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ABSTRACT
Despite recent advances in transgenic animal models and display technologies, humanization of mouse 
sequences remains one of the main routes for therapeutic antibody development. Traditionally, humani-
zation is manual, laborious, and requires expert knowledge. Although automation efforts are advancing, 
existing methods are either demonstrated on a small scale or are entirely proprietary. To predict the 
immunogenicity risk, the human-likeness of sequences can be evaluated using existing humanness 
scores, but these lack diversity, granularity or interpretability. Meanwhile, immune repertoire sequencing 
has generated rich antibody libraries such as the Observed Antibody Space (OAS) that offer augmented 
diversity not yet exploited for antibody engineering. Here we present BioPhi, an open-source platform 
featuring novel methods for humanization (Sapiens) and humanness evaluation (OASis). Sapiens is a deep 
learning humanization method trained on the OAS using language modeling. Based on an in silico 
humanization benchmark of 177 antibodies, Sapiens produced sequences at scale while achieving results 
comparable to that of human experts. OASis is a granular, interpretable and diverse humanness score 
based on 9-mer peptide search in the OAS. OASis separated human and non-human sequences with high 
accuracy, and correlated with clinical immunogenicity. BioPhi thus offers an antibody design interface 
with automated methods that capture the richness of natural antibody repertoires to produce therapeu-
tics with desired properties and accelerate antibody discovery campaigns. The BioPhi platform is acces-
sible at https://biophi.dichlab.org and https://github.com/Merck/BioPhi.
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Introduction

Monoclonal antibodies (mAbs) represent the majority of pro-
tein-based therapeutics currently in the clinic, with mAb treat-
ments available for disorders such as cancer,1 autoimmune 
disease,2 and viral infection.3 Commonly, mAbs are generated 
by the immunization of mouse or another model animal. 
However, sequences derived from rodent or other non- 
human sources are likely to elicit an immunogenic antidrug 
antibody (ADA) response.4 Therefore, the variable region of 
discovery mAbs must be humanized to mitigate undesirable 
clinical properties, including safety risks or reduced efficiency. 
To do so, the hypervariable complementarity-determining 
regions (CDRs) and other essential murine framework residues 
are carefully incorporated into a human framework, producing 
a human-like sequence that preserves the binding properties of 
the original antibody. Alternative antibody discovery 
approaches that avoid the need for humanization through use 
of transgenic mice with human B cell genes exist, but this 
process is expensive and can still produce immunogenic 
sequences.5 Additionally, human-like antibodies can also be 
developed inexpensively in vitro by high-throughput screening 

of large and diverse libraries using yeast or phage display 
technologies.6 However, antibody sequences produced ex vivo 
have the disadvantage of not being screened for polyreactivity 
by central tolerance mechanisms and may not maintain proper 
biophysical properties such as pI or hydrophobicity for desir-
able in vivo pharmacokinetics. As a result, mouse immuniza-
tion and subsequent humanization of the murine sequences 
remains one of the main paths toward therapeutic antibody 
discovery.

Traditional humanization methods are based on germline 
sequences or natural sequence libraries of limited size. The cano-
nical method of humanization is CDR grafting,7 by which the 
parental CDRs are inserted into a human germline sequence of 
choice. Additionally, positions important to the structural con-
formation of CDRs (known as “Vernier zones”8) are frequently 
back-mutated to the original parental residues. Although such 
residues can support the stability of the original CDR conforma-
tions, they can also reduce the effect of humanization. Expert 
knowledge is therefore needed to carefully balance this tradeoff, 
which limits the application to small numbers of sequences and 
excludes use by researchers who are lacking such expertise.

CONTACT Danny A. Bitton danny.bitton@merck.com R&D Informatics Solutions MSD Czech Republic S.r.o, Czech Republic; David Prihoda david. 
prihoda@vscht.cz University of Chemistry and Technology, Technicka 5, Prague 6 – Dejvice, Prague 166 28, Czech Republic

Supplemental data for this article can be accessed on the publisher’s website.

MABS                                                           
2022, VOL. 14, NO. 1, e2020203 (16 pages) 
https://doi.org/10.1080/19420862.2021.2020203

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-0083-7428
http://orcid.org/0000-0003-2577-5163
http://orcid.org/0000-0003-3282-1017
https://biophi.dichlab.org
https://github.com/Merck/BioPhi
https://doi.org/10.1080/19420862.2021.2020203
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19420862.2021.2020203&domain=pdf&date_stamp=2022-02-07


To evaluate the human-likeness of humanized sequences 
and identify immunogenicity risks, different “humanness 
scores” have been developed. First scores defined humanness 
based on sequence identity with a library of reference human 
sequences, averaged across all sequences in Z-score,9 or across 
the closest 20 sequences in T20 score.10 A major pathway for 
the identification of foreign proteins is their processing into 
short peptides that are displayed on major histocompatibility 
complex (MHC) molecules and subsequently recognized by 
T-cell receptors. Guided by this principle, Human String 
Content (HSC)11 derived a score from sequence identity of 
9-mer peptides compared to sequences of human antibody 
germline genes. The HSC approach pioneered iterative huma-
nization performed by maximizing the HSC score, later 
enabling joint optimization within the structural context.12 

Recently, the MG score approach13 has enabled capture of 
higher-order relationships between pairs of sequence positions 
using a multivariate gaussian model, which was again applied 
as an optimization criterion for automated humanization. 
However, all the above-mentioned humanness scores have 
limited applicability for humanness evaluation due to the lack 
of granularity – a single score is provided for the entire 
sequence. Moreover, these scores are derived from small refer-
ence libraries, which can in turn impose unnecessary limita-
tions on the diversity of the designed therapeutics.

The emergence of large-scale repertoires of natural antibo-
dies provides a novel opportunity for exploiting antibody 
diversity to improve humanization and humanness evaluation 
methods. The Observed Antibody Space (OAS) database14 has 
collected more than five hundred million human sequences 
from more than five hundred human subjects. Such repertoires 
not only inform our view of response and disease states, but 
also provide a diverse library of naïve and mature sequences 
that can be exploited for data-driven antibody engineering. The 
diversity and therapeutic applicability of OAS was demon-
strated by its ability to recover sequences of therapeutic 
mAbs with high CDR sequence identity.15 Furthermore, it 
was shown that developability properties of natural human 
antibodies are comparable with those of clinical mAbs.16 In 
IgReconstruct,17 the OAS database was used to construct 
a back-translation method producing human-like DNA and 
evaluating humanness based on positional nucleotide fre-
quency. Most recently, OAS was used in Hu-mAb18 to train 
a random forest-based humanness score used as an optimiza-
tion criterion for iterative humanization.

The natural language processing field has demonstrated 
the ability of deep learning models to learn from enormous 
unlabeled bodies of text. Most recently, the Transformer 
architecture19 has brought breakthroughs in question 
answering20 or language translation.21 Such progress is 
increasingly permeating the protein engineering space, 
where large-scale corpora of unlabeled data can likewise be 
exploited for real-world challenges. This has crystallized in 
AlphaFold,22 which demonstrated the applicability of large 
amounts of multiple sequence alignments (MSAs) and pro-
tein structures for protein folding prediction. Multiple meth-
ods were developed with the goal of encoding meaningful 
compact representations of protein sequences by pre- 
training on raw corpuses of amino acid sequences23,24 or 

MSAs.25 Such representations can be leveraged for transfer 
learning to specific problems with limited training sets.23 In 
antibody discovery, AbLSTM26 has demonstrated the ability 
of deep learning to distinguish between human and non- 
human antibody sequences. Deep learning was also able to 
select candidates with high affinity for iterative binding 
optimization using directed mutagenesis.27 Recently, genera-
tive adversarial networks were trained on antibody reper-
toires to generate libraries of random antibody sequences 
with favorable developability profiles28 or improved 
affinity.29

Here we present BioPhi, a platform for antibody design, 
humanization and humanness evaluation using natural anti-
body repertoires (Figure 1). BioPhi provides an interactive web 
interface that enables generating visual reports and performing 
manual adjustments, as well as a command-line interface that 
enables the processing of hundreds of sequences per minute. 
Sapiens is a deep-learning antibody humanization method 
trained on antibody repertoires of 266 human subjects from 
the OAS. Based on a test set of 25 humanized antibodies with 
known parental sequences and a novel test set of 152 huma-
nized antibodies with putative parental sequences, we show 
that Sapiens produced humanization results comparable to 
those produced by expert methods. OASis (Observed 
Antibody Space identity search) is a novel antibody humanness 
score based on exact 9-mer peptide search in the OAS. OASis 
provides an interpretable and granular humanness report with 
adjustable stringency to allow evaluating sequences of high 
diversity. BioPhi is an open and extensible platform that offers 
improved design of humanized antibodies and will continue 
growing to facilitate faster discovery and development of anti-
body therapeutics.

Results

Peptides from antibody repertoires capture diversity for 
antibody engineering

In antibody discovery and development, many candidate var-
iants need to be explored to find at least one lead candidate that 
satisfies the growing demands from developability,30 

immunogenicity,4 or posttranslational modification liability.31 

Therefore, a diverse antibody reference library needs to be 
collected and compactly represented in order to quickly and 
reliably determine which engineering mutations are viable and 
which do not conform to the acceptable human sequence 
space.

To capture the diversity of human antibodies, we used 
human antibody repertoires curated in the OAS database.14 

To visualize the sequence diversity, we sampled each OAS 
subject for complete variable region sequences from each 
V gene family. Next, we collected a germline reference of all 
406 human heavy V genes and 206 light V genes from IMGT 
Gene-DB.32 We embedded these into two-dimensional space 
using UMAP,33 placing sequences closer or further apart from 
each other based on sequence similarity. The dimensionality 
reduction revealed areas in sequence space that were densely 
covered by germline sequences, as well as diverse areas that had 
no germline coverage (Figure 2a,b).
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Inspired by HSC score,11 which relies on 9-mer peptides 
from antibody germline, we relied on 9-mer peptides from 
antibody repertoires to capture a compressed representation 
of the wider antibody sequence diversity. The peptide length 
was motivated by the fact that 8-mer peptides could not be 
used to predict MHC binding, while 10-mer peptides would 
produce an order of magnitude larger database, which would 
be impractical for users. We extracted all overlapping 9-mer 
peptides from variable heavy and light chains found in OAS 
repertoires that were linked to a single human subject (donor 
of the sample) and contained at least 10,000 complete 
sequences. To reduce sequencing errors and manage the pep-
tide database size, we removed heavy chain peptides found in 
only one human subject. This yielded the OASis database 
comprising of 139,000,294 distinct peptides found across 
118,713,869 sequences from 231 subjects from 26 studies in 

OAS. For each distinct peptide, we stored the list of corre-
sponding subjects. These records enabled calculation of the 
prevalence of any 9-mer peptide across the human population, 
which we defined as the percentage of subjects in OAS that 
contained an exact match of the peptide in at least one of the 
sequences in their antibody repertoire.

Next, we used the OASis database to calculate the exact 
number of distinct 9-mer peptides shared across different 
fractions of the human population in the OAS, to serve as an 
estimate of the public repertoire diversity. We compared our 
public repertoire diversity estimate with the number of distinct 
9-mer peptides extracted from all human germline VDJ genes 
from IMGT Gene-DB. Even when considering only ubiquitous 
peptides found in more than 80% of human subjects in OAS, 
repertoires provided a 12-fold larger sequence space than 
germline in terms of the number of unique peptide “building 

Figure 1. BioPhi integrated pipeline for bulk humanization (Sapiens) and humanness evaluation (OASis).  
(a) Sapiens is trained on human variable region antibody sequences from the OAS. Random positions in unaligned amino acid sequences are masked or mutated, 
Sapiens is trained to recognize and repair them. This simulates the real-world application where sequences with non-human residues originate from immunized mice, 
rabbit, or other species. (b) Sapiens recognizes non-human residues using deep learning attention mechanisms and predicts the most probable human residues at each 
position given a particular input sequence, thereby humanizing it. (c) OASis evaluates humanness of an antibody sequence by chopping it into all overlapping 9-mer 
peptides and searching them against the OAS to estimate their prevalence across the human population. (d) Designer tab can be used to perform manual adjustments 
to the sequence guided by mutations suggested by Sapiens score, positional residue frequency, and germline sequence identity.

Figure 2. Diversity of human antibody germlines compared to human antibody repertoires from OAS.  
(a) and (b) Diversity of antibody variable region sequences illustrated using UMAP dimensionality reduction of approx. 40,000 variable heavy chain (A) and light chain (B) 
sequences randomly sampled from OAS. Each dot represents a complete variable region sequence (colored by germline family), each cross represents a germline V gene 
sequence. (c) Total number of distinct 9-mer peptides found in human germline compared to the number found in antibody repertoires across different fractions of 
human population, calculated from repertoires of 231 human subjects in OAS. For each fraction of subjects on the X axis, the Y axis shows the number of peptides that 
appear at least in the given fraction of subjects (e.g. there were 1.9 × 106 distinct peptides that appeared in at least 20% of subjects).
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blocks” (Figure 2c). Furthermore, this is a lower estimate since 
current sequencing depth is limited compared to estimated 
repertoire sizes of 1011 or more unique sequences.34

In summary, the OASis peptide database offers diversity and 
granularity that can guide antibody engineering efforts with 
respect to human antibody repertoires.

OASis provides a granular and interpretable humanness 
evaluation

To provide utility for antibody engineering, the output of 
a humanness evaluation needs to be designed with both granu-
larity and interpretability in mind. Granularity can be achieved by 
identifying how different residues or stretches of the sequence 
contribute to the overall humanness, as opposed to providing only 
one score for the whole sequence. Interpretability can be achieved 
by explaining the humanness score of a particular sequence com-
prehensively to the user, for example by near reference sequence 
matches, as opposed to black-box predictions.

We developed OASis, a humanness evaluation method that 
reports human prevalence of individual peptides, together with 
a single aggregated score for an antibody as a whole. First, OASis 
evaluates the humanness of each overlapping 9-mer peptide in 
an antibody sequence in terms of human prevalence (Figure 3a). 
Such evaluation provides a granular and interpretable human-
ness report that highlights regions that present the largest risk.

To evaluate and compare humanness at the whole antibody 
level, we define the OASis identity score. OASis identity is 
calculated for a single antibody as the fraction of its peptides 
that pass a user-defined prevalence threshold. The prevalence 
threshold determines what fraction of the human population 

should contain a given peptide for it to be considered human. 
We made the threshold adjustable since we anticipate that 
future immunogenicity research will improve our understand-
ing of how prevalent a given peptide needs to be in order to be 
considered safe. In the BioPhi platform, the threshold is fully 
customizable, but we also provide four predefined thresholds 
that capture different stringency levels: loose (≥ 1% subjects), 
relaxed (≥ 10% subjects), medium (≥ 50% subjects) and strict (≥ 
90% subjects). For example, at the loose threshold, each pep-
tide is identified as human if it is found in at least 1% of 
subjects. And correspondingly, the OASis loose identity score 
of an antibody is calculated as the fraction of its peptides that 
are found in at least 1% of subjects.

To facilitate easier interpretation of a particular OASis iden-
tity score, we further define the OASis percentile, which converts 
the identity score to the 0–100% range based on 544 therapeutic 
mAbs from IMGT mAb DB.35 Then, the 0% OASis percentile 
score corresponds to the least human and the 100% OASis 
percentile score corresponds to the most human antibody in 
the clinical or preclinical stage (including terminated mAbs). 
The 0–100% percentile range provides a more intuitive scale 
that is robust to changes in the prevalence threshold. Across 
the loose, relaxed, medium and strict thresholds, the median 
OASis percentile is 5–7% for murine mAbs, 37–40% for huma-
nized mAbs and 80–81% for human mAbs. In BioPhi, human-
ness is reported using OASis, as well as using traditional 
methods based on positional residue frequency and germline 
sequence identity (Supplementary Figure 1,2).

A humanness score should be able to distinguish between 
human antibodies and antibodies from other species. In parti-
cular, it should enable doing so for therapeutic antibodies since 

Figure 3. OASis provides agranular and interpretable humanness score that is able to separate therapeutic antibodies of different origin. (a) Example OASis peptide 
prevalence report of pembrolizumab heavy chain sequence illustrating the granularity of OASis humanness evaluation. Red gradient corresponds to number of 
overlapping 9-mer peptides at given position that are identified as non-human based on user-specified prevalence threshold. Grey tooltip illustrates how prevalence is 
reported interactively on mouse hover. Three nearest germline sequences are shown below, green background marks sequence identity. (b) Ability of OASis identity to 
separate between human, humanized, chimeric or murine antibodies across different prevalence thresholds. The Xaxis shows the fraction of human OAS subjects 
needed to contain apeptide for it to be considered human, spanning from aloose prevalence of at least 1% subjects to astrict prevalence of at least 90% subjects. The 
Yaxis shows the fraction of peptides in an antibody that are considered human at the given threshold (OASis identity). Lines show the average of each group, 
highlighted regions span between 25% and 75% quantiles. (c) Ability of OASis identity to separate between human, humanized, chimeric and murine antibodies at the 
medium threshold (50% prevalence). Left Yaxis shows OASis identity, right Yaxis shows OASis percentile (percentile of OASis identity among therapeutic antibodies). 
Black brackets show significant differences (p < 1e-8 based on two-sided Mann-Whitney Utest). (d) Evaluation of OASis medium identity and other humanness metrics’ 
ability to distinguish between human (positive) and non-human (negative) therapeutic antibodies visualized using aROC curve.

e2020203-4 D. PRIHODA ET AL.



those are the primary subjects of humanness analysis. Therefore, 
we evaluated the ability of OASis identity to separate between 
antibody therapeutics of different origin extracted from IMGT 
mAb DB. For each group of 198 human, 229 humanized, 63 
chimeric, and 13 murine sequences, we calculated the average 
OASis identity across all 1–90% prevalence thresholds 
(Figure 3b). These curves visualized humanness of each group 
of sequences across all prevalence thresholds, enabling human-
ness evaluation with respect to any definition of what prevalence 
is considered human. As expected, with increasing stringency, 
the curves demonstrated a decreasing humanness trend. This 
was especially visible in murine sequences where 70% of the 
peptides were considered human when prevalence in 1% of the 
subjects was required, while only 26% of the peptides were 
considered human when prevalence in 90% of the subjects was 
required. We further visualized OASis identity at 50% preva-
lence, which confirmed significant differences in the score dis-
tribution between different species (p < 1e-8, Figure 3c). 
Interestingly, two outliers with low humanness were identified 
in the human group, at 27% and 54% OASis identity score. The 
former was elipovimab, which targets HIV, and the latter was 
navivumab, which targets Influenza A. Both mAbs scored low 
due to their long CDR3 sequences and heavily mutated frame-
works that gave rise to many non-human 9-mer peptides iden-
tified across the variable region. For a detailed breakdown of 
humanness across positions and germline families, see 
Supplementary Figure 3 and 4, respectively.

Next, we defined the humanness prediction problem as 
a classification task, where the positive class contained human 
sequences and negative class contained sequences that were 
humanized or from other species. For different humanness eva-
luation methods, there was little consensus on what score needed 
to be achieved to consider a sequence human. Therefore, we did 
not measure performance at a single score cutoff, but used the 
standard receiver operating characteristic (ROC) curve approach, 
which shows how the true positive rate (TPR) changes with the 
false positive rate (FPR) for all different score cutoffs (Figure 3d, 
Supplementary Figure 5). In this context, the TPR was the fraction 
of human sequences correctly predicted as human and FPR was 
the fraction of non-human sequences incorrectly predicted as 
human. OASis medium identity outperformed (0.966 AUC) the 
results of traditional humanness scores based on homology – 
Z-score (0.837 AUC) and T20 score (0.896 AUC), as well as two 

novel humanness scores – AbLSTM (0.937 AUC) and MG score 
(0.959 AUC). OASis performed comparably to IgReconstruct 
(0.967 AUC), a recent method based on back-translation and 
positional nucleotide frequency. Interestingly, OASis performance 
was also comparable to Germline content (0.968 AUC), a baseline 
score we implemented based on percent sequence identity with 
nearest human germline. All methods were outperformed by Hu- 
mAb (0.977 AUC), a recent random forest method trained on the 
particular task of classifying human and non-human sequences. 
However, IgReconstruct score is not granular and Hu-mAb score 
is neither granular nor interpretable. A comparative analysis is 
provided in Table 1. All scores and the 553 sequences used to 
produce them are provided in Supplementary Table 1.

Ultimately, the goal of humanness evaluation is to capture 
and reduce the immunogenicity risk. Thus, we evaluated the 
ability of OASis and other humanness metrics to predict 
reported ADA responses of 217 therapeutics curated in 
Marks et al.18 We measured performance using Pearson corre-
lation coefficient (R) and explained variance (R2). OASis med-
ium identity has outperformed (R = −0.53, R2 = 0.28, 
Supplementary Figure 6A) all results except those of Hu- 
mAb (R = −0.58, R2 = 0.34, Supplementary Figure6C). 
Although germline content was also predictive of immuno-
genicity (R = −0.50, R2 = 0.25), the correlation was comparable 
to repertoire-based methods, supporting the assumption that 
the augmented diversity provided by natural antibody reper-
toires does not compromise the immunogenicity profile.

Since immunogenicity is largely supported by the display of 
peptides on MHC-II receptors, we additionally evaluated 
a novel metric equal to the number of peptides that were not 
of human origin based on OASis and that were predicted to 
bind MHC-II by netMHCIIpan 3.1.36 However, this decreased 
the performance (R = 0.44, R2 = 0.01, Supplementary Figure 7), 
therefore we have not pursued this further. We expect that the 
performance could be improved by using a more recent 
netMHCIIpan version, or using a predictor specialized on 
epitopes from antibody sequences. All scores and the 217 
sequences used to produce the data are provided in 
Supplementary Table 2.

In summary, OASis was able to estimate the humanness of 
a sequence with high accuracy and detect the risk of immuno-
genicity. When granularity and interpretability are required, 
OASis outperforms all existing humanness scores.

Table 1. Evaluation of antibody humanness scores. A granular score reports how different residues or stretches of the sequence contribute to the overall humanness. An 
interpretable score explains the humanness of a particular sequence comprehensively to the user, for example by near sequence matches or prevalence statistics. 
Diversity is reported as the size of the reference sequence library (in orders of magnitude). Separately for each column, values above 75% percentile are marked in bold, 
values below 25% percentile are marked in italics.

Granularity Interpretability Diversity (seqs)

Humanness classification Immunogenicity

Method Accuracy (%) ROC AUC R R2

Z-score ✕ no ✓ yes 10^3 76.5 83.7 −0.45 0.20
T20 ✕ no ✓ yes 10^4 83.9 89.6 −0.41 0.16
AbLSTM ✕ no ✕ no 10^4 87.8 93.7 −0.47 0.22
MG Score ✕ no ✕ no 10^3 91.8 95.9 −0.46 0.21
IgReconstruct ✕ no ✓ yes 10^8 92.6 96.7 −0.45 0.20
Germline content ✓ yes ✓ yes 10^2 92.8 96.8 −0.50 0.25
Hu-mAb ✕ no ✕ no 10^7 93.3 97.7 −0.58 0.34
OASis identity (loose) ✓ yes ✓ yes 10^8 91.9 96.4 −0.48 0.23
OASis identity (relaxed) ✓ yes ✓ yes 10^8 94.4 97.2 −0.51 0.26
OASis identity (medium) ✓ yes ✓ yes 10^8 92.6 96.6 −0.53 0.28
OASis identity (strict) ✓ yes ✓ yes 10^8 91.9 95.6 −0.53 0.28
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Sapiens learns to represent antibody sequences using 
language modeling

Although peptides capture the nature of human antibodies as it 
relates to immunogenicity, they do not capture the long-range 
dependencies between positions, while these are important for 
structural stability and other general viability properties of 
a sequence. Therefore, we devised a separate humanization 
mechanism that can capture humanness including long-range 
dependencies. Moreover, such separation of the humanization 
method from the humanness score ensures independent human-
ness evaluation, in contrast to optimizing and evaluating using the 
same score as used by previous approaches.11,13,18

We developed Sapiens, a deep neural network based on the 
Transformer encoder architecture.19 The Sapiens training proce-
dure was based on masked language modeling,20 where the input 
“sentences” were amino acid sequences of antibody variable 
regions, and the “word” tokens were individual amino acid resi-
dues. During training, some of the amino acids in the input 
sequence were randomly replaced with a mask token or mutated 
to a random amino acid. The model was trained to recognize these 
replacements and predict the original amino acids. The positions 
of the perturbed residues were not revealed to the model; there-
fore, it needed to learn to recognize and repair any unexpected 
residues based on the context. Consequently, the model was 
trained only on human antibody sequences and no additional 
labeling data was needed. We trained a separate heavy chain and 
light chain model on a subset of 20 million heavy chain sequences 
and 19 million light chain sequences from the OAS (see Methods, 
Supplementary Figure 8).

Compared to convolutional or recurrent neural networks, the 
Transformer neural network used by Sapiens is built exclusively on 
attention mechanisms. Analogous to language modeling where 
attention weights reveal dependencies between words in 
a sentence, in Sapiens they reveal dependencies between residues 
in an antibody sequence. In a traditional machine learning context 
where residues on different positions in a sequence are considered 

input features, attention can be thought of as feature importance, 
with two important distinctions. First, unlike feature importance, 
attention is not fixed but changes according to the input sequence. 
Second, attention can be calculated for a single position (impor-
tance of position A) as well as for a pair of positions (importance of 
position A in predicting position B). Attention is defined for 
a given input sequence using an attention matrix, which contains 
the importance of each position (column) when predicting the 
residue at each position (row).

By inspecting the attention patterns, we evaluated the ability of 
Sapiens to capture long-range structural dependencies. To calcu-
late an average attention matrix, we selected heavy chain sequences 
from IMGT mAb DB that had exactly 120 residues and were 
composed of the same positions under AHo37 numbering. 
Although the average attention matrix did not reveal many long- 
range residue contacts, some patterns were clearly visible 
(Figure 4a, Supplementary Figure 9). First, we observed that posi-
tions in framework regions 1–4 were directing their attention 
mostly to their respective region compared to other regions (3.8, 
3.7, 4.4, and 15.0 times higher attention on average in framework 
1–4, respectively). Second, we observed that positions in CDR2 
loop were directing their attention toward the CDR1 and CDR2 
loops as well as the DE loop compared to framework regions (2.4, 
8.0, and 3.2 times higher on average for CDR1, CDR2 and DE, 
respectively). To illustrate the spatial proximity of these loop 
positions, we calculated attention weights from Asparagine on 
AHo position 59 of pembrolizumab heavy chain and visualized 
these in the crystal structure (Figure 4b).

We further evaluated the ability of Sapiens to capture long- 
range evolutionary dependencies by inspecting the relationship 
between attention and positional residue correlation. This 
revealed a visible increase in attention between pairs of residues 
that were positively or negatively correlated (Supplementary 
Figure 10). Nevertheless, the high variance indicated that correla-
tion was not the main cause of attention; therefore, a more in- 
depth analysis would be needed to uncover all the driving factors.

Figure 4. Attention within the Sapiens neural network captures long-range dependencies between antibody loops.  
(a) Attention weights of Sapiens when predicting Pembrolizumab heavy chain. Heatmap shows average of all attention heads in layer 2/4 of the Transformer encoder. 
The matrix defines the contribution of all positions (columns) when predicting the residue at a given position (row) in the sequence. White rectangle highlights 
attention from AHo position 59 visualized in (B). (b) Visualization of attention from Asparagine on AHo position 59 within CDR2 loop of Pembrolizumab 3D structure 
(PDB 5B8C). Blue beams visualize all attention connections with weight over 0.02, diameter proportional to weight.
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Since we observed increased attention between structurally 
and evolutionarily related regions and positions, we thus con-
cluded that Sapiens demonstrated the ability to capture long- 
range dependencies in antibody sequences.

Sapiens achieves a balance of humanness and parental 
sequence preservation

The challenge of humanization is improving humanness while 
preserving as much of the parental sequence as possible in 
order to preserve binding and affinity. Ultimately, the only 
way to evaluate reduced immunogenicity risks and preserved 
binding affinity and functional activity is through in vitro or 
even in vivo assays. Nevertheless, in silico evaluation of huma-
nization methods is necessary at least as a primary filter that 
enables comparing and selecting between multiple humanized 
candidates.

In this study, we define the humanness-preservation tradeoff 
to evaluate the mutually competing goals of the increase in 
humanness and the preservation of the parental sequence. The 
first component, humanness increase, was measured as the 
absolute difference in OASis identity score of the humanized 
sequence compared to the parental sequence. The second com-
ponent, parental sequence preservation, was measured as per-
centage sequence identity between the parental and humanized 
sequence overall (Total preservation) and in Vernier zones 
(Vernier preservation).

Since many humanized antibodies have been developed and 
tested, these can be used as standards for comparison. 
Primarily, their parental sequences (original sequences from 
mouse or other model organism) are needed to be able to 
produce and evaluate alternative humanized sequences. To 
that end, 7 pairs of parental-humanized sequences were first 
curated by Clavero-Álvarez et al.13 and recently expanded to 25 
pairs by Marks et al.18 Thus, we used these 25 experimentally 
validated pairs as our first humanization benchmark. 
Analogous to existing approaches, we measured performance 
in terms of overlap between the humanizing mutations made 
in the predicted and the experimentally validated sequence. 
Since a sequence can be successfully humanized in various 
ways, even across different germlines, we could not consider 
the experimentally validated sequence as a single ground truth. 
Nevertheless, by highlighting the level of agreement between 
the prediction and a human expert, we provided an additional 
layer of confidence in our humanization method.

To define naïve baselines of automated humanization 
within the humanness-preservation context, we implemented 
two humanization methods based on CDR grafting. A Straight 
CDR graft was created by inserting the Kabat CDR regions into 
nearest human germline frameworks. Hence, this baseline 
prioritized humanness over parental sequence preservation. 
A Vernier CDR graft was created from the Straight CDR graft 
by additionally back-mutating all Vernier zone positions to the 
parental residues. Hence, this baseline prioritized parental 
sequence preservation over humanness improvement. An illus-
tration is provided in Supplementary Figure 11.

To humanize an antibody using Sapiens, we directly lever-
aged the “recognize and repair” functionality of masked lan-
guage modeling. First, we fed the Sapiens neural network with 

the variable region amino acid sequence of the parental (mur-
ine) antibody. Using attention mechanisms, the network 
recognized non-human residues and output a position-by- 
residue probability matrix with one row for each position and 
one column for each of the 20 amino acid types. All possible 
mutations at all positions were therefore predicted with one 
pass through the network. We produced the final humanized 
sequence by taking the most probable predicted residue at each 
position, except in CDRs, where mutations were ignored and 
the original parental sequence was preserved. CDR definitions 
were based on Kabat,38 but IMGT,39 Chothia,40 and North41 

definitions are also supported in BioPhi. Multiple iterations of 
this process can be performed to humanize the sequence 
further. After one pass, we refer to a humanized sequence as 
Sapiens*1, with subsequent passes as Sapiens*2, Sapiens*3, and 
Sapiens*4.

In the BioPhi web platform, we implemented an integrated 
pipeline that humanizes sequences using Sapiens (with given 
number of iterations) or CDR grafting and evaluates their 
humanness using OASis (Supplementary Figures 12 and 13). 
Additional back-mutations or forward mutations to the 
sequence can then be performed manually by the user through 
the BioPhi Designer interface, which suggests residues based 
on Sapiens score, positional residue frequency or nearest germ-
line sequence (Supplementary Figure 14).

We report the humanization results of the 25 antibody pairs 
in Figure 5. We used OASis identity curves to report on human-
ness of the humanized sequences across different prevalence 
thresholds (Figure 5a). As expected, most human-like sequences 
on average were produced by Straight CDR grafting. The average 
OASis curve of Sapiens*3 intersected with that of experimental 
sequences, indicating comparable humanness, followed by 
Vernier CDR grafting with marginally lower humanness. 
Interestingly, based on OASis, the Hu-mAb method achieved 
distinctively lower humanness compared to other methods. 
Upon further inspection, the 25 Hu-mAb sequences achieved 
low peptide humanness even in framework regions (224 frame-
work peptides with no occurrence in OASis), compared to the 
experimental sequences (12 peptides) or Sapiens*3 (7 peptides). 
Since Hu-mAb sequences were optimized to achieve the same 
Hu-mAb humanness scores as the experimental sequences, we 
further investigated this by comparing Hu-mAb scores to T20 
and OASis identity scores. When comparing each pair of huma-
nized sequences (Hu-mAb optimized and experimentally vali-
dated), both T20 and OASis identity were lower for the sequence 
that underwent Hu-mAb score optimization, even though they 
were designed to achieve the same Hu-mAb score 
(Supplementary Figure 15). The discrepancy suggested that the 
Hu-mAb metric was no longer an unbiased estimator when 
applied to Hu-mAb-optimized sequences.

Next, we evaluated the humanness-preservation tradeoff, 
visualizing the humanness increase compared to the preserva-
tion of parental sequence. The increasing Sapiens iterations 
produced the expected trend of increased humanness and 
decreased preservation. Sapiens*3 achieved the same human-
ness as experimental sequences (+34% absolute increase), while 
achieving higher preservation of the full variable region (86% 
and 80%, respectively, Figure 5b) and same preservation of 
Vernier zones (86%, Figure 5c).
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To provide a breakdown of these average preservation 
results, we calculated preservation separately at each Kabat 
position (Supplementary Figure 16). We identified slight dif-
ferences in preservation of different Vernier positions, where 
Sapiens*3 achieved higher preservation notably in H48, H67, 
H69, and H78, while achieving lower preservation notably in 
H27, H28, H30, H71, and H73. An alternative result was 
generated by configuring Sapiens*3 with Chothia definitions 
of heavy chain CDRs, which achieved higher preservation 
notably in Vernier H27-30 and lower preservation notably in 
CDR2 H57-H65. This resulted in higher humanness (+39% 
absolute increase) at the cost of lower preservation of the full 

variable region (83%). For experienced users, the BioPhi web 
interface enables choosing the CDR definition, as well as fine- 
tuning the sequence manually using the Designer functionality.

Finally, we evaluated the humanizing mutation overlap 
between the sequences produced by automated humanization 
methods and those validated experimentally (Figure 5d, 
Supplementary Figure 17,18). For each humanizing mutation 
to the parental sequence, we determined whether it was shared 
(made in predicted as well as experimental sequence) or 
whether it was only made by either one of the methods. 
Sapiens*1, *2, and *3 achieved highest fractions of shared 
mutations (humanizing mutation precision, Table 2). To 

Figure 5. Sapiens achieved abalanced humanness-preservation tradeoff on 25 antibodies with known parental sequences. (a) Humanness of parental and humanized 
sequences evaluated using OASis identity curves. Each curve shows average across the 25 sequences, highlighted area spans between 25% and 75% quantiles. (b) 
Humanness-preservation tradeoff. Xaxis shows humanness improvement– average difference in OASis medium identity of the humanized and parental sequence. Yaxis 
shows total parental sequence preservation (averagepercent sequence identity of humanized and parental sequence). Sapiens*1, *2, *3, and *4 refer to 1, 2, 3, and 4 
humanization iterations, respectively. (c) Humanness-preservation tradeoff in Vernier zones. Xaxis same as in (B), Yaxis shows parental sequence preservation in Vernier 
zones. Dashed gray line shows axis between two extremes: Straight CDR graft (all Vernier residues humanized, more human but less preserved) and Vernier CDR graft 
(all Vernier residues back-mutated, less human but more preserved). (d) Average overlap of humanizing mutations made in predicted sequence and in experimentally 
validated sequence.

Table 2. Evaluation of humanization methods. Separately for each column, values above 75% percentile are marked in bold, values below 25% percentile are marked in 
italics. Humanness change was computed as average absolute difference of OASis medium identity (or T20 score) of the humanized sequence and the parent sequence. 
Therefore, an increase of +34% refers to the absolute change in the humanness score (e.g. from 40% to 74%), not a relative change. Parental preservation was calculated 
as sequence identity of the parental and humanized sequence under Kabat numbering, in full sequence or Vernier regions only. Humanizing mutation precision was 
calculated as number of shared mutations (made both in predicted sequence and in experimentally humanized sequence), divided by total number of mutations made 
in the predicted sequence.

Humanness improvement Preservation Humanizing mutation precision

Method OASis T20 Total Vernier Total Vernier

25 known pairs Experimental +34% +13% 80% 86% - -
Sapiens*1 +30% +10% 89% 90% 77% 49%
Sapiens*2 +33% +12% 86% 87% 74% 42%
Sapiens*3 +34% +12% 86% 86% 73% 40%
Sapiens*4 +34% +13% 86% 86% 72% 40%
Hu-mAb +14% +6% 89% 91% 72% 54%
Straight graft +36% +14% 83% 80% 65% 35%
Vernier graft +32% +11% 85% 100% 70% -
Experimental +30% +11% 84% 87% - -

152 putative pairs Automatic 
germline

Sapiens*1 +30% +10% 89% 89% 72% 48%
Hu-mAb +4% −1% 93% 94% 36% 25%
Straight graft +33% +13% 84% 80% 64% 36%
Vernier graft +29% +11% 87% 100% 70% -

Manual 
germline

Sapiens *1 +34% +13% 83% 83% 82% 49%
Hu-mAb +15% +3% 90% 93% 65% 48%
Straight graft +35% +13% 82% 76% 81% 45%
Vernier graft +30% +11% 85% 100% 89% -
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further validate the probabilistic properties of Sapiens predic-
tions, we evaluated the predicted Sapiens score of humanizing 
mutations and back-mutations made in the experimental 
sequences. We observed that most mutations achieved the 
first or second highest Sapiens score (Supplementary 
Figure 19).

While we report average results, deviation across the 25 
antibodies was substantial. To facilitate readers’ closer inspec-
tion, we provide the 25 predicted humanized sequences in the 
Supplemental Information, along with the individual antibody 
results of the humanness-preservation tradeoff (Supplementary 
Figure 20) and T20 humanness (Supplementary Figure 21).

Taken together, based on the in silico evaluation, BioPhi 
provides a toolbox of automated humanization methods that 
are competitive with manual humanization by experts. 
Moreover, guided by the predictive tools, users can perform 
further adjustments to the final sequence and produce multiple 
sequence variants.

Sapiens rediscovers humanizing mutations of 152 
therapeutic antibodies

To evaluate Sapiens and other humanization methods on 
a larger scale, we reconstructed putative parental sequences of 
152 humanized antibody therapeutics. Humanized antibodies 
generally contain framework regions of human origin and 
CDRs of parental origin (usually mouse). Therefore, we devel-
oped a parental sequence reconstruction strategy based on 
sequence similarity of CDR regions against all 169,870,516 
non-human sequences in OAS, and applied it to 152 huma-
nized sequences from TheraSAbDab42 (see Methods).

To evaluate the fidelity of the reconstructed parental 
sequences, we compared these with known parental sequences 
of 22/152 antibodies that were present in the Hu-mAb 25 pairs 
dataset (Supplementary Table 3, Supplementary Figure 22). On 
average, the reconstructed sequences achieved 92% average 
heavy chain sequence identity and 93% average light chain 
sequence identity with the known parental sequences. Since 
each parental sequence was already very similar to the huma-
nized sequence that was used to perform the reconstruction 
(80% heavy chain identity and 82% light chain identity on 
average in the 22 pairs), total sequence identity could over-
estimate the recovery performance. Therefore, we also mea-
sured sequence identity based only on mutated positions – 
positions that were different between the humanized sequence 
and the parental sequence. In that regard, our strategy correctly 
recovered 65% of the mutations in the heavy chain and 72% in 
the light chain (where a random baseline would recover 5% 
since there are 20 residues to choose from). Finally, we com-
pared the CDR-based recovery to a strategy based on full 
sequence homology. Parental sequences recovered that way 
achieved only 78% and 82% sequence identity with the 
known heavy chain and light chain sequences, respectively, 
correctly recovering 37% and 66% framework mutations, 
respectively. Therefore, we conducted the following analysis 
on the CDR homology-based results.

Similar to the 25 pairs dataset, we used the 152 recon-
structed parental sequences as input to each humanization 
method and evaluated their ability to rediscover the humanized 

therapeutic sequences. We evaluated each method based on 
two scenarios. In the first scenario, the humanization method 
was not instructed with any specific germline and needed to 
choose it automatically. In the second scenario, the humaniza-
tion method was instructed with a specific germline gene 
corresponding to the known humanized therapeutic sequence, 
simulating a use-case when the germline is requested manually 
by the user.

With automatic germline selection, each humanization 
method selected the target germline in a different fashion. In 
CDR grafting, we selected the germline V and J genes with 
highest sequence identity to the input sequence. In Hu-mAb, 
the germline family was selected based on which of the Hu-mAb 
models achieves highest score on the input sequence. In Sapiens, 
germline selection was implicit – the neural network was not 
provided with any germline annotations during training, any 
germline knowledge was trained directly from the repertoire 
sequence corpus. Consequently, Sapiens predicted humanizing 
mutations that maximized the likelihood of seeing the sequence 
in the training corpus, conditioned on the particular input 
sequence. Sapiens*1 achieved the same humanness as experi-
mental sequences (+30% absolute increase), while achieving 
higher preservation of the full variable region (89% and 84%, 
respectively, Figure 6a) as well as in Vernier zones (89% and 
87%, respectively, Figure 6b). Sapiens*1 also achieved the high-
est fraction of mutations shared with the experimental sequence 
(Figure 6c, Table 2, Supplementary Figure 23). Compared to 
other methods, Hu-mAb achieved lower overlap due to fre-
quently choosing different germline genes.

With manual germline selection, the target germline gene 
corresponded to the germline of the humanized therapeutic 
sequence. In this scenario, the responsibility of the humanization 
method was reduced mostly to determining which positions in 
the sequence should be humanized and which should be back- 
mutated (remain parental), since to a large extent, the residues 
themselves were already defined based on the chosen germline. 
In Sapiens and CDR grafting, we provided the germline genes 
(e.g., IGHV1-46 and IGHJ4 for heavy chain, IGKV1-39 and 
IGKJ1 for light chain), and determined the allele based on high-
est sequence identity of each germline sequence with the huma-
nized therapeutic sequence. In Hu-mAb, we provided only the 
V germline family (e.g. IGHV1 and IGKV1) since more fine- 
grained selection was not supported. Since Sapiens was trained 
on all germlines of a given chain type combined, there was no 
direct way to choose the target germline for Sapiens humaniza-
tion. To circumvent this issue, we generated Sapiens predictions 
by first performing Vernier CDR grafting to the target germline, 
and then applying Sapiens to humanize the sequence further and 
resolve potential issues at region boundaries. Sapiens*1 achieved 
higher humanness than experimental sequences (+34% and 
+30% absolute increase, respectively) at the cost of achieving 
lower preservation of the full variable region (83% and 84%, 
respectively, Figure 6d) as well as in Vernier zones (83% and 
87%, respectively, Figure 6e). Interestingly, with manual germ-
line assignment, Vernier CDR grafting achieved comparable 
humanness to experimental sequences (+30% absolute increase) 
and superior preservation in full variable region (85% and 84%, 
respectively) and in Vernier zones (100% and 87%, respectively). 
The highest mutation overlap with experimental sequences was 
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achieved by Vernier CDR grafting followed by Sapiens*1 (figure 
6f, Table 2). In eight cases, Sapiens*1 predicted a sequence that 
differed in only one mutation from the experimental sequence, 
and in one case the sequences were identical (Supplementary 
Figure 24). This was more than Vernier CDR grafting, which 
produced one case with one mutation difference and one case 
where the sequence was identical (Supplementary Figure 25).

Using a personal computer with 8 cores, we were able to 
humanize the 152 antibodies using the BioPhi web interface in 
5.2 minutes. We thus concluded that BioPhi was able to huma-
nize sequences at scale while recovering high overlap with 
therapeutic sequences, with target germlines automatically 
assigned or manually selected by the user.

Discussion

We developed BioPhi, an open platform for antibody design 
that integrates novel humanization and humanness evaluation 
methods. The BioPhi automated humanization workflow 
enables bulk processing using a novel humanization method 
based on deep learning on large-scale natural antibody reper-
toires (Sapiens) or canonical humanization methods based on 
CDR grafting. In silico evaluation demonstrated that the 
sequences produced by our humanization methods are com-
petitive with those validated experimentally and produced by 
expert methods. Humanized sequences can further be adjusted 
manually using the BioPhi Designer functionality. The BioPhi 
humanness report enables humanness evaluation using a novel 
method based on 9-mer peptide search (OASis) and traditional 
methods based on nearest germline sequence identity and 
positional residue frequency. This enables the identification 
of non-human peptides and residues and suggests viable 
point mutations based on humanness criteria that are inter-
pretable while exposing the vast sequence diversity of natural 
antibody repertoires. As an extensible platform that integrates 
data-driven methods, BioPhi is poised to grow as new datasets 
become available that continue to connect the two parallel lines 
of research – adaptive immune repertoire sequencing and anti-
body engineering.

Established humanness evaluation methods can distinguish 
between human and non-human sequences, but lack granular-
ity or interpretability. Existing methods based on homology9,10 

are interpretable, but lack granularity since they only provide 
a single score for each chain. Moreover, these underperformed 
in our analysis compared to more recent approaches such as 
IgReconstruct,17 which could be attributed to the modest size 
of their reference sequence libraries. Interestingly, Germline 
content, a baseline method we implemented based only 
on percent sequence identity to nearest human germline, per-
formed comparably to recent methods while providing both an 
interpretable and granular score. Nevertheless, antibody germ-
lines provide orders of magnitude smaller sequence space than 
antibody repertoires, making them more restrictive for anti-
body engineering applications. Although Hu-mAb score18 has 
outperformed all other methods including ours by a narrow 
margin on humanness classification (97.7% and 96.6% ROC 
AUC, respectively for Hu-mAb and OASis medium identity) 
and on immunogenicity prediction (0.34 and 0.28 R2, respec-
tively), we identified two drawbacks. Firstly, Hu-mAb produces 
only a single score per chain. This could be addressed by 
providing the user with the change of predicted score upon 
mutation, as implemented in the Hu-mAb humanization pro-
tocol. Secondly, the Hu-mAb score is not interpretable. 
Although random forest models are robust estimators thanks 
to their randomized ensemble architecture, this makes their 
individual predictions difficult to interpret. In contrast, OASis 
provides a high-accuracy humanness score that is both gran-
ular and interpretable, guided by the principles of foreign 
protein recognition via the processing, display, and recognition 
of peptides.

To be able to compare humanization methods, in this study 
we mostly reported average performance results across multi-
ple sequences. However, we acknowledge that the deviation in 
performance across sequences is substantial. Different methods 
were more successful in different cases, further encouraging the 
assembly of a diverse arsenal of humanization methods. We 
imagine this will be enabled by our open-source BioPhi 
platform.

Figure 6. Evaluation of humanization methods on alarge scale using 152 humanized therapeutic antibodies with putative parental sequences. In automatic germline 
selection (a–c), target germlines were chosen by the humanization method. In manual germline selection (d–f), target germline was set based on the germline of the 
humanized therapeutic sequence. (a) and (d) Humanness-preservation tradeoff. Xaxis shows humanness improvement– average difference in OASis medium identity of 
the humanized and parental sequence. Yaxis shows total parental sequence preservation– averagepercent sequence identity of humanized and parental sequence. (b) 
and (e) Humanness-preservation tradeoff in Vernier zones. Xaxis same as in (a) and (d), Yaxis shows parental sequence preservation in Vernier zones. Dashed gray line 
shows axis between two extremes: Straight CDR graft and Vernier CDR graft. (c) and (f) Overlap of predicted and therapeutic (experimentally validated) humanizing 
mutations.
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When evaluating the performance of an automated huma-
nization method, it is crucial to compare it to simple but 
realistic baselines. Such comparison has not been performed 
in previous studies.13,18 In this study, we implemented two 
baseline methods based on CDR grafting – the Straight CDR 
graft, which achieved high humanness while preserving par-
ental sequence in Kabat CDRs, and the Vernier CDR graft, 
which produced fewer human sequences in exchange for addi-
tionally preserving all parental residues in Vernier zones. Both 
methods performed remarkably well in terms of the overlap 
with experimentally validated sequences, especially when sup-
plied with the target germline gene.

When humanizing a sequence iteratively by humanness 
score optimization, the produced sequence should be validated 
by an independent humanness score, since even small errors in 
humanness estimation will be amplified during its optimiza-
tion. We believe this was the cause of inferior OASis and T20 
scores for sequences produced by steepest descent optimiza-
tion in Hu-mAb as compared to results achieved by Sapiens or 
expert. The difference in humanness between the methods is 
illustrated by an order of magnitude difference in the number 
of non-human peptides in the framework (224, 12, and 7 for 
Hu-mAb, expert and Sapiens, respectively, in the 25 bench-
mark sequences). This further supports our decision to develop 
separate methods for humanization and humanness 
evaluation.

Due to its laborious nature, humanization is traditionally 
performed after the candidate pool has been reduced to 
a handful of sequences by multiple rounds of binding 
assays, functional assays, and basic biophysical characteriza-
tion. As these candidate pools are growing with the advent 
of high-throughput protein production and screening, auto-
mated humanization and other antibody engineering meth-
ods can help with the exploration of a larger and more 
diverse sequence space earlier in the process. In the first 
phase, automated methods can serve as a guide for human- 
assisted batch humanization and engineering. Ultimately, as 
their performance improves, they can be combined with 
other prediction tools to perform holistic in silico antibody 
engineering that will enable humanization of a sequence 
together with engineering desired properties. In that view, 
the multiple stages of experimental validation would be used 
for iterative optimization of the candidate pool on all 
required properties at once, rather than devising separate 
stages for affinity optimization, developability optimization, 
liability mitigation, and deimmunization.

Sapiens is trained with a general goal of recognizing 
masked or mutated residues and repairing them based on 
the sequence context. This mechanism could be applied in 
conjunction with additional optimization criteria to explore 
vast search spaces of mutations for different antibody engi-
neering tasks. For example, joint optimization of humanness 
and structural stability prediction was previously used to 
produce successful humanized candidates.12 Incorporating 
predictions of CDR conformation43 or paratope residues44 

could improve decisions on which positions in a particular 
sequence are most crucial for the preservation of binding. 
Sapiens could also be used to propose viable point muta-
tions for posttranslational modification liability mitigation, 

both in frameworks and CDRs. More developable molecules 
could be produced by enriching the Sapiens training set for 
sequences with properties linked to favorable developability 
profiles28 or pairing Sapiens with homology modeling and 
structure-based developability prediction methods.30

Since datasets with target measurements are sparse and 
the input space is enormous, the protein engineering field has 
started showing interest in unsupervised or self-supervised 
learning, inspired by the recent progress in natural language 
processing. By training deep neural networks on large data-
bases of unlabeled sequences, compact numeric representa-
tions of proteins can be created, enabling transfer learning on 
problems with substantially smaller datasets. Notably, this 
was recently demonstrated in MSA Transformer,25 where 
residue-residue contact information emerged directly from 
attention weights after unsupervised learning on multiple 
sequence alignments. In Sapiens, we have not observed any 
emergence of such a strong signal, although a pattern of 
attention from the CDR2 loop to CDR1 and DE loops was 
clearly present, corresponding to the three-dimensional 
structure of antibody loops. More work is yet to be done on 
the representation learning of antibody sequences – curating 
databases of sequences with favorable properties, optimizing 
neural network architectures and hyperparameters, and more 
importantly, inventing large-scale self-supervised tasks that 
are predictable yet complex enough to force the model to 
create meaningful inner representations using unlabeled 
data.

Analogous to natural language processing, antibody huma-
nization and protein engineering methods in general are lack-
ing a single “ground truth,” which makes their in silico 
evaluation and consequently their improvement challenging. 
Even though in isolation, the humanness-preservation tradeoff 
achieved by Sapiens is comparable to expert, we understand 
that further experimental validation is necessary. However, as 
artificial-intelligence-driven tools such as natural language 
translation have demonstrated, even before an automated 
approach achieves human-level performance, it can provide 
value to the community and create novel opportunities for 
a new generation of advanced tools and approaches.

Methods

OASis peptide database

Unaligned amino acid sequences were obtained in JSON 
format from unpaired OAS database (accessed Nov 2019). 
Next, studies with human subject information were selected. 
Only subjects containing at least 10,000 redundant complete 
sequences for given chain type were selected, which yielded 
118,713,869 sequences from 231 subjects (225 with available 
heavy chains, 154 with light chains, 148 with both) from 26 
studies. Based on the OAS annotations, the isotype compo-
sition was 38% IGHM, 21% IGHG, 14% IGHA, 4% IGHD, 
0.02% IGHE, and 23% bulk sequences. For each OAS sub-
ject, all overlapping 9-mer peptides were extracted from the 
amino acid sequences. Heavy chain peptides that appeared 
only in one subject were removed (corresponding to mini-
mum prevalence of 1% of subjects). An inverted index data 
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structure was created where each distinct peptide points to 
a list of subjects in which it appears together with the 
number of occurrences. This was stored along with 
a subject metadata table in an SQLite database (22GB 
uncompressed) with an index on the peptide field to speed 
up querying (less than 1 ms per peptide single-threaded).

Diversity evaluation

Germline sequences were downloaded from IMGT Gene-DB 
“F+ ORF+in-frame P amino acid sequence” for homo sapiens 
(containing 60 IGHD, 13 IGHJ, 406 IGHV, 9 IGKJ, 108 IGKV, 
12 IGLJ, and 98 IGLV genes). Overlapping 9-mer peptides 
were extracted separately from each gene.

A representative sample of OAS sequences for the UMAP 
visualization was generated by randomly sampling each OAS 
subject for 25 aligned sequences from each heavy V gene family 
and 15 aligned sequences from each light V gene family; only 
complete sequences were considered. This yielded 39,965 vari-
able heavy and 41,845 variable light chain sequences. Germline 
V gene sequences with IMGT gaps were collected from IMGT 
Gene-DB. UMAP embedding33 was generated by precomput-
ing an all-by-all pairwise sequence identity matrix, where only 
positions shared by both sequences were considered (to handle 
missing J region in the germline sequences).

Evaluation of humanness metrics

Therapeutic sequences with species information were down-
loaded from IMGT mAb DB35 by querying for all records 
having an INN request number and IG Receptor Type. OASis 
identity curves across all prevalence thresholds were calculated 
for 198 human, 229 humanized, 63 chimeric, and 13 murine 
therapeutics. Statistical significance of differences in OASis 
medium identity between each group was calculated using two- 
sided Mann-Whitney U test.

Ability to separate human and non-human sequences was 
evaluated using a ROC curve. The expected output was 0.0 for 
negative class (229 humanized, 41 humanized/chimeric, 63 chi-
meric, 13 mouse, 6 caninized, and 3 felinized therapeutics) and 1.0 
for positive class (198 human therapeutics), the predicted output 
was directly the humanness score. Humanness scores of each 
therapeutic were calculated as averages of the scores of their 
chains.

Web services were used for Z-score (http://www.bioinf.org.uk/ 
abs/shab/), T20 (https://dm.lakepharma.com/bioinformatics), 
Hu-mAb (http://opig.stats.ox.ac.uk/webapps/humab) and 
IgReconstruct (http://meilerlab.org/index.php/servers/ 
IgReconstruct) (January 2021). AbLSTM was executed only on 
heavy chain sequences using the pretrained heavy chain models 
from the code repository (https://github.com/vkola-lab 
/peds2019). Germline content was calculated by aligning the 
sequence using IMGT numbering in ANARCI45 and computing 
the percent sequence identity with a concatenation of the nearest 
human V and J gene from IMGT Gene-DB.32 MG scores were 
obtained by correspondence with the authors. No implementation 
of HSC11 was publicly available, therefore it was not included in 
the evaluation. Humanness scores and sequences used for evalua-
tion are provided in Supplementary Table 1.

Correlation with clinical immunogenicity was evaluated on 
a dataset curated in Hu-mAb study,18 sequences were obtained 
from IMGT mAb DB.35 The sequence for catumaxomab was 
not available; therefore, only 217/218 therapeutics were 
included. Explained variance (R2) was calculated after trans-
forming each score to the output range using a simple linear 
regressor. MHC II binding was predicted using netMHCIIpan 
3.1.36 A peptide was considered binding if it was predicted 
below 10 percentile in any of DRB1*0101, 0301, 0401, 0701, 
0801, 1101, 1301, 1501 (same alleles as in Amimeur et al.28). 
Reported immunogenicity along with humanness scores and 
sequences used for evaluation are provided in Supplementary 
Table 2.

OASis humanness metric

First, all overlapping 9-mer peptides were extracted from the 
input antibody and queried against the OASis database using 
exact match. Next, the human prevalence of each peptide was 
calculated as number of subjects containing the given peptide 
(at least once) divided by the total number of subjects for the 
given chain type. Finally, a single OASis identity score for the 
input sequence was calculated as the fraction of peptides with 
prevalence over a user-specified threshold. OASis percentile 
score was calculated as the percentile of the OASis identity 
among the 544 therapeutic antibodies collected from IMGT 
mAb DB. Using a simple benchmark on a personal computer 
with 8 cores, BioPhi command-line interface was able to eval-
uate OASis humanness of 1000 antibodies in 14 minutes.

Sapiens training corpus

Unaligned variable region amino acid sequences were down-
loaded from OAS database (accessed Nov 2019). A heavy chain 
training set was extracted by sampling 20 million unaligned 
redundant amino acid sequences from all 38 human heavy 
chain OAS studies from 2011–2017. The training sequences 
originated from 24% unsorted, 10% IGHA, 1% IGHD, 1% 
IGHE, 35% IGHG, and 30% IGHM isotypes. A validation set 
was extracted by sampling 20 million sequences from all 5 
human heavy chain studies from 2018. The validation sequences 
originated from 33% unsorted, 16% IGHA, 1% IGHD, 1% 
IGHE, 20% IGHG, and 28% IGHM isotypes. A light chain 
training set was extracted by taking all 19,054,615 sequences 
from all 14 human light chain OAS studies from 2011–2017. 
A validation set was extracted by taking all 33,133,386 sequences 
from both 2 human light chain OAS studies from 2018. Studies 
from 2019 were left out to enable future comparison with new 
methods on an independent test set.

Sapiens architecture and training procedure

Sapiens was implemented and trained using fairseq46 and its 
RoBERTa module.47 The Transformer encoder contained 4 
layers, 8 attention heads, embedding dimensionality of 128, 
feed forward network embedding dimensionality of 256. 
Other parameters of the network were based on RoBERTa 
defaults. In total, the network contained 568,857 tunable 
weights. Training procedure was based on “masked_lm” 
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training task with 15% masking probability. Label-smoothed 
cross-entropy with epsilon of 0.1 was used to avoid penalizing 
the model for making incorrect yet plausible predictions, 
reflecting the inherent unpredictability of the sequence. 
A 10% dropout and variable rates of weight decay were used 
to avoid overfitting. Separate models were trained for the heavy 
chain and the light chain. The heavy chain model was trained 
for 700 epochs (166 epochs with learning rate of 1e-4, then 
further with learning rate of 1e-3) using Adam with default 
parameters. The light chain model was trained for 300 epochs 
with learning rate of 1e-04. No hyperparameter tuning was 
performed. Toward the end of the training procedure, the 
increase of validation performance started slowing down, but 
still did not plateau, suggesting that additional training or less 
conservative regularization techniques could improve perfor-
mance further (Supplementary Figure 8).

Although antibody sequences are commonly numbered 
and aligned for machine learning applications,13,18,26 una-
ligned sequences were used for three reasons. First, such 
alignment is only applicable to antibodies and T-cell 
receptors, so it would render the method inapplicable to 
other domains in the future. Second, while alignment can 
help relate conserved positions to each other, it can also 
conceal motifs found in a particular sequence by frag-
menting it with artificial gaps. Third, by using an una-
ligned sequence, the model was forced to recognize the 
conserved positions on its own and therefore learn 
a richer inner representation. Nevertheless, evaluation of 
alternative training and validation schemes was not per-
formed in this study, so aligned sequence input as well as 
other subsampling and validation split strategies could 
also be considered.

Sapiens attention analysis

Attention weights were collected from 64 heavy chain sequences 
from IMGT mAb DB that were 120 amino acids in length and 
were composed of the following AHo positions: 1–7, 9–27, 29– 
33, 39–61, 65–113, and 133–149. Attention weights for each of 
the 64 sequences were extracted from the Sapiens network, 
averaged across subjects and attention heads in each layer. An 
increase in attention to a given region was calculated by compar-
ing mean attention to all positions in the given region compared 
to mean attention to all positions in other regions. Attention 
weights for Pembrolizumab heavy chain were visualized in its 
PDB structure 5B8C using ProVis48 and nglview.49 Positional 
residue correlation was calculated on a subset of 16,545 heavy 
chain sequences created by sampling 10 sequences for each 
V gene family from each OAS subject. First, sequences were 
numbered using Aho numbering to create a fixed-length cate-
gorical matrix. Next, the matrix was one-hot-encoded to repre-
sent each Aho position as 20 binary vectors, each corresponding 
to an amino acid appearing on the given position. Columns with 
less than 10 positive examples were discarded, yielding a matrix 
of 16,545 rows and 1789 columns. A pairwise correlation matrix 
was calculated using Pearson correlation coefficient. Finally, 
attention and correlation were collected for each pair of residues 
in the 64 sequences.

CDR grafting

IMGT-aligned human germline V and J gene sequences were 
collected from IMGT Gene-DB. The grafting process consisted 
of five steps. First, the input sequence was IMGT-aligned using 
ANARCI. Next, the nearest human V and J gene sequences 
were selected based on sequence identity (optionally filtered for 
sequences from specified gene or gene family) and merged into 
a single sequence with IMGT gaps. Next, the input and germ-
line sequences were renumbered to a user-specified numbering 
scheme (Kabat by default). In Straight CDR grafting, CDR 
residues from the input sequence (now based on the renum-
bered scheme) were inserted at the corresponding positions in 
the germline sequence. In Vernier CDR grafting, parental 
Vernier zone residues are grafted along with the CDRs, in 
other words, these were additional “back-mutations”. Vernier 
zones were defined based on a report by Foote et al.8 Both 
methods were released in a new open-source package 
AbNumber (https://github.com/prihoda/AbNumber).

Humanization methods evaluation

The validation set of 25 humanized sequences paired with their 
known parental sequences and Hu-mAb predictions was 
acquired from the Hu-mAb study.18 Hu-mAb predictions from 
the 152 putative parental sequences were generated using the 
Hu-mAb web server (March 2021). Humanness of predicted 
sequences was evaluated using OASis and the T20 web server. 
Humanness change was computed as average absolute difference 
of OASis medium identity of the humanized sequence and the 
parental sequence. Parental preservation was calculated as aver-
age sequence identity of the parental and humanized sequence 
under Kabat numbering. To produce Venn diagrams, all muta-
tions from parent to the experimental or predicted sequence 
were pooled together and classified into three categories: (1) 
“Shared” mutations were made in both the experimental and 
the predicted sequence (identical residues on the same Kabat 
position); (2) “Experimental only” mutations were made only in 
the experimental sequence; and (3) “Predicted only” mutations 
were made only in the predicted sequence. Humanizing muta-
tion precision was calculated as number of “Shared” mutations, 
divided by total number of mutations made in the predicted 
sequence (“Shared” + “Predicted only”). Using a simple bench-
mark on a personal computer with 8 cores, BioPhi command- 
line interface was able to humanize 1000 antibodies in 2.3 min-
utes (using Sapiens without OASis evaluation).

Recovering 152 putative parental sequences

Records with “-zumab” suffix were collected from 
TheraSAbDab, totaling 164 humanized therapeutics. To esti-
mate which positions (apart from CDRs) in the humanized 
therapeutic sequences came from their parental sequence, fra-
mework residues with <1% positional frequency were identi-
fied. The frequency was calculated for each chain type (heavy, 
kappa, lambda) based on a subset of 4 million human OAS 
sequences created by sampling 10,000 complete sequences 
from each OAS subject. On average there were 1.3 rare frame-
work residues in the heavy chain and 1.0 in the light chain. 
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While further evaluation of different rare frequency thresholds 
revealed that light chain might benefit from a higher threshold 
(2.5–4%), the original threshold of 1% was kept due to 
a negligible increase in recovery accuracy (72.5% compared 
to 71.9%, Supplementary Figure 22).

Each humanized sequence was IMGT-aligned using 
ANARCI and compared against all 169,870,516 non-human 
IMGT-aligned sequences from OAS (94.3% from mouse, 2.5% 
from rat, 1.8% from rabbit, 0.8% from rhesus, and 0.7% from 
camel). The putative parental sequence template was selected 
based on highest sequence identity in CDRs. In case multiple 
sequences with the same CDR identity were found, the one 
with highest framework identity was selected. To preserve only 
high-confidence matches, therapeutics with less than 60% CDR 
identity with the nearest match in heavy or light chain were 
discarded, yielding 152 final pairs. The final putative parental 
sequence was assembled by grafting CDRs and the identified 
non-human residues of the humanized sequence into the par-
ental OAS hit, essentially performing reverse CDR grafting. 
This produced a fully non-human sequence with CDRs and 
other non-human residues from the humanized therapeutic 
and frameworks from the non-human OAS hit. For 22/152 
therapeutics, known parental sequences were obtained from 
Marks et al.18 Sequence identity was calculated as percentage of 
identical residues in the known and recovered parental 
sequence using Kabat numbering. Recovery mutation accuracy 
was calculated as number of framework positions that agreed 
between the two parental sequences while being mutated in the 
humanized sequence, divided by the total number of mutated 
positions. Putative parental sequences are provided in 
Supplementary Table 3.
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