated by glucose. The antidiabetic drug metformin
phosphorylates and inactivates FoxO3a via activation of AMPK, thereby suppressing
SELENOP expression in hepatocytes [176]. Eicosapentaenoic acid, a major component of
w-3 polyunsaturated fatty acids, downregulates SELENOP by inactivating sterol regulatory
element-binding protein-1c independently of the AMPK pathway [177]. Additionally, a
novel molecular strategy based on the development of neutralizing SELENOP monoclonal
antibody AE2 was reported to improve glucose intolerance, insulin secretion and IR in vitro
and in vivo [178].

ER-resident selenoproteins such as SELENOS and SELENOK arouse particular interest,
as they are supposed to modulate inflammatory processes, oxidative stress, and ERS;
these are emerging as critical determinants in T2D settings, and therefore, may act as
potential pharmacological targets [179]. Moreover, in a model of SELENOV knockout
mice, SELENOV emerged as a new inhibitor of body-fat accumulation, activator of energy
expenditure, and regulator of O-GlcNAcylation (a protein associated with various metabolic
diseases including T2D and obesity), and as such, is an interesting protein to be further
investigated in the future [157] (Table 2).



Antioxidants 2022, 11, 1188

14 of 22

7. Conclusions

Accumulated evidence from experimental and epidemiological studies has suggested
the potential of Se as a risk factor for T2D; this is supported by the biological plausibility
given by the effects of various Se species on glucose metabolism in animals and humans.
The relationship between Se and T2D is extremely complex, as emphasized by inconsis-
tencies found both in clinical trials and in animal models. Although in vivo studies are
crucial for elucidating the biological mechanisms and pathways involved, animals are
more susceptible to variations in Se supply and selenoprotein activities; therefore, their
results have more limited translational value. If experimental studies in humans allow the
determination of a causal relationship, those performed in populations with suboptimal
Se intake and including a wider range of concentrations of Se supplementation, as well
as studies investigating the association between participant genotypes and Se status, are
currently missing. With respect to observational studies, the generally high heterogeneity
found between studies is a consequence of differences in study design, age, sex ratio, and Se
status, as well as in the biomarkers used for Se measurement. Overall, these data indicate
that, although adequate Se intake is critical to human health, supplementing Se beyond
the recommended daily intake may be associated with a small but possible increased
risk of T2D.

THs are essential for the homeostatic control of energy metabolism, and exert a variety
of effects on glucose metabolism, IR, and T2D and its complications. Conversely, elevated
insulin may affect the prevalence and size of thyroid nodules and thyroid volume, revealing
a bidirectional interconnection between the two conditions. Beyond their most studied
common determinants, selenoproteins are emerging as additional critical factors for both
adequate insulin and TH synthesis; as such, they are simultaneously both essential for
thyroid functionality and involved in the pathogenesis and development of T2D. Neverthe-
less, future studies are warranted, to delve into the association between T2D and thyroid
dysfunction; these should explore common molecular and cellular mechanisms that may
play a role in both conditions, how Se fits into this relationship, and whether Se supple-
mentation (allowing for full selenoprotein activity and avoiding toxic consequences) may
contribute to the prevention and/or therapeutic treatment of these globally widespread
conditions.
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Abbreviations

AGE Advanced glycation end-product
Akt Protein kinase B

ATP Adenosine triphosphate

DIO Deiodinase

eNOS Endothelial nitric oxide synthase
ER Endoplasmic reticulum

ERS Endoplasmic reticulum stress
GSH Reduced glutathione

GPx Glutathione peroxidase

IR Insulin resistance

IRS-1 Insulin receptor substrate-1

Keapl Kelch-like ECH-associated protein 1

MAPK Mitogen-activated protein kinase

MetS Metabolic syndrome

NADPH Nicotinamide adenine dinucleotide phosphate
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NF-«B Nuclear factor kB

NO Nitrogen oxide

NOX NAPDH oxidase

Nrf2 Nuclear factor erythroid 2-related factor-2
PI3K Phosphatidylinositol-3,4,5-triphosphate kinase
PKC Protein kinase C

RNS Reactive nitrogen species

ROS Reactive oxygen species

rT3 Reverse triiodothyronine

Sec Selenocysteine

SELENOK  Selenoprotein K
SELENOP  Selenoprotein P
SELENOS  Selenoprotein S
SELENOV  Selenoprotein V

SNP Single-nucleotide polymorphism
SOD Superoxide dismutase
T2D Type 2 diabetes
T3 Triiodothyronine
T4 Thyroxine
TH Thyroid hormone
TrxR Thioredoxin reductase
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